Volume 10, Issue 10, October— 2025
ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/250ct519

An Autonomous Robotic System for Multi-Modal,
Non-Invasive Sensing and Early lliness
Detection in Seven-Month-Old Infants

Moses Maduka Testimony?; Litsin Konstantin Vladimirovich?

!Department: Mechatronics and Robotics Universty: South Ural State University.
(National Research University Russia)
2University: South Ural State University (National Research University)
2Associate Professor (PhD), Candidate of Technical Science, Department of Electric Drive,
Mechatronics and Electromechanics.

Email: madumosel470@gmail.com.

Publication Date: 2025/10/31

Abstract: The early detection of illness in non-verbal infants, particularly at seven months of age, presents a significant
challenge in pediatric care. Pre-verbal infants cannot articulate discomfort, leading to potential delays in diagnosis and
treatment. This paper proposes the design and methodology for a novel, low-cost, and non-invasive monitoring system that
leverages the Arduino microcontroller platform integrated with a thermal camera and passive infrared (PIR) sensors to
create an early warning system for infant sickness. The system operates by continuously and unobtrusively monitoring two
key physiological and behavioral correlates of iliness: elevated core body temperature (fever) and alterations in sleep/wake
activity patterns. The thermal camera (MLX90640) is employed to map facial temperature, identifying febrile states without
physical contact. Concurrently, PIR sensors track gross motor activity and restlessness, which are often suppressed or
increased during illness. Data from these sensors are processed by an Arduino Mega, which uses a rule-based algorithm to
flag anomalies. If a potential sickness state is detected (e.g., sustained elevated temperature coupled with abnormal
inactivity), the system triggers an alert to caregivers via a connected mobile application. This multi-modal approach aims to
reduce false positives compared to single-parameter systems and provides a crucial tool for proactive parental intervention,
potentially improving health outcomes for vulnerable infants.

Keywords: Neonatal Monitoring, Non-Invasive Diagnostics, Arduino, Thermal Imaging, Infrared Sensor, Affective Computing,
Early Warning System.

How to Cite: Moses Maduka Testimony; Litsin Konstantin Vladimirovich (2025) An Autonomous Robotic System for Multi-
Modal, Non-Invasive Sensing and Early Iliness Detection in Seven-Month-Old Infants.

International Journal of Innovative Science and Research Technology,

10(10), 1951-1960. https://doi.org/10.38124/ijisrt/250ct519

l. INTRODUCTION
These subtle, early indicators can be easily overlooked amidst

The advent of parenthood is accompanied by an innate,
vigilant concern for an infant's well-being, a concern that is
most acute during the pre-verbal stage of development. A
seven-month-old infant exists in a critical transitional period:
they are increasingly mobile, demonstrating new abilities like
rolling and crawling, and are becoming more socially
interactive, yet they remain entirely incapable of verbally
communicating their physical state. This profound
communication barrier creates a significant vulnerability, as
common illnesses such as otitis media, respiratory syncytial
virus (RSV), and urinary tract infections often manifest
through non-specific signs like fever, lethargy, or irritability.

IJISRT250CT519

the normal fluctuations of infant behavior or mistaken for
teething or minor fussiness. Consequently, parents and
caregivers may not recognize the need for medical
consultation until symptoms have progressed to more severe
states, such as persistent high fever, dehydration, or
pronounced lethargy, potentially leading to complications
and more intensive treatments.

Current standard practice for at-home health monitoring
remains largely reactive and intermittent. It relies heavily on
tools like tympanic or temporal thermometers, which require
physical contact, can disturb a sleeping infant, and provide

Www.ijisrt.com 1951

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/
mailto:madumose1470@gmail.com
https://doi.org/10.38124/ijisrt/25oct519

Volume 10, Issue 10, October— 2025
ISSN No:-2456-2165

only a single, isolated data point in time. This snapshot
approach is fundamentally ill-suited for capturing the
dynamic onset or progression of a febrile illness or the
gradual decline in activity that signals malaise. The
limitations of this paradigm highlight a clear and urgent need
for a continuous, passive, and multi-parameter monitoring
solution that can operate seamlessly within the infant's
environment, particularly during sleep.

The convergence of accessible open-source hardware,
advanced low-cost sensor technology, and the principles of
affective computing offers a promising pathway to bridge this
gap. Platforms like Arduino provide a robust and flexible
foundation for integrating diverse sensors, while thermal
imaging cameras, once confined to industrial and clinical
settings, have been validated for non-contact fever screening,
providing an accurate and hygienic method for temperature
measurement. Simultaneously, the correlation between
physical activity levels and health status is a well-documented
behavioral marker, with lethargy and restlessness serving as
reliable proxies for underlying sickness in infants

This article details the design and operational process of
an autonomous, integrated system that synthesizes these
technological advancements into a cohesive whole. By fusing
thermal data for non-contact core temperature estimation with
infrared-based activity monitoring, the proposed system
moves beyond single-point measurements to provide a
holistic, context-aware, and continuous assessment of an
infant's well-being. The primary objective is to empower
parents with real-time, data-driven insights that complement
their caregiving intuition, transforming infant healthcare
monitoring from a reactive chore into a proactive, intelligent
safeguard.

1. SYSTEM DESIGN AND
OPERATIONAL PROCESS

The proposed system is built around an Arduino Mega
2560 microcontroller, chosen for its multiple serial ports and
sufficient 1/0 pins to handle concurrent sensor data streams.
The system is designed to be mounted in the infant's sleeping
area (e.g., above the crib) for continuous monitoring.

A. Hardware Components and their Roles
» Microcontroller: Arduino Mega 2560.

e Role: The central brain of the system. It reads data from
all sensors, processes it using a predefined algorithm, and
manages the output/alert system.

» Thermal Imaging Camera: MLX90640 ESF-BAA 32x24
IR Array.

e Role: To capture a low-resolution thermal map of the
infant's face and body. The camera detects infrared
radiation, which is converted into temperature values for
each of the 768 pixels (32x24). By identifying the highest
temperature region (which typically corresponds to the
tear duct/inner canthus of the eye, a reliable proxy for core

IJISRT250CT519

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/250ct519

body temperature [4]), the system can estimate if the
infant has a fever.

» Passive Infrared (PIR) Sensor: HC-SR501.

e Role: To detect motion within its field of view. One or
more sensors are positioned to cover the crib area. During
designated sleep times, a lack of expected motion
(suggesting lethargy) or an excess of motion (suggesting
restlessness/ discomfort) can be flagged as anomalous
behavior.

» Ambient Temperature & Humidity Sensor: DHT22.

¢ Role: To provide environmental context. This is crucial
for calibrating the thermal camera readings, as ambient
temperature can affect perceived skin temperature.

» Alert Module: ESP-01 ESP8266 WiFi Module.

e Role: To connect the Arduino to the local WiFi network.
When the algorithm detects a potential sickness event, the
Arduino sends a command to the ESP8266 to transmit an
alert to a designated smartphone application or web
dashboard.

» Power Supply: A Stable 5V DC power adapter to ensure
continuous operation.

B. Software and Data Processing Workflow
The system’s intelligence lies in its software algorithm,
which follows a multi-stage process:

» Data Acquisition:

e The MLX90640 captures a thermal frame every 10
seconds.

e The PIR sensor's digital output is read continuously to log
motion events.

e The DHT22 provides an ambient temperature reading
every 30 seconds.

» Data Pre-Processing & Feature Extraction:

e Thermal Data: The Arduino scans the 32x24 thermal grid
to find the cluster of pixels with the highest average
temperature, corresponding to the infant's facial region
(specifically the inner canthus). This value is stored
as T_core_estimate.

e Motion Data: The PIR data is analyzed over a 15-minute
rolling window. The system calculates a "Motion Index"
(e.g., seconds of activity per minute).

» Anomaly Detection Algorithm (Rule-Based Logic):

The microcontroller runs a continuous loop comparing
the extracted features against predefined, customizable
thresholds.

e Fever Check: If (T _core estimate > 38.0°C) for 3
consecutive readings, Fever_Flag = TRUE.

Www.ijisrt.com 1952

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/

Volume 10, Issue 10, October— 2025
ISSN No:-2456-2165

e Then Activity Anomaly Check (During Sleep Periods):

v If (Motion_Index < 0.1) for 30 minutes, then
Lethargy_Flag = TRUE. (Extreme inactivity)

v If (Motion_Index > 2.0) for 30 minutes, then
Restlessness_Flag = TRUE. (Excessive movement)

» Alert Triggering:
The final decision logic is a weighted combination:

e ALERT LEVEL 1 (Monitor Closely): Fever Flag =
TRUE OR Lethargy_Flag = TRUE.

e ALERT LEVEL 2 (Urgent): (Fever_Flag = TRUE) AND
(Lethargy_Flag = TRUE).

Upon triggering an alert, the Arduino sends a JSON
packet via the ESP8266 to a cloud service (e.g., Blynk,
Adafruit 10), which pushes a notification to the parent's
smartphone: "Alert: Potential sickness detected. Elevated
temperature and low activity."

C. Implementation and Safety Considerations

e Calibration: The thermal camera must be calibrated
against a clinical-grade thermometer in a controlled
environment.

e Positioning: Sensors must be positioned to maximize
coverage of the crib while minimizing false triggers from
outside the monitored zone.

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/250ct519

e Data Privacy: All data transmitted via WiFi must be
encrypted. Local data storage on an SD card can be added
as a backup.

o Safety: The entire system must be powered via a safe,
wall-mounted adapter and placed securely out of the
infant's reach. It is a monitoring aid, not a medical device,
and is intended to supplement, not replace, parental
vigilance and professional medical advice.

» Detailed Process and Sensor Breakdown for Infant
Health Monitoring System
This section expands on the system's operation,
breaking it down into a continuous cycle of data acquisition,
processing, and decision-making.

» The Continuous Monitoring Cycle

The system operates on a 24/7 loop, with a primary
focus on sleep periods when the infant is stationary and
baseline measurements are most consistent. The entire
process can be visualized in five key stages:

» Sensing —Pre-Processing —Feature Extraction —
Decision Logic —Alert & Action

e Let's Detail Each Stage.
» Stage 1: Sensing - Data Acquisition from the Environment
This is the hardware layer where physical phenomena

(heat, motion) are converted into electrical signals.

e List of Sensors and their Detailed Functions:

Table 1 Sensing - Data Acquisition from the Environment

Sensor Name & Model | Primary Function

Specific Use in This Project

Technical Details

To non-invasively estimate the

Type: Far Infrared (FIR) sensor
array.

Thermal Camera
*(MLX90640 ESF-
BAA)*

To capture a 2D
map of temperature
distribution without

infant's core body temperature by
measuring the skin temperature at
the inner canthus (tear duct) of the

Resolution: 32 pixels x 24 pixels
(768 individual temperature
points).

Field of View: 110° x 75° (wide

Passive Infrared (PIR)
Motion Sensor
(HC-SR501)

contact. eye, which is the most reliable angle to cover the crib)
external proxy for core temperature. Output: A array of 768 raw values
representing object temperature.
Type: Passive Infrared.
To monitor the infant's gross motor Principle: Detects changes in
To detect

movement of
infrared-radiating
bodies (like
humans).

activity and sleep patterns. It
distinguishes between states of sleep
(low motion), active sleep (some
motion), and wakefulness/restlessness
(high motion).

infrared radiation in its field of
view. It does not measure amount
of motion, only its occurrence.
Output: A digital signal
(HIGH/LOW) indicating motion
detection.

Ambient Temperature &
Humidity Sensor
(DHT22 / AM2302)

To measure the

surrounding air

temperature and
relative humidity.

To provide environmental context for
the thermal camera. Skin temperature
readings can be influenced by room
temperature. This data is used to
improve the accuracy of the fever
detection algorithm.

Type: Digital Sensor with a
capacitive humidity sensor and a
thermistor.

Range: Temperature: -40 to 80°C;
Humidity: 0-100% RH.
Output: Digital signal with
temperature and humidity values.

IJISRT250CT519

Www.ijisrt.com

1953

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/

Volume 10, Issue 10, October— 2025
ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/250ct519

To provide network

WiFi Module connectivity to the

(ESP-01 ESP8266)

To transmit system status and critical
alerts from the Arduino to a cloud
server, which then pushes
Arduino. notifications to a parent's smartphone

Type: SoC with integrated TCP/IP
protocol stack.
Interface: UART (Serial) with
Avrduino.
app Function: Acts as a wireless
' communication bridge.

» Stage 2: Pre-Processing - Cleaning and Preparing the
Data
Raw sensor data is often noisy and needs to be filtered
and calibrated before it can be used.

e Thermal Data Pre-Processing:

v" Read Raw Data: The Arduino reads the 768 values from
the MLX90640 over the 12C communication protocol.

v' Ambient Compensation: The raw sensor readings are
adjusted using the ambient temperature value from the
DHT22. The MLX90640's own library often handles this
using the sensor's own internal ambient temperature
measurement, but the DHT22 provides a reliable
secondary check.

v Noise Filtering (Software): A simple moving average
filter is applied to reduce "spiky" noise in the temperature
readings. For example, each pixel's temperature is
averaged with its previous two readings to smooth the
data.

e Motion Data Pre-Processing:

v' Debouncing: The PIR sensor's digital signal is
"debounced” in software to avoid counting a single
motion event multiple times due to electrical noise.

v Quantification: The Arduino doesn't just see "motion™ or
"no motion." It counts the number of times the PIR sensor
is triggered (HIGH) within a specific time window (e.g.,
15 minutes). This creates a "Motion Count" metric.

» Stage 3: Feature Extraction - Converting Data into
Meaningful Metrics
In this stage, the cleaned data is analyzed to extract
specific, useful metrics that the algorithm can understand.

e Detailed Thermal Imaging Process:
This is the most complex part of the data processing.

v’ Target Identification (Region of Interest - ROI):
The system scans the entire 32x24 thermal grid.

It looks for a cluster of pixels (e.g., a 3x3 block) that
is significantly warmer than the surrounding areas and is
located in the expected upper-middle region of the frame
(where the infant's face should be).

This warm spot is identified as the inner canthus of the
eye, which is consistently the warmest point on the face and
has a high correlation with core body temperature.

v Temperature Calculation:
The temperatures of the pixels within this identified ROI
are averaged. This average is stored as T_core_estimate.

IJISRT250CT519

If the 3x3 eye-region pixels have temperatures [37.2,
375, 374, 376, 378, 375 373, 37.4, 37.6]°C,
the T_core_estimate would be (sum /9) = 37.48°C.

v Motion Index Calculation:

The "Motion Count" from the PIR sensor over the last
15 minutes is converted into a "Motion Index™ (Motion_Index
= Total_Motion_Triggers/ 15). This gives a normalized value
for activity per minute.

45 triggers in 15 minutes = Motion Index of 3.0 (very
active). 3 triggers in 15 minutes = Motion Index of 0.2 (very
still).

> Stage 4: Decision Logic - The "Brain™ of the System

The extracted features (T _core_
estimate, Motion_Index) are fed into a rule-based algorithm
running on the Arduino. The thresholds are customizable by
the parent.

cpp
I/ Pseudocode for the Decision Logic

void loop() {

float T_core = getCoreTemperature(); / From Stage 3

float motionldx = getMotionIndex(); // From Stage 3

bool isSleepTime = checkTimeSchedule(); // e.g., 8:00 PM to
6:00 AM

bool fever_flag = false;
bool lethargy flag = false;
bool restlessness_flag = false;

/I Rule 1: Fever Detection
if (T_core > 38.0) {// Threshold for fever
fever_flag = true;

}

/I Rule 2 & 3: Behavioral Anomalies (only during sleep times)
if (isSleepTime) {

if (motionldx < 0.1) {// Threshold for extreme lethargy
lethargy_flag = true;

}

if (motionldx > 2.0) { // Threshold for excessive restlessness
restlessness_flag = true;

}

}

/I Final Alert Triggering Logic

if (fever_flag && lethargy_flag) {

triggerAlert("URGENT: High fever and lethargy detected.");
} else if (fever_flag) {

triggerAlert("WARNING: Fever detected.”);

} else if (lethargy_flag) {

triggerAlert("NOTE: Unusually low activity level.");

Www.ijisrt.com 1954

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/

Volume 10, Issue 10, October— 2025
ISSN No:-2456-2165

by
¥

» Stage 5: Alert and Action - Informing the Caregiver
When the decision logic triggers an alert, the system
moves from monitoring to action.

e Command Sent: The Arduino sends a serial command to
the connected ESP8266 WiFi module.

v/ Command: "ALERT, URGENT, Fever and Lethargy,
Temp: 38.5C"

e Data Transmission: The ESP8266 connects to the home
WiFi and sends this data packet to a pre-configured cloud
service (e.g., Blynk, Adafruit 10, or a custom MQTT
broker) using an HTTP or MQTT request.

o Notification Push: The cloud service immediately pushes
a notification to the smartphone application that is
subscribed to this data stream.

e Parental Action: The parent receives the alert on their
phone, which allows them to immediately check on the
infant, take a manual temperature reading for
confirmation, and contact a healthcare professional if
necessary.

» Arduino Sketch (Arduino Mega 2560)

Fig 1 Notes before Wiring & Running

e MLX90640 (I2C) needs 3.3V tolerant wiring. Use the
Adafruit MLX90640 library or Melexis library (this
sketch assumes the Adafruit_ MLX90640-style API).
Install libraries: Adafruit_ MLX90640, DHT sensor
library by Adafruit, ArduinoJson (optional), Wire.

e ESP-01 (ESP8266) should be connected to Seriall
(TX1/RX1 pins on Mega: TX1=18, RX1=19). Use a
proper 3.3V regulator and level shifting. ESP must be
powered by 3.3V @ 300-500 mA regulator.

e PIR HC-SR501 connected to a digital input (with proper
placement). DHT22 data pin to a digital pin with pull-up.

e This system is a monitoring aid, not a medical device.
Place electronics out of infant reach and follow electrical
safety rules.

IJISRT250CT519

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/250ct519

/I Infant Multi-Modal Monitor - Arduino Mega 2560

/I MLX90640 (thermal), DHT22 (ambient), PIR (motion),
ESP8266 (Seriall) for alerts

/I Author: ChatGPT (example, adapt thresholds & calibration
to your dataset)

#include <Wire.h>
#include <Adafruit MLX90640.h>
MLX90640 library
#include <DHT.h>

/I install Adafruit

#define DHTPIN 7
#define DHTTYPE DHT22

#define PIR_PIN 2 /l digital input for HC-SR501
#define PIR_DEBOUNCE_MS 200

/I Thresholds (example - tune during calibration)

#define FEVER_THRESHOLD 38.0 /I deg C (estimated
core)

#define FEVER_READINGS_REQUIRED 3 // consecutive
readings

#define MOTION_WINDOW_MS 1800000UL // 30
minutes window for motion index
#define MOTION_INDEX LOW 0.1
per second scaled) -> low activity
#define MOTION_INDEX_HIGH 2.0
movement threshold - adjust units
#define THERMAL_FRAME_INTERVAL_MS 10000UL //
10s

#define DHT_INTERVAL_MS 30000UL // 30s

/[fraction (events

I/l excessive

/I Calibration coefficients for T_core = a*T_skin + ¢*T_amb
+b

/I Set to defaults; replace with your calibrated values (see
Python calibration example)

float CAL_A = 0.6823; // skin scale

float CAL_C =0.0548; // ambient coefficient

float CAL_B = 12.0384; // offset

Adafruit_MLX90640 mlx;
DHT dht(DHTPIN, DHTTYPE);

unsigned long lastThermalMillis = 0;
unsigned long lastDHTMillis = 0;
unsigned long lastPirMillis = 0;

float latestSkinTemp = NAN; // computed from MLX90640
float latestAmbient = NAN;

int feverCounter = 0;

/Il Motion tracking - we will count PIR "active seconds" in a
rolling window:

unsigned long motionWindowsStart = 0;

unsigned long activeSecondsinWindow = 0;

bool pirState = false;

unsigned long lastPirToggleMillis = 0;

unsigned long lastPirChangeMillis = 0;

Www.ijisrt.com 1955

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/

Volume 10, Issue 10, October— 2025
ISSN No:-2456-2165

/I Circular buffer of PIR readings can be used for higher
resolution; here we approximate by noting durations

/I when PIR output is HIGH (active)

void setup() {

Serial.begin(115200);

Seriall.begin(115200); // ESP8266 baud - ensure ESP set to
this baud

Wire.begin();

Serial.printIn("Infant monitor starting...");

{'init MLX90640

if (!mIx.begin(0x33)) { // default i2c address 0x33
Serial.printIn("MLX90640 not found. Check wiring.");
while (1);

}

mix.setMode(MLX90640_CHESS);
mix.setResolution(MLX90640_ADC_18BIT);
mix.setRefreshRate(MLX90640_8 HZ); // low refresh rate
for low CPU load

dht.begin();

pinMode(PIR_PIN, INPUT);

motionWindowsStart = millis();

lastThermalMillis = millis() -
THERMAL_FRAME_INTERVAL_MS; // do immediate
read

lastDHTMillis = millis() - DHT_INTERVAL_MS;

}

float readThermal AndComputeSkin() {

/I Reads MLX90640 frame and computes the "skin"
temperature as average of a small cluster around max pixel
float frame[32*24];

if (!Imlx.getFrame(frame)) {

/['1f direct API differs, replace with appropriate call. This uses
Adafruit's getFrame signature.

Serial.printIn("Failed to get thermal frame");

return NAN;

}

/I Find max pixel index

int maxldx = 0;

float maxVal = frame[0];
for (int i=1; i<32*24; i++) {
if (frame[i] > maxVal) {
maxVal = frame[i];

maxldx = i;

}

}

/I Compute 3x3 average around max pixel (taking care of
edges)

int col = maxldx % 32;

int row = maxldx / 32;

float sum = 0.0;

int count = 0;

for (int r = max(0, row-1); r <= min(23, row+1); r++) {

for (int ¢ = max(0, col-1); ¢ <= min(31, col+1); c++) {

sum += frame[r*32 + c];

count++;

IJISRT250CT519

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/250ct519

by
¥

float skinTemp = sum / (float)count; // raw skin surface
estimate (deg C)
return skinTemp;

}

float predictCoreTemp(float skinTemp, float ambTemp) {
/I Apply linear calibration model (derived from calibration)
return CAL_A * skinTemp + CAL_C *ambTemp + CAL_B;

}

void sendAlert(int level, float coreTemp, float motionindex)

{

/I Build a JSON-like string; on the cloud side parse
appropriately

String json ="{";

json += "\"alert_level\":";

json += level,

json +="\"core_temp\":";

json += String(coreTemp,2);
json += " \"motion_index\":";
json += String(motionindex,3);
json +="}";
Serial.print("Sending alert: ");
Serial.printIn(json);

/l send to ESP8266 via Seriall

Seriall.printin(json);

/I The ESP side should receive and forward to cloud /
smartphone (e.g., Adafruit 10, Blynk, HTTP POST)

}

float computeMotionlndex(unsigned long windowMs,
unsigned long activeSeconds) {

/I Normalize motion index: activeSeconds per minute

float windowMinutes = windowMs / 60000.0;

if (windowMinutes <= 0.0) return 0.0;

float secondsPerMinute = activeSeconds / windowMinutes; //
seconds active per minute of window

/I This gives larger numbers when there's more continuous
activation

return secondsPerMinute;

}

void loop() {
unsigned long now = millis();

/I --- Read thermal frame periodically

if (now - lastThermalMillis >=
THERMAL_FRAME_INTERVAL_MS) {
lastThermalMillis = now;

float skin = readThermal AndComputeSkin();
if (lisnan(skin)) {

latestSkinTemp = skin;

Serial.print("Skin temp (raw): ");
Serial.printIn(skin, 3);

}

}

Il --- Read ambient periodically

Www.ijisrt.com 1956

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/

Volume 10, Issue 10, October— 2025
ISSN No:-2456-2165

if (now - lastDHTMillis >= DHT_INTERVAL_MS) {
lastDHTMillis = now;

float Tamb = dht.readTemperature();

if (lisnan(Tamb)) {

latestAmbient = Tamb;

Serial.print("Ambient temp: ");

Serial.printin(Tamb, 2);

}

}

/I --- PIR handling (approximate active seconds)
bool pirNow = digitalRead(PIR_PIN) == HIGH,;
if (pirNow != pirState) {

/I state changed

unsigned long changeMillis = now;

if (pirNow) {

/I rising edge - start active interval
lastPirChangeMillis = changeMillis;

}else {

/I falling edge - add duration to activeSeconds
unsigned long dur = changeMillis - lastPirChangeMillis;
/I clamp and add

activeSecondsInWindow += dur / 1000UL,;

}

pirState = pirNow;

lastPirToggleMillis = now;

}else {

/I if still active, accumulate time since last change (periodic
update)

if (pirState) {

/I add small increment

unsigned long delta = now - lastPirToggleMillis;
if (delta >= 1000) {

activeSecondsinWindow += delta / 1000UL;
lastPirToggleMillis = now;

}

}

}

/I Manage rolling window - if window exceeded, reset
counters

if (now -
MOTION_WINDOW_MS) {
/I Compute motion index for last window

float motionindex =
computeMotionIndex(MOTION_WINDOW_MS,
activeSecondsinWindow);

Serial.print("Motion index (sec active per minute): ");
Serial.printin(motionindex, 3);

motionWindowsStart >=

/I --- Decision logic using latest values

if (lisnan(latestSkinTemp) && lisnan(latestAmbient)) {
float estimatedCore = predictCoreTemp(latestSkinTemp,
latestAmbient);

Serial.print("Estimated core temp: ");
Serial.printIn(estimatedCore, 2);

bool feverFlag = false;

bool lethargyFlag = false;
bool restlessnessFlag = false;

IJISRT250CT519

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/250ct519

/I Fever detection: require consecutive readings

if (estimatedCore > FEVER_THRESHOLD) {
feverCounter++;

}else {

feverCounter = 0;

}

if (feverCounter >= FEVER_READINGS_REQUIRED)
feverFlag = true;

/I Activity anomaly check during sleep period (assume sleep
schedule known). Here we check always.

if (motionindex < (MOTION_INDEX_LOW * 60.0)) { //
convert fraction to seconds/min scale—adjust to your tuning
lethargyFlag = true;

} else if (motionIindex > (MOTION_INDEX_HIGH * 60.0))
{

restlessnessFlag = true;

}

/I Final alert logic

if (feverFlag && lethargyFlag) {

sendAlert(2, estimatedCore, motionindex); // urgent

} else if (feverFlag || lethargyFlag || restlessnessFlag) {
sendAlert(1, estimatedCore, motionindex); // monitor closely
}else {

/I no alert - optionally send periodic heartbeat
Serial.printIn("No alert - system normal.");

}

}else {

Serial.printin("Insufficient sensor data to run decision
logic.");

}

/I reset window
activeSecondsIinWindow = 0;
motionWindowStart = now;

}

/I short delay to save CPU

delay(50);

» Formula, Signal Processing, and Calibration Steps
Thermal — core temperature model (linear, easily calibrated)
e We use a Linear Model of the form:

Tcore =a -Tskin+c- Tamb + b

Where:

Tskin is the measured hottest-area skin temperature
from MLX90640 (°C),

Tamb is ambient temperature from DHT22 (°C),
a,c,b are calibration coefficients derived from paired

measurements against a clinical thermometer
(tympanic/temporal), fit by least-squares.

Www.ijisrt.com 1957

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/

Volume 10, Issue 10, October— 2025
ISSN No:-2456-2165

How to estimate coefficients: collect N samples

e (Tskin,i ,Tamb,i ,Tcore,clin,i) and solve:

a,b
i=1

n
m"’zz (aTskin, i + cTamb, i + b — Tcore, clin, i)

This is a linear least-squares problem. The Python
snippet above demonstrates numpy.linalg.lstsq.

Why include Tamb? Skin-to-core offset depends on
ambient: colder room increases skin-to-core gradient.
Including ambient reduces bias.

» MLX90640 Pixel — Skin Temperature Extraction
MLX90640 returns a thermal map (32x24) of object
temperatures per pixel.

To detect the inner canthus (tear duct) region (a reliable
proxy for core temperature), a robust approach:

Find pixel with maximum temperature.

Compute the mean of the 3x3 pixel neighborhood
around that pixel to reduce noise:

1 n
Tskin = — Z Ti,j
n

k(ij)EN

Where N is the neighborhood (clamped at edges) and its
size (usually 9).

Optionally apply a temporal smoothing (exponential
moving average, EMA)

EMAt=0-Tskin,t+(1-a)- EMAt-1
With o . Tskin,t + (1- 0)-EMAt-1
With a € (0,1) (0,2) to reduce spurious
Motion index (from PIR)We approximate activity as the
number of active seconds (PIR HIGH) over a rolling window

W (seconds). Define:

ActiveSeconds _ ActiveSeconds
WindowMinutes W /60

MotionIndex =

This metric expresses "seconds active per minute"
averaged over the window. You can use other metrics: event
counts, power spectral density if using accelerometers, or

. . . " ActiveSeconds
time-in-motion fraction ———

e Rule Thresholds (Example):
Lethargy: MotionIndex < low threshold for window

W.

IJISRT250CT519

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/250ct519
Restlessness: MotionIndex > high threshold for window
W.
Tune thresholds empirically.
Thermal — core temperature model (linear, easily calibrated)
We use a linear model of the form:
Rule-based decision logic
o Example Rules (From Sketch):

v’ Fever flag if TcoreTcore exceeds threshold (38.0 °C)
for k consecutive readings.

v’ Lethargy flag if MotionIndex below lower bound for the
rolling window.

v Restlessness flag if MotionIndex above upper bound for
the window.

v' ALERT LEVEL 1 when Fever OR Lethargy.

v" ALERT LEVEL 2 when both Fever AND Lethargy.

You can replace this with a probabilistic or ML model
later (logistic regression or small neural net).

» Filtering and Smoothing Recommendations

e Use EMA on thermal measure and on motion index to
reduce false positives.

e Debounce PIR signals (ignore very short spikes < 200
ms).

e Require multiple consecutive fever detections (temporal
persistence) to avoid single-frame noise.

» Calibration Procedure (Field)

e Place system in normal ambient conditions.
o For asample of infants (or controlled subject), measure:

MLX90640 skin reading Tskin,iTskin,i,
DHT22 ambient Tamb,iTamb,i,

Clinical core temp Tcore,clin,iTcore,clin,i with a
validated thermometer.

Acquire at least 30-50 paired samples across a range of
temperatures and ambients if possible.

o Fit linear model by least squares to solve for a,c,ba,c,b.

e Validate on a held-out dataset and compute
sensitivity/specificity for fever detection at your decision
threshold.

» Python Calibration Example (what | ran above)
e The small Python program executed above demonstrates

solving for coefficients a,c,ba,c,b using numpy.
linalg.Istsg. It displays a small calibration table and a

Www.ijisrt.com 1958

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/

Volume 10, Issue 10, October— 2025
ISSN No:-2456-2165

sample predicted core temperature. Use that script with
your real calibration data to produce your coefficients and
update the Arduino constants CAL_A, CAL_C, CAL_B.

» ESP8266 / Cloud & Mobile Integration (Brief)

e The Arduino uses Seriall to send JSON strings to the
ESP-01.

e On the ESP side you can run a small sketch (ESP8266
Arduino core) that opens WiFi, then either:

POST the JSON to a cloud endpoint (Adafruit 10 REST
API, Blynk REST, or your server).

Use MQTT to publish to a broker (Adafruit 10 MQTT).

Use Firebase / WebSocket / IFTTT webhooks for
notifications.

e Ensure HTTPS/TLS when sending health-related alerts. If
using plain HTTP, add encryption at application level or
use a private LAN.

» Safety & Privacy Reminders

o Encrypt or use authenticated cloud channels (MQTT over
TLS or HTTPS).

e Log minimal personal data; store locally if possible.

o Display a big safety disclaimer: system is an aid —
consult a medical professional if alarms occur.

» Quick Checklist of Parts & Images you Asked for
(Descriptions you can use to Find Photos)

Arduino Mega 2560 Rev3 (microcontroller board image)
MLX90640 32x24 Thermal Camera Module (lens + PCB)
HC-SR501 PIR Motion Sensor (small black plastic lens)
DHT22 (AM2302) Temperature & Humidity sensor
(white sealed package)

ESP-01 (ESP8266) WiFi module (small 2x4 pin module)
e 5V DC adapter (2A) and 3.3V regulator for

ESP/MLX90640 as required

e Jumper wires, prototyping PCB or enclosure, mounting
brackets

» Full Assembly

Fig 2 Full Assembly

IJISRT250CT519

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/250ct519

Infant Monitoring System

"

IN MOTION

i SENSOR
ARDUINO TINYML
MEGA 2560 MODEL
) ESP-01
DHT12

Fig 3 Infant Monitoring System
1. CONCLUSION AND FUTURE WORK

This paper has outlined a feasible and innovative design
for a low-cost, non-invasive infant health monitoring system.
By integrating thermal imaging and passive infrared motion
sensing through an Arduino platform, the system provides a
multi-faceted view of the infant's physiological and
behavioral state, enabling earlier detection of potential illness
than intermittent checks allow.

» Future Iterations of this System will Focus on:

e Machine Learning Integration: Replacing the simple rule-
based algorithm with a lightweight machine learning
model trained on real infant data to improve accuracy and
reduce false alarms.

e Additional Sensors: Incorporating a pulse oximeter sensor
(using reflected infrared light) to monitor blood oxygen
saturation, a critical vital sign in respiratory illnesses.

o Clinical Validation: Conducting a formal study to validate
the system's sensitivity and specificity against clinical
diagnoses in a controlled setting.

The proposed system represents a significant step
towards democratizing advanced health monitoring, giving
parents a powerful tool to safeguard their infant's health with
greater confidence and timeliness.

REFERENCES

[1]. Thompson, M., Vodicka, T. A., Blair, P. S., Buckley,
D. I, Heneghan, C., & Hay, A. D. (2013). Duration of
symptoms of respiratory tract infections in children:
systematic review. BMJ, 347, f7027.

[2l. Ng, D. K., Chan, C. H., Lee, R. S., & Leung, L. C.
(2004). Non-contact assessment of body temperature
using a digital infrared thermal imaging system.
Journal of Medical Engineering & Technology, 28(5),
203-207.

[3]. Jansen, J., Beijers, R., Riksen-Walraven, M., & de
Weerth, C. (2010). Cortisol reactivity in young
infants. Psychoneuroendocrinology, 35(3), 329-338.
(Note: This reference illustrates the link between

Www.ijisrt.com 1959

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/

Volume 10, Issue 10, October— 2025
ISSN No:-2456-2165

[4].

[5].

[6].

[71.

[8].

[9].

[10].

[11].

[12].

[13].

[14].

stress/illness and behavioral changes, a foundational
concept for activity monitoring).

Kormos, I. L., & Gede, N. (2021). Non-contact
infrared thermometry for fever screening in children.
European Journal of Pediatrics, 180(3), 971-972.
Arduino SA. (2023). Arduino Mega 2560 Rev3.
Retrieved from
https://docs.arduino.cc/hardware/mega-2560
Melexis. (2022). MLX90640 Far Infrared Thermal
Sensor Array Datasheet. Retrieved from
https://www.melexis.com/en/product/MLX90640/Far
-Infrared-Thermal-Sensor-Array

Adafruit Industries. (2023). Adafruit DHT22
Temperature and Humidity Sensor Datasheet.
Retrieved from https://learn.adafruit.com/dht
Espressif Systems. (2023). ESP8266EX Datasheet:
Wi-Fi SoC for loT Applications. Retrieved from
https://www.espressif.com/en/products/socs/esp8266
Ahlers, J., Dietrich, S., & Moller, A. (2020). Low-cost,
non-invasive neonatal monitoring using infrared
thermography and motion analysis. IEEE Sensors
Journal, 20(15), 8563-8572.

Kumar, S., & Gupta, N. (2021). Implementation of
TinyML models for real-time embedded health
monitoring. International Journal of Embedded
Systems, 13(2), 157-168.

Park, S., Kim, H., & Cho, J. (2019). Smart baby care
system using loT and thermal imaging sensors.
Sensors, 19(6), 1452.

Rahman, M. M., Hasan, M. M., & Islam, M. R. (2020).
Design of a smart infant monitoring system using
Arduino and loT technology. International Journal of
Computer Applications, 177(36), 25-30.

Zheng, Y., Lee, K. H., & Tan, S. C. (2021). Thermal
and motion sensor fusion for fever detection in early
childhood environments. Biomedical Signal
Processing and Control, 65, 102334.

Banerjee, A., & Patel, R. (2022). TinyML-based
logistic regression models for embedded healthcare
diagnostics. IEEE Internet of Things Journal, 9(22),
22405-22415.

e The research was funded by the Russian Science
Foundation (grant No. 25-79-10376)

IJISRT250CT519

Www.ijisrt.com

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/250ct519

1960

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/

	Abstract: The early detection of illness in non-verbal infants, particularly at seven months of age, presents a significant challenge in pediatric care. Pre-verbal infants cannot articulate discomfort, leading to potential delays in diagnosis and trea...
	I. INTRODUCTION
	II. SYSTEM DESIGN AND
	OPERATIONAL PROCESS
	 Detailed Process and Sensor Breakdown for Infant Health Monitoring System
	 The Continuous Monitoring Cycle
	 Stage 1: Sensing - Data Acquisition from the Environment
	 List of Sensors and their Detailed Functions:
	Table 1 Sensing - Data Acquisition from the Environment

	 Stage 2: Pre-Processing - Cleaning and Preparing the Data
	 Stage 3: Feature Extraction - Converting Data into Meaningful Metrics
	 Detailed Thermal Imaging Process:

	 Stage 4: Decision Logic - The "Brain" of the System
	 Stage 5: Alert and Action - Informing the Caregiver
	 Arduino Sketch (Arduino Mega 2560)
	Fig 1 Notes before Wiring & Running
	 Formula, Signal Processing, and Calibration Steps
	Thermal → core temperature model (linear, easily calibrated)
	 We use a Linear Model of the form:
	Tcore = a ⋅Tskin + c⋅ Tamb + b
	Where:
	Tskin is the measured hottest-area skin temperature from MLX90640 (C),
	Tamb is ambient temperature from DHT22 (C),
	a,c,b are calibration coefficients derived from paired measurements against a clinical thermometer (tympanic/temporal), fit by least-squares.
	Why include Tamb? Skin-to-core offset depends on ambient: colder room increases skin-to-core gradient. Including ambient reduces bias.
	 MLX90640 Pixel → Skin Temperature Extraction
	MLX90640 returns a thermal map (32×24) of object temperatures per pixel.
	To detect the inner canthus (tear duct) region (a reliable proxy for core temperature), a robust approach:
	Find pixel with maximum temperature.
	Compute the mean of the 3×3 pixel neighborhood around that pixel to reduce noise:
	𝑇𝑠𝑘𝑖𝑛=,1-𝑛.,𝑘(𝑖𝑗)∈𝑁-𝑛-𝑇𝑖,𝑗.
	Where N is the neighborhood (clamped at edges) and its size (usually 9).
	Optionally apply a temporal smoothing (exponential moving average, EMA)
	EMAt​=α⋅Tskin,t​+(1−α)⋅EMAt−1
	With α . Tskin,t + (1- α)⋅EMAt-1
	With α ∈ (0,1) (0,2) to reduce spurious
	Motion index (from PIR)We approximate activity as the number of active seconds (PIR HIGH) over a rolling window W (seconds). Define:
	𝑀𝑜𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥=,𝐴𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑐𝑜𝑛𝑑𝑠-𝑊𝑖𝑛𝑑𝑜𝑤𝑀𝑖𝑛𝑢𝑡𝑒𝑠.= ,𝐴𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑐𝑜𝑛𝑑𝑠-𝑊/60.
	This metric expresses "seconds active per minute" averaged over the window. You can use other metrics: event counts, power spectral density if using accelerometers, or time-in-motion fraction ,𝐴𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑐𝑜𝑛𝑑𝑠-𝑊.
	 Rule Thresholds (Example):
	Lethargy: MotionIndex < low threshold for window
	W.
	Restlessness: MotionIndex > high threshold for window
	W. (1)
	Tune thresholds empirically.
	Thermal → core temperature model (linear, easily calibrated)
	Rule-based decision logic
	 Filtering and Smoothing Recommendations
	 Calibration Procedure (Field)

	 Python Calibration Example (what I ran above)
	 ESP8266 / Cloud & Mobile Integration (Brief)
	 Safety & Privacy Reminders
	 Quick Checklist of Parts & Images you Asked for (Descriptions you can use to Find Photos)
	III. CONCLUSION AND FUTURE WORK
	REFERENCES

