Current Trends and Challenges in Pharmacovigilance and Drug Saftey

Sandesh U. Sutar¹; Prathamesh T. Patil²; Shubham S. More³; Gururaj D. Patil⁴; Tejashree S. Khamkar⁵

 ¹²³⁴Department of Pharmacy Ashokrao Mane College of Pharmacy, Peth Vadgaon/Shivaji University 416112, Maharashtra, India
⁵Department of Pharmaceutical Chemistry, Assistant Professor, Ashokrao Mane College of Pharmacy, Peth Vadgaon/Shivaji University 416112, Maharashtra, India

Publication Date: 2025/10/27

Abstract: Pharmacovigilance is essential to guaranteeing the effectiveness and safety of pharmaceuticals. This study highlights developments in signal identification, risk management, and minimisation techniques while giving a broad overview of current trends and potential future directions in pharmacovigilance. The growing significance of machine learning, artificial intelligence, and real-world evidence in pharmacovigilance is covered in the article. Updates to regulations are also reviewed, such as the US Food and Drug Government's (FDA) Safety Management and Critical Event Reporting rules and the European Pharmaceuticals Agency's (EMA) Good Regulatory Practices. Additionally, this review examines new pharmacovigilance potential and problems, including: The increasing demand for safety monitoring in personalised medication; The combination of precision medicine and pharmacogenomics Social media and digital health tools' effects on reporting adverse events; The changing roles of patients and medical professionals in pharmacovigilance.

Keywords: Regulatory Compliance, Risk Management, Drug Monitoring, Adverse Drug Reactions (ADRs), Drug Safety, Signal Detection, Real-World Data (RWD), Pharmacovigilance, and Post-Marketing Surveillance.

How to Cite: Sandesh U. Sutar; Prathamesh T. Patil; Shubham S. More; Gururaj D. Patil; Tejashree S. Khamkar (2025) Current Trends and Challenges in Pharmacovigilance and Drug Saftey. *International Journal of Innovative Science and Research Technology*, 10(10), 1374-1383. https://doi.org/10.38124/ijisrt/25oct898

I. INTRODUCTION

Monitoring the safety and effectiveness pharmaceutical medications is crucial in the health care sector [1]. Public health is greatly aided by pharmacovigilance, which is scientific knowledge and usage of identifying, evaluating, comprehending, and preventing side effects or other drug-related issues. Significant advancements have been achieved over time in creating complex regulatory frameworks and pharmacovigilance systems that track the safety profiles of drugs across their whole cycle[2] . Advances in healthcare technology, modifications to legal constraints, and a growing focus on patient-centered care are some of the elements that have influenced the growth of pharmacovigilance techniques. To gather, examine, and share information on adverse reactions to medicines (ADRs) and other problems related to drugs, pharmacovigilance systems depend on the cooperation of regulatory bodies, pharmaceutical firms, medical professionals, and patients [3]. The efficiency of pharmacovigilance practices is continuously challenged by underreporting of adverse drug reactions (ADRs), data quality variability, oversight disparities in various nations, and the rapid advancement of healthcare technologies, despite the fact that medical

surveillance has made significant strides in improving drug safety. These difficulties highlight the necessity of ongoing innovation and cooperation in order to enhance patient outcomes and develop the pharmacovigilance system. [4]

- Patients and Healthcare Professionals: In Sierra Leone, patients and healthcare professionals notice negative drug.
- ADR Reporting: Through approved routes, that include national pharmacovigilance centers, medical centers, or online reporting portals, patients and healthcare professionals can report observed ADRs.
- Local Pharmaceutical Vigilance Department in Sierra Leone: The local pharmacovigilance department in Sierra Leone receives and handles the reported adverse drug reactions. Initial evaluations and data gathering for the reported ADRs may be carried out bythiscenter.
- Transmission to the VigiFlow database: The local pharmacy surveillance center in Sierra Leone electronically sends the ADR reports to VigiFlow, a worldwide database and analytic system run by the World Medical Association (WHO).
- Data Collection and Analysis: After being input into the

ISSN No:-2456-2165

VigiFlow information system, ADR reports are subjected to additional examination, classification, and coding in accordance with global norms like the Medical Directory for Regulated Activities (MedDRA).

- Linkage with VigiBase: The WHO's global collection of personal safety reports (ICSRs), VigiBase, now includes validated ADR data from Sierra Leone. VigiBase compiles ADR information from multiple nations and sources across the globe.
- Signal Recognition and Examination: Pharmacovigilance specialists examine the collected data in VigiBase to find possible safety indicators, patterns, and trends related to certain drugs or pharmacological classes. Advanced.

II. PHARMACOVIGILANCE TECHNIQUES

Pharmacovigilance uses a variety of techniques to track, identify, evaluate, and stop side effects or other issues relating to drugs. Among the primary techniques employed are:

• The most popular approach is the use of spontaneous reporting systems (SRS), in which manufacturers,

- patients, or medical professionals voluntarily record reactions to medicines (ADRs). Databases such as WHO's VigiBase and FDA's FAERS compile these reports.[5]
- Cohort Studies: These observational studies track a group of patients over time who get exposed to a medication in order to identify and measure side effects.
- Case-Control Studies: These studies evaluate previous drug exposure by comparing patients who have had an adverse reaction (cases) with those that have not (controls).[6]
- Registries: To track long-term safety, disease or drug registrations systematically gather information on individuals receiving specific treatments.[7]
- Electronic Health Records (EHR) and Data Analysis: Patterns and signals suggestive of medication safety problems are found by using data mining techniques and electronic health data.[8]
- Meta-analytic and Cochrane Reviews: integrating information from several studies to assess a medication's overall safety profile.

Fig 1 Flow Chart of the Core Pharmacovigilance Process

III. IMPORTANCE FOR PHARMACOVIGILANCE

Pharmacovigilance is essential for guaranteeing medication safety after clinical experiments. Clinical trials are essential to testing a drug's safety and effectiveness, but their duration and scope are frequently constrained. The primary arguments for the importance of pharmacovigilance

are outlined below [11].

 Human Issue: Rare or long-term side effects may not always be detected by research studies and may manifest only after the drug has been consumed by consumers.[12]

- Managing Drug-Induced Harm: Pharmacovigilance ensures that therapies do not cause harm to patients by identifying and preventing adverse drug reactions (ADRs) [13].
- Economical Impact: By identifying hazards early, effective pharmacovigilance helps save healthcare expenditures, which are increased by ADRs [14].
- Abuse, overuse, and making sure prescriptions are followedPromoting Reasonable Pharmaceutical usage: Pharmacovigilance encourages sensible drug usage, which lowers. [15]
- Ethical Duty of Care: Pharmacovigilance protects

- patients and promotes responsibility by ensuring that medical professionals and patients are aware of possible drug dangers.[16].
- Handling Global Drug Safety: Pharmacovigilance, essentially adjusts to various populations and healthcare systems, guarantees uniform drug safety standards worldwide. [17]
- Aiding in Pharmaceutical Research and Innovation: Pharmacovigilance offers vital safety information that aids in the creation of safer and more potent medications by pharmaceutical corporations.[18]

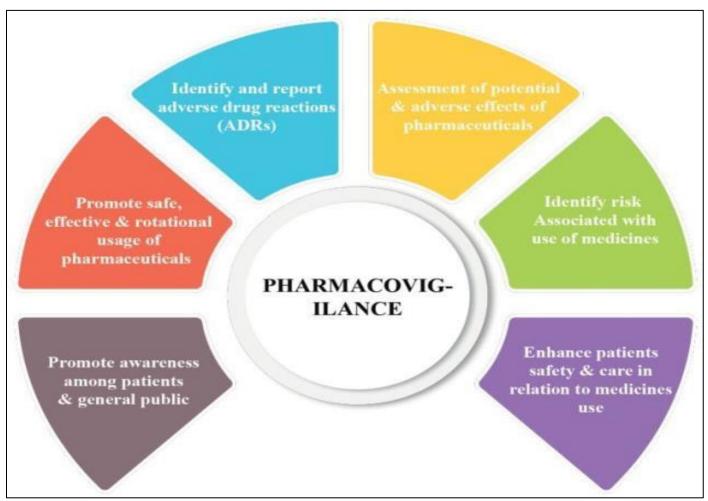


Fig 2 Need of Pharmacovigilance

IV. CURRENT PHARMACOVIGILANCE TRENDS

Pharmacovigilance (PV) is still developing quickly thanks to data science and technological advancements. Global medication safety monitoring and evaluation is changing as a result of innovations including artificially intelligent (AI), actual-world data (RWD), patient-first approaches, and advanced analytics.

➤ Combining Machine Learning (ML) and Artificial

Intelligence (AI)Signal detection, causality evaluation, and prediction analysis of adverse reactions to drugs (ADRs) have all been transformed by the incorporation of AI and

ML into PV. Compared to conventional techniques, automated signal detection uses AI algorithms to rapidly and precisely identify possible safety issues from big pharmacovigilance databases. Natural language processing (NLP) models, for instance, are used to extract pertinent safety information from spontaneous reports or unstructured clinical notes.[19] Artificial intelligence (AI)-assisted causality evaluation technologies analyze complicated facts, such as patient characteristics and temporal linkages, to help establish the likelihood that a medicine caused a specific adverse event. This lessens the subjectivity present in conventional measures of causation, such as the Naranjo algorithm [20]. A number of AI technologies have been created for PV, such as DeepADE, which utilizes deep

ISSN No:-2456-2165

learning to identify ADRs from digital medical records (EHRs), and Watson at IBM for Drug Health and Safety, which analyzes safety data using cognitive computing [21]. These developments provide proactive risk mitigation and improve the effectiveness and precision of safety surveillance.[22].

➤ Real-World Information (RWD) and Evidence (RWE)

By offering data from a variety of patient groups in authentic environments, the growing variety of RWD—such as medical records in the cloud, registry databases, and insurance claims—have created new opportunities for PV. RWD records unusual adverse events and long-term safety results that would not be seen in pre-marketing research, in contrast to controlled clinical trials [23]. RWE derived from RWD is being utilized more and more for intended trial replication, which simulates randomized controlled trials by using causal inference techniques to evaluate observational data. The reliability of safety evaluations is increased by methods like instrumental variable analysis and propensity score matching, which assist account for confounding variables [24]. possible prejudices. To reduce these restrictions and provide solid safety conclusions, efficient management of data and sophisticated analytical techniques are crucial [25].

➤ Patient-Centered Methods

Greater number of samples and real-world applicability are just two of the many benefits that RWD/RWE offer. However, there are drawbacks as well, such as data heterogeneity and missing information. Patient involvement during PV has become essential to gathering thorough safety data. Patients can directly report adverse drug reactions (ADRs) through mobile devices and online reporting portals, which expands the amount and variety of safety data. In addition to clinical evaluations, patient-reported outcomes (PROs) offer important information about how adverse events affect quality of life [26]. Real-time surveillance of drug safety signals is made possible by crowdsourcing secure information from social media platforms and patient forums. Examples of how technology enables direct patient involvement in pharmacovigilance include the MedWatcher program and the FDA's My Investigations app [27] [28].

By taking patient experiences into account in addition to conventional data sources, these patient-centric approaches improve openness and trust in drug safety assessments.

➤ Advanced Data Management and Analytics

Pharmacovigilance data management has changed with the introduction of big data tools and cloud-based PV systems. Current signal detection and thorough safety evaluations are made possible by these technologies, which facilitate the combining and analysis of enormous, varied datasets [29]. An developing area is integration with personalized healthcare and pharmacogenomics. Pharmacovigilance may detect patients at higher risk for particular medication toxicities by combining genetic information with ADR patterns. This allows for tailored

treatment and reduces bad effects [30].

Additionally, cloud computing makes it easier for pharmaceutical corporations, regulatory bodies, and healthcare providers to collaborate and share data globally, which increases the group's ability to monitor medication safety [31].

https://doi.org/10.38124/ijisrt/25oct898

Fig 3 Trends Affecting Pharmacovigilance in the Future

V. PHARMACOVIGILANCE DIFFICULTIES

> Issues Associated with Data:

The amount and intricacy of medication safety data present formidable challenges to efficient pharmacovigilance. Incomplete and inadequate reporting of adverse reactions to drugs (ADRs).

According to estimates, only a tiny percentage (e.g., 6–10%) of all ADRs actually get reported all regulatory authorities, making underreporting of ADRs a widespread and significant drawback of systems that spontaneously report [32] [33]. This delays the detection of important safety signals and makes it impossible to accurately calculate incidence and risk [32].

The following are some of the factors that cause patients and healthcare providers to underreport:

- Knowledge and Attitudes: Lack of confidence in linking an occurrence to a drug ("diffidence"), ignorance or complacency
- regarding pharmacovigilance, or the belief that all adverse events of a marketed medicine are already known [32].
- Professional Activity: Lack of knowledge about reporting systems, time constraints, and the belief that keeping records shouldn't be a professional obligation [32].
- The Patient variables such as Patients may experience limited access to technology, cultural hurdles, or a lack of awareness of the significance of reporting negative effects [34].

Additionally, even when reports are filed, they are sometimes lacking important information that is necessary for a complete case assessment and determining causality, such as pertinent patient features, concurrent drugs, or an accurate timeline of the adverse event [35].

> Issues with Quality, Missing Values, and Data Heterogeneity

Health information technology (EHRs), clinical research, social media, spontaneous reports, and medical literature are just a few of the many sources of pharmacovigilance data [36]. There are several difficulties because of this data heterogeneity:

- Diverse Formats: It might be challenging to gather, examine, and guarantee smooth integration within safety databases when data arrives in a variety of structures (such as free-text narratives) [36].[37]
- Missing Data: Key variables in actual world Data (RWD) through systems such as patient registries and electronic health records (EHRs) frequently have missing values, which can skew analysis and make it more difficult to accurately quantify risk [38].
- Quality Problems: Human mistake in manual case processing and inconsistent reporting formats can erode data quality, resulting in fals7.2 Policy and Regulatory Difficulties

A complex compliance environment is produced when the pharmaceutical industry's global reach collides with regional differences in regulatory requirements.

➤ Divergences in International PV Laws

One of the main causes of complication and slowness for pharmaceutical companies doing business abroad is the patchwork of laws, rules, and guidelines that vary from one jurisdiction to another. [36][39]

- Timelines and Requirements for Reporting: Regulatory agencies such as the European Medicines Agency (EMA) and the Food and Drug Administration of the US (FDA) have different requirements regarding adverse event reporting formats and limitations (e.g., EMA has flexible deadlines for serious occurrences, whereas the FDA has a rigorous 15-day limit) [40].
- Risk Control Strategies: The US keeps for Risk Assessments and Mitigating Solutions (REMS) for highly hazardous pharmaceuticals, whereas the EU requires Risk Control Protocols (RMPs) for all medications, indicating a disparity in the extent of regulatory control [40].

Local Nuances Language difficulties and infrastructural constraints in some areas make registration and data submissions even more difficult [40][41]. In emerging countries, reporting may be fragmented and rely on World Health Organization (WHO) rules. Restrictions in some areas make complying and data submissions even more difficult [40].[41]. Data Standards Are Not Harmonized A comprehensive standardization of data processes is still difficult, despite the efforts of groups such as the International Center for Harmonization (ICH), which leads to redundant work and impedes international data interchange [39].

 Formats for Data Transmission: A major technical and legal problem is to ensure that systems can transfer cases in forms such as ICH E2B(R3) to various regulatory databases around the world while retaining flexible to accept additional regional format [42]. • Inconsistent Data Fields: Cross-country sign detection and analysis are challenging due to the collection of disparate datasets caused by variations in the data items required for personal safety reports on cases (ICSRs) across nations [35]. [40].

➤ Operational and Technical Difficulties:

New technological and human resource issues are brought about by the shift to more advanced, technology-driven pharmacovigilance. Verifying Algorithms for AI/ML Although there are several technical obstacles preventing widespread use, the combination of intelligent machines (AI) and algorithms for learning (ML) holds promise for improving signal detection and automating case processing. [43] [44]

- Validation and Interpretability: To guarantee the correctness, dependability, and consistency of AI/ML models, regulatory bodies demand that they undergo thorough validation. One major obstacle to regulatory acceptability is the understanding or "black-box" character of some complicated algorithms, which make it hard to comprehend why a specific safety signal or decision was raised [43].
- Computational bias: AI models are frequently trained regarding datasets that don't accurately reflect the variety of patient populations in the real world. This can result in algorithmic bias and subpar performance for underrepresented or minority groups, which may cause these populations' safety signals to be missed [45].
- Concept Drift: As new information from post-market use becomes available, AI models must be able to continuously train to adjust to the temporal dynamics of a drug's safety profile, which is known as "the concept drift" [45]. Combining PV and RWD Systems

A more thorough knowledge of medication safety requires the use integrating Real-World knowledge (RWD) from patient registries, EHRs, and other sources; however, integrating RWD can be challenging [36].

- Interoperability: To successfully integrate a variety of RWD sources with conventional PV safety systems, technical and medical barriers must be addressed [43].
 Data interoperability issues arise because legacy photovoltaic installations, in particular, frequently find it difficult to handle the high amounts of different RWD [36].
- Quality and Organization: Since a significant portion of RWD is composed of text (such as clinical notes), crucial information must be extracted using sophisticated methods like the processing of natural languages (NLP), which raises the complexity and expense of the data preparation pipeline [43][44].

➤ PV's Workforce and Education Gap

There is a noticeable skill gap in the current workforce as a result of the transition of pharmacovigilance, which

ISSN No:-2456-2165

calls for a new set of abilities [35][46].

- The Need for Fresh Knowledge: To handle and analyze the progressively larger and more intricate datasets, there is a developing need for PV specialists with backgrounds in statistical computing, AI/ML, advanced statistical analysis, and bioinformatics [46].
- Learning and Training: The workforce frequently lacks the necessary technological and quantitative abilities due to traditional PV training. The workforce must receive ongoing training on modern data processing and regulatory changes to ensure they can keep up with technological advancements. [32] [40].

➤ Moral and Patient-Centered Difficulties

Pharmacovigilance is brought to the cutting edge of ethical and moral responsibilities by the emphasis on generated by patients data and RWD.

• Concerns about Consent and Data Privacy

Globally, strict data privacy laws govern the gathering and use of enormous volumes of private patient health data, creating compliance issues [43].

- ✓ Global Rules: Strong data protection measures, open data processing, and timely breach reporting are necessary to comply with various international privacy laws, among them the General Data Protection Regulation (GDPR) in the European Union and the Patient Protection and Affordable Care Act (HIPAA) in the US [47][48].
- ✓ Informed permission: It can be difficult to get genuinely informed permission in the digital era, particularly when healthcare information is utilized in intricate systems that involve AI and machines technology and that patients may find difficult to fully understand. Patients must agree to the gathering and sharing of their data after being fully informed about its intended purpose, such as for AI training, signal detection, or spontaneous reports [49].
- ✓ Re-identification and anonymization: Although data anonymization is essential for protecting privacy, it might be technically difficult to guarantee that the process won't affect the data's usefulness for safety research or that the de-identified information won't be reidentified, the means of sophisticated data connection methods [47].
- Accurate Reporting and Patient Engagement in Balance

Maintaining the scientific impartiality and rigor necessary for accurate reporting requires striking a careful balance, even while patient involvement is essential for spotting possible ADRs and lending real-world context to the data [34].

✓ The Benefit of Engagement: Since patients are the ones who take their medications in the end, their direct feedback can help detect unanticipated side effects and offer first-hand knowledge that can improve data quality and safety profiles. Engagement promotes reporting and increases trust among patients in the health care sector [34, 50].

- ✓ Difficulties of Engagement: Although patient-reported data is useful, it might not have the standardized medical terminology or medical certainty needed for regulatory submission. Patients might not be equipped to confidently and conclusively attribute an attack to a medication, which could make data adjudication difficult for PV specialists [32].
- ✓ Ethical Obligation: Patient-centric PV is required to be implemented in an ethical manner. In order to prevent undermining public confidence or creating a false sense of confidence or anxiety about a drug's safety profile, this entails respecting client viewpoints, making sure that interaction is not purely symbolic and carefully monitoring the communication [51]. To optimize the quality and dependability of the resultant safety information, patient reports—a crucial component of the PV system—need to be actively maintained [34].

➤ Monitoring the Safety of Expanded Treatment Medical Products:

Drugs developed using genes, cell, or engineering of tissues that are meant for human use are known as advanced treatment medical products (ATMPs). ATMPs provide novel avenues for facilitating medical diagnosis or restoring, modifying, or correcting physiological functioning. These treatments frequently enjoy expedited evaluation and approval processes because of their unique character, which emphasizes the significance for collecting post-marketing data about their benefit-risk profiles. However, regulatory procedures are not the only source of concerns regarding the security of novel ATMPs. Given that these treatments usually target

➤ Adverse Effects of Medications (ADRs):

When prescribed drugs are used at standard therapeutic dosages for the diagnosis, prevention, or treatment of an illness, adverse drug reactions, also called ADRs, are undesirable and unusual responses to the drugs [52]. ADRs may appear suddenly, gradually, or even after the medication has been stopped. Ten to twenty-five percent of individuals have them, especially those who are on several drugs. [53] There are two primary categories of ADRs:

➤ Advantages of ADR Tracking

Several important advantages are offered by an ADR Assessment and Reporting Program:

- Guarantees Drug Safety: Provides essential details regarding the caliber and security of pharmaceutical items.
- Risk management: Assists in developing strategies to control and lessen the dangers connected to drug use [54].
- Management of Predictable ADRs: Encourages adherence to sensible medication practices, which helps lower the incidence of avoidable ADRs.
- Raises Awareness: Informs nurses, pharmacists, and patients about the dangers of adverse drug reactions and how to manage them.

VI. CLINICAL TRIAL

A clinical trial could be an analysis study that tests a replacement medical treatment or a replacement manner of

mistreatment Associate in Nursing existing treatment to ascertain if it'll be higher thanks to stop and screen for Before pharmaceutical firms begin clinical test on a drug, they conduct in-depth pre-clinical studies [55].

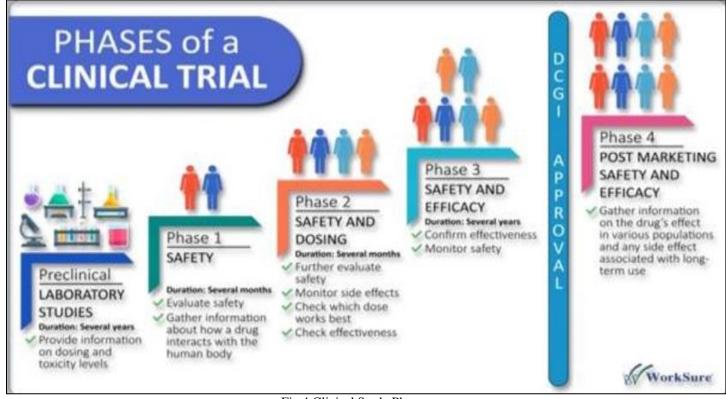


Fig 4 Clinical Study Phases

> Preclinical Research

Pre-clinical research includes animal population experiments and in the laboratory (i.e., testing tubes or lab) investigations. To gather preliminary efficacy, toxicity, and pharmacokinetic data and to help pharmaceutical companies determine whether it is worthwhile to proceed with additional research, a wide range of dosages of the experimental drug are administered to the animals being investigated or to an in-vitro substrate [56].

> Clinical Research:

Phase-0

An experimental, first-in-human trial carried out in compliance with the U.S. Food as well as Drug Administration's (FDA) 2006 guidance on exploratory research may have recently been designated as phase zero. In order to gather initial data on the agent's pharmacological medicine (how the body eliminates the drug) and pharmacological action (how the drug adds to the body), part zero trials offer unique options for administering single sub-therapeutic doses of the study compound to a small group of subjects (10–15).

• Phase I

Phase I approach area unit is the initial phase of human subject testing. Typically, a small group of healthy volunteers (between 20 and 80) will be elite. This section

contains trials intended to evaluate a drug's pharmacological medicine, pharmacodynamics, tolerability, and security (pharmacovigilance). Clinical trial trials come in a wide variety of formats.

✓ Single Ascending Dose

(SAD) studies are those in which a small group of participants receives a single dose of the medication while being monitored and tested for a particular period of time.

 MAD: Multiple Escalating Dose studies are carried out to improve understand of the pharmacodynamic medicine of various medication dosages.

Phase II

Phase II trials, which are conducted on bigger groups (20–300) after the preliminary safety of the study medicine has been validated in Phase I studies, are intended to evaluate the treatment's effectiveness and to carry out Phase I safety evaluations in an increased number of patients and volunteers.

When a novel medicine's development process fails, it usually happens during Phase II studies because the drug is shown to have harmful effects or not work as intended. Phase IIA and Phase IIB are two classifications for phase II investigations. Phase IIB is especially designed to research efficacy, or how effectively the medicine functions at the

prescribed dose, whereas Phase IIA is mainly intended for assessing dosing needs, or how much pharmaceutical should be given. Some studies examine both toxicity and efficacy by combining the first stage and Phase II.

• Phase III

Phase III studies consist of random controlled multicenter trials that involve large patient groups (300-3,000 or more, depending on the disease or medical condition being studied). Their goal is to provide the final evaluation of the drug's effectiveness in relation to the "gold standard" treatment that is currently in use. Phase III trials are exceptionally costly, time-consuming, and challenging to plan and conduct due to their scale and very lengthy duration, particularly when it comes to treatments for chronic illnesses. circumstances. While the regulatory proposal is being processed by the relevant regulatory body, it is customary for some Phase III trials to proceed. At least two successful Phase III trials proving a drug's safety and efficacy are usually expected in order to receive approval from the relevant regulatory bodies (FDA (USA), TGA (Australia), EMEA (European Union), etc.), though this is not always the case. [57].

• Phase-IV

The Post-Promoting Police Work Trial is another name for Phase IV trials. Phase IV trials include pharmacovigilance, or security police work, and ongoing technical support for a medicine after it is approved for sale.

VII. CONCLUSION

As healthcare systems become more sophisticated and patient safety demands increase, the discipline of pharmacovigilance is changing quickly. The incorporation of cutting-edge technology, such as intelligent machines and massive data analytics, is a current trend that improves the recognition and handling of adverse medication responses. By making sure that safe, effective, and high-quality medications are utilized effectively and that therapy decisions take the patient's expectations and concerns into consideration, the risk can be decreased. In summary, sustaining public confidence, guaranteeing pharmaceutical safety, and fostering the best possible health outcomes for people and communities around the world all depend on efficient pharmacovigilance procedures. By cooperating and adopting a proactive, patient-centered pharmacovigilance strategy.

REFERENCES

- [1]. Thomas, F.; Abiri, O.T.; Komeh, J.P.; Conteh, T.A.; Bah, A.J.; Kanu, J.S.; Terry, R.; Abrahamyan, A.; Thekkur, P.; Zachariah, R. Inconsistent Country-Wide Reporting of Adverse Drug Reactions to Antimicrobials in Sierra Leone (2017–2021): A Wake-Up Call to Improve Reporting. Int. J. Environ. Res. Public Health 2022, 1 9, 3264. https://doi.org/10.3390/ijerph19063264
- [2]. Jeetu, G., & Anusha, G. (2010). Pharmacovigilance: a worldwide master key for drug safety monitoring

- journal of Young Pharmacists, 2(3), 315-320.
- [3]. Härmark, L., & Van Grootheest, A. C. (2008). Pharmacovigilance: methods, recent Thomas, F.; Abiri, O.T.; Komeh, J.P.; Conteh, T.A.; Bah, A.J.; Kanu, J.S.; Terry, R.; developments and future perspectives. European journal of clinical pharmacology, 64,743-752
- [4]. Beninger, P . (2018). Pharmacovigilance: an overview. Clinical therapeutics 40(12),1991-2004.
- [5]. Van Hunsel F, de Jong E, Gross-Martirosyan L, Hoekman J. Signals from the Dutch national spontaneous reporting system: Characteristics and regulatory actions. Pharmacoepidemiology and Drug Safety. 2021 Aug;30(8):1115-22.
- [6]. Austin PC, Mamdani M, Williams IJ. Adverse effects of observational studies when examining adverse outcomes of drugs: Case-control studies with low prevalence of exposure. Drug safety. 2002 Aug;25(9):677-87.
- [7]. Reid CM. The role of clinical registries in monitoring drug safety and efficacy. Heart, Lung and Circulation. 2015 Nov 1;24(11):1049-52.
- [8]. Trifirò G, Pariente A, Coloma PM, Kors JA, Polimeni G, Miremont-Salamé G, Catania MA, Salvo F, David A, Moore N, Caputi AP. Data mining on electronic health record databases for signal detection in pharmacovigilance: which events to monitor?. Pharmacoepidemiology and drug safety. 2009 Dec;18(12):1176-84.
- [9]. Smolinski MS, Crawley AW, Olsen JM, Jayaraman T, Libel M. Participatory disease surveillance: engaging communities directly in reporting, monitoring, and responding to health threats. JMIR public health and surveillance. 2017 Oct 11;3(4):e7540.
- [10]. Salam A, Kanukula R, Atkins E, Wang X, Islam S, Kishore SP, Jaffe MG, Patel A, Rodgers A. Efficacy and safety of dual combination therapy of blood pressure-lowering drugs as initial treatment for hypertension: a systematic review and meta-analysis of randomized controlled trials. Journal of hypertension. 2019 Sep 1;37(9):1768-74.
- [11]. Pore AV, Bais SK, Kamble MM. Pharmacovigilance in clinical research. International Journal of Pharmacy and Herbal Technology. 2024;2(1):759-75.
- [12]. Osman N. Chronic disease and chronic humanitarianism: an ethnographic study of the experiences of Somali refugees living with hypertension in protracted refugee camps in Kenya.
- [13]. Venkatesan K, Rajasekhar MB, Gowri MK, Mohapatra MN. An Introduction To Pharmacovigilance. AG PUBLISHING HOUSE (AGPH Books); 2022 Dec 13.
- [14]. Tissot M, Valnet-Rabier MB, Stalder T, Limat S, Davani S, Nerich V. Epidemiology and economic burden of "serious" adverse drug reactions: Real-world evidence research based on pharmacovigilance data. Therapies. 2022 May 1;77(3):291-300.
- [15]. Anwar MF, Daud NA, Hussain R. From prescribing indicators to rational drug use: a medication safety perspective. Journal of Pharmaceutical Policy and

- Practice. 2025 Dec 31;18(1):2544656.
- [16]. Thompson A, Komparic A. Ethics in Pharmacovigilance. InPrinciples and Practice of Pharmacovigilance and Drug Safety 2024 Aug 6 (pp. 319-338). Cham: Springer International Publishing.
- [17]. Anestina N, Obiageli C, Anthony O, Alade A, Mustapha A, Oluwaferanmi A. Ensuring Drug Safety: Comprehensive Pharmacovigilance Strategies for Public Health.
- [18]. Pore AV, Bais SK, Kamble MM. Pharmacovigilance in clinical research. International Journal of Pharmacy and Herbal Technology. 2024;2(1):759-75.
- [19]. Harpaz R, Callahan A, Tamang S, et al. Automated signal detection in pharmacovigilance: algorithms and practical applications. Drug Saf. 2019;42(11):1239-1254.
- [20]. Bate A, Lindquist M, Edwards IR, et al. A Bayesian neural network method for adverse drug reaction signal generation. Eur J Clin Pharmacol. 1998;54(4):315-321.
- [21]. Ahuja AS. IBM Watson: how cognitive computing can be applied to big data challenges in life sciences research. Clin Ther. 2015;37(5):1094-1100.
- [22]. Ji Z, Kim S, Xia J, et al. DeepADE: Deep learning-based adverse drug event extraction from electronic health records. J Biomed Inform. 2019;96:103261.
- [23]. Sherman RE, Anderson SA, Dal Pan GJ, et al. Realworld evidence what is it and what can it tell us? N Engl J Med. 2016;375(23):2293-2297.
- [24]. Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized trial is not available. Am J Epidemiol. 2016;183(8):758-764.
- [25]. Wang SV, Pinheiro S, Hua W, et al. Use of real-world data to evaluate drug safety and effectiveness. Expert Rev Clin Pharmacol. 2019;12(8):687-699.
- [26]. Basch E. Patient-reported outcomes in oncology drug development and US regulatory review: perspectives from industry, the Food and Drug Administration, and the patient. JAMA Oncol. 2015;1(3):375-379.
- [27]. Waller PC, Evans SJ. A model for the future conduct of pharmacovigilance. Pharmacoepidemiol Drug Saf. 2003;12(1):17-29.
- [28]. Food and Drug Administration. FDA MyStudies Mobile Application. Available from: https://www.fda.gov
- [29]. Trifirò G, Coloma PM, Rijnbeek P, et al. Big data in pharmacovigilance: the promise of using electronic healthcare records. Drug Saf. 2018;41(12):1239-1251.
- [30]. Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature. 2015;526(7573):343-350.
- [31]. European Medicines Agency. Cloud computing and pharmacovigilance: guidelines and best practices. Qu2017. Available from: https://www.ema.europa.eu
- [32]. Härmark L, van Grootheest K. The effect of educational sessions on stimulating the reporting of adverse drug reactions to pharmacovigilance centres. *Drug Saf.* 2008;31(1):63-71.
- [33]. Hazell L, Shakir SA. Under-reporting of adverse drug reactions: a systematic review. *Drug Saf.* 2006;29(5):385-96.

- [34]. ProPharma Research. The Importance of Patient Engagement in Pharmacovigilance. *ProPharma Research*. 2024. Available from: https://propharmaresearch.com/en/resources/diffusion/importance-patient-engagement-pharmacovigilance
- [35]. Lumpkin M, Castle W, Gordon AJ, Tilson H. Current Challenges in Pharmacovigilance: Pragmatic Approaches. Report of CIOMS Working Group V. Geneva: Council for International Organizations of Medical Sciences; 2001.
- [36]. Pharmuni. Challenges and Opportunities In Pharmacovigilance. *Pharmuni*. 2024. Available from: https://pharmuni.com/2024/09/09/challenges-and-opportunities-in-pharmacovigilance/
- [37]. Oracle. Addressing the Data Challenges of Pharmacovigilance. *Oracle*. 2024. Available from: https://www.oracle.com/a/ocom/docs/industries/life-sciences/address-data-challenges-pharma-wp.pdf
- [38]. Lee J, Kim S. Pharmacovigilance data: challenges for pharmaceutical companies. *PQE Group Blog*. 2024. Available from: https://blog.pqegroup.com/ra-phv/pharmacovigilance-data-challenges-pharmaceutical-companies
- [39]. Al-Jazairi AS, Abdul-Aziz AM. Regulatory Aspects of Pharmacovigilance: Global Perspectives and Challenges. *Int J Sci Res.* 2023;12(5):252-255.
- [40]. Freyr. Global Standards in Pharmacovigilance: A Comparative Analysis. Freyr Solutions. 2025. Available from: https://www.freyrsolutions.com/blog/global-standards-in-pharmacovigilance-a-comparative-analysis
- [41]. ProPharma Research. Global Pharmacovigilance Regulations: Navigating the Complex Landscape. *ProPharma Research*. 2024. Available from: https://propharmaresearch.com/en/resources/diffusion/global-pharmacovigilance-regulations-navigating-complex-landscape
- [42]. PQE Group. Pharmacovigilance Data: challenges for Pharmaceutical Companies. *PQE Group Blog*. 2024. Available from: https://blog.pqegroup.com/ra-phv/pharmacovigilance-data-challenges-pharmaceutical-companies
- [43]. Shah B, Al-Hadi H. Use of artificial intelligence in pharmacovigilance- a systematic review. *IJNRD*. 2025;10(4):2596-2603.
- [44]. Abed M, Al-Hadi H, Ahmed I. Pharmacovigilance in the Era of Artificial Intelligence: Advancements, Challenges, and Considerations. *ResGate*. 2025;1-7.
- [45]. Al-Hadi H, Lee S. Artificial intelligence in pharmacovigilance: advancing drug safety monitoring and regulatory integration. *PMC*. 2025;12(1):31-45.
- [46]. Quanticate. Impact of Technology on the Current and Future States of Pharmacovigilance. *Quanticate*. 2023. Available from: https://globalforum.diaglobal.org/issue/august-2023/impact-of-technology-on-the-current-and-future-states-of- pharmacovigilance/
- [47]. Al-Hadi H, Lee S. Ethical considerations in healthcare IT: A review of data privacy and patient consent issues. *ResGate*. 2024;1-10.

- [48]. Ciardelli D, Ciardelli A. General Data Protection Regulation (GDPR) in healthcare: A review. *J Med Internet Res.* 2020;22(7):e18589.
- [49]. Quanticate. Patient Centricity in Clinical Trials. *Quanticate*. 2024. Available from: https://www.quanticate.com/blog/patient-centricity-clinical-trials
- [50]. Thompson E, Dickert N. Ethical considerations for patient engagement. Rethink Clin Trials. 2024. Available from: https://rethinkingclinicaltrials.org/chapters/design/pati ent-engagement/ethical-considerations-for-patientengagement/
- [51]. Solomon MZ, Thompson M, Kim V. Patient engagement in clinical trials: ethical and regulatory challenges. *J Law Med Ethics*. 2016;44(3):477-85.
- [52]. Schatz S, Weber RJ. Adverse drug reactions. Pharmacy Practice. 2015 Aug 24;1(1):16-23.
- [53]. Alomar MJ. Factors affecting the development of adverse drug reactions. Saudi pharmaceutical journal. 2014 Apr 1;22(2):83-94.
- [54]. Bais SK, Rathod PR. Quality Risk Management in Pharmaceutical Industry.
- [55]. Kesharwani V, Farooqui MA, Kushwaha N, Singh RK, Jaiswal PK, An overview on pharmacovigilance: a key for drug safety and monitoring, Journal of Drug Delivery and Therapeutics. 2018; 8(5):130-135
- [56]. S. B. Throat, S. K. Banarjee, D. D. Gaikwad, S. L. Jadhav, R. M. Thorat, International Journal of Pharmaceutical Sciences Review and Research, Volume 1, Issue 2, March April 2010; Article 019
- [57]. European Commission. Detailed Guidance on the Collection, Verification, and Presentation of Adverse Reaction Reports Arising from Clinical Trials on Medicinal Products for Human Use. 2006. Available from: http://ec.europa.eu/health/files/ eudralex/vol-10/21_ susar_rev2_2006_04_11_en.pdf. [Accessed on 2010 Dec 10].