
Volume 10, Issue 10, October– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25oct519

IJISRT25OCT519 www.ijisrt.com 1951

An Autonomous Robotic System for Multi-Modal,

Non-Invasive Sensing and Early Illness

Detection in Seven-Month-Old Infants

Moses Maduka Testimony1; Litsin Konstantin Vladimirovich2

1Department: Mechatronics and Robotics Universty: South Ural State University.

(National Research University Russia)
2University: South Ural State University (National Research University)

2Associate Professor (PhD), Candidate of Technical Science, Department of Electric Drive,

Mechatronics and Electromechanics.

 Email: madumose1470@gmail.com.

Publication Date: 2025/10/31

Abstract: The early detection of illness in non-verbal infants, particularly at seven months of age, presents a significant

challenge in pediatric care. Pre-verbal infants cannot articulate discomfort, leading to potential delays in diagnosis and

treatment. This paper proposes the design and methodology for a novel, low-cost, and non-invasive monitoring system that

leverages the Arduino microcontroller platform integrated with a thermal camera and passive infrared (PIR) sensors to

create an early warning system for infant sickness. The system operates by continuously and unobtrusively monitoring two

key physiological and behavioral correlates of illness: elevated core body temperature (fever) and alterations in sleep/wake

activity patterns. The thermal camera (MLX90640) is employed to map facial temperature, identifying febrile states without

physical contact. Concurrently, PIR sensors track gross motor activity and restlessness, which are often suppressed or

increased during illness. Data from these sensors are processed by an Arduino Mega, which uses a rule-based algorithm to

flag anomalies. If a potential sickness state is detected (e.g., sustained elevated temperature coupled with abnormal

inactivity), the system triggers an alert to caregivers via a connected mobile application. This multi-modal approach aims to

reduce false positives compared to single-parameter systems and provides a crucial tool for proactive parental intervention,

potentially improving health outcomes for vulnerable infants.

Keywords: Neonatal Monitoring, Non-Invasive Diagnostics, Arduino, Thermal Imaging, Infrared Sensor, Affective Computing,

Early Warning System.

How to Cite: Moses Maduka Testimony; Litsin Konstantin Vladimirovich (2025) An Autonomous Robotic System for Multi-

Modal, Non-Invasive Sensing and Early Illness Detection in Seven-Month-Old Infants.

International Journal of Innovative Science and Research Technology,

10(10), 1951-1960. https://doi.org/10.38124/ijisrt/25oct519

I. INTRODUCTION

The advent of parenthood is accompanied by an innate,

vigilant concern for an infant's well-being, a concern that is

most acute during the pre-verbal stage of development. A

seven-month-old infant exists in a critical transitional period:

they are increasingly mobile, demonstrating new abilities like

rolling and crawling, and are becoming more socially

interactive, yet they remain entirely incapable of verbally

communicating their physical state. This profound

communication barrier creates a significant vulnerability, as

common illnesses such as otitis media, respiratory syncytial

virus (RSV), and urinary tract infections often manifest

through non-specific signs like fever, lethargy, or irritability.

These subtle, early indicators can be easily overlooked amidst

the normal fluctuations of infant behavior or mistaken for

teething or minor fussiness. Consequently, parents and

caregivers may not recognize the need for medical

consultation until symptoms have progressed to more severe

states, such as persistent high fever, dehydration, or

pronounced lethargy, potentially leading to complications

and more intensive treatments.

Current standard practice for at-home health monitoring

remains largely reactive and intermittent. It relies heavily on

tools like tympanic or temporal thermometers, which require

physical contact, can disturb a sleeping infant, and provide

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/
mailto:madumose1470@gmail.com
https://doi.org/10.38124/ijisrt/25oct519

Volume 10, Issue 10, October– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25oct519

IJISRT25OCT519 www.ijisrt.com 1952

only a single, isolated data point in time. This snapshot

approach is fundamentally ill-suited for capturing the

dynamic onset or progression of a febrile illness or the

gradual decline in activity that signals malaise. The

limitations of this paradigm highlight a clear and urgent need

for a continuous, passive, and multi-parameter monitoring

solution that can operate seamlessly within the infant's

environment, particularly during sleep.

The convergence of accessible open-source hardware,

advanced low-cost sensor technology, and the principles of

affective computing offers a promising pathway to bridge this

gap. Platforms like Arduino provide a robust and flexible

foundation for integrating diverse sensors, while thermal

imaging cameras, once confined to industrial and clinical

settings, have been validated for non-contact fever screening,

providing an accurate and hygienic method for temperature

measurement. Simultaneously, the correlation between

physical activity levels and health status is a well-documented

behavioral marker, with lethargy and restlessness serving as

reliable proxies for underlying sickness in infants

This article details the design and operational process of

an autonomous, integrated system that synthesizes these

technological advancements into a cohesive whole. By fusing

thermal data for non-contact core temperature estimation with

infrared-based activity monitoring, the proposed system

moves beyond single-point measurements to provide a

holistic, context-aware, and continuous assessment of an

infant's well-being. The primary objective is to empower

parents with real-time, data-driven insights that complement

their caregiving intuition, transforming infant healthcare

monitoring from a reactive chore into a proactive, intelligent

safeguard.

II. SYSTEM DESIGN AND

OPERATIONAL PROCESS

The proposed system is built around an Arduino Mega

2560 microcontroller, chosen for its multiple serial ports and

sufficient I/O pins to handle concurrent sensor data streams.

The system is designed to be mounted in the infant's sleeping

area (e.g., above the crib) for continuous monitoring.

A. Hardware Components and their Roles

 Microcontroller: Arduino Mega 2560.

 Role: The central brain of the system. It reads data from

all sensors, processes it using a predefined algorithm, and

manages the output/alert system.

 Thermal Imaging Camera: MLX90640 ESF-BAA 32x24

IR Array.

 Role: To capture a low-resolution thermal map of the

infant's face and body. The camera detects infrared

radiation, which is converted into temperature values for

each of the 768 pixels (32x24). By identifying the highest

temperature region (which typically corresponds to the

tear duct/inner canthus of the eye, a reliable proxy for core

body temperature [4]), the system can estimate if the

infant has a fever.

 Passive Infrared (PIR) Sensor: HC-SR501.

 Role: To detect motion within its field of view. One or

more sensors are positioned to cover the crib area. During

designated sleep times, a lack of expected motion

(suggesting lethargy) or an excess of motion (suggesting

restlessness/ discomfort) can be flagged as anomalous

behavior.

 Ambient Temperature & Humidity Sensor: DHT22.

 Role: To provide environmental context. This is crucial

for calibrating the thermal camera readings, as ambient

temperature can affect perceived skin temperature.

 Alert Module: ESP-01 ESP8266 WiFi Module.

 Role: To connect the Arduino to the local WiFi network.

When the algorithm detects a potential sickness event, the

Arduino sends a command to the ESP8266 to transmit an

alert to a designated smartphone application or web

dashboard.

 Power Supply: A Stable 5V DC power adapter to ensure

continuous operation.

B. Software and Data Processing Workflow

The system's intelligence lies in its software algorithm,

which follows a multi-stage process:

 Data Acquisition:

 The MLX90640 captures a thermal frame every 10

seconds.

 The PIR sensor's digital output is read continuously to log

motion events.

 The DHT22 provides an ambient temperature reading

every 30 seconds.

 Data Pre-Processing & Feature Extraction:

 Thermal Data: The Arduino scans the 32x24 thermal grid

to find the cluster of pixels with the highest average

temperature, corresponding to the infant's facial region

(specifically the inner canthus). This value is stored

as T_core_estimate.

 Motion Data: The PIR data is analyzed over a 15-minute

rolling window. The system calculates a "Motion Index"

(e.g., seconds of activity per minute).

 Anomaly Detection Algorithm (Rule-Based Logic):

The microcontroller runs a continuous loop comparing

the extracted features against predefined, customizable

thresholds.

 Fever Check: If (T_core_estimate > 38.0°C) for 3

consecutive readings, Fever_Flag = TRUE.

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/

Volume 10, Issue 10, October– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25oct519

IJISRT25OCT519 www.ijisrt.com 1953

 Then Activity Anomaly Check (During Sleep Periods):

 If (Motion_Index < 0.1) for 30 minutes, then

Lethargy_Flag = TRUE. (Extreme inactivity)

 If (Motion_Index > 2.0) for 30 minutes, then

Restlessness_Flag = TRUE. (Excessive movement)

 Alert Triggering:

The final decision logic is a weighted combination:

 ALERT LEVEL 1 (Monitor Closely): Fever_Flag =

TRUE OR Lethargy_Flag = TRUE.

 ALERT LEVEL 2 (Urgent): (Fever_Flag = TRUE) AND

(Lethargy_Flag = TRUE).

Upon triggering an alert, the Arduino sends a JSON

packet via the ESP8266 to a cloud service (e.g., Blynk,

Adafruit IO), which pushes a notification to the parent's

smartphone: "Alert: Potential sickness detected. Elevated

temperature and low activity."

C. Implementation and Safety Considerations

 Calibration: The thermal camera must be calibrated

against a clinical-grade thermometer in a controlled

environment.

 Positioning: Sensors must be positioned to maximize

coverage of the crib while minimizing false triggers from

outside the monitored zone.

 Data Privacy: All data transmitted via WiFi must be

encrypted. Local data storage on an SD card can be added

as a backup.

 Safety: The entire system must be powered via a safe,

wall-mounted adapter and placed securely out of the

infant's reach. It is a monitoring aid, not a medical device,

and is intended to supplement, not replace, parental

vigilance and professional medical advice.

 Detailed Process and Sensor Breakdown for Infant

Health Monitoring System

This section expands on the system's operation,

breaking it down into a continuous cycle of data acquisition,

processing, and decision-making.

 The Continuous Monitoring Cycle

The system operates on a 24/7 loop, with a primary

focus on sleep periods when the infant is stationary and

baseline measurements are most consistent. The entire

process can be visualized in five key stages:

 Sensing →Pre-Processing →Feature Extraction →

Decision Logic →Alert & Action

 Let's Detail Each Stage.

 Stage 1: Sensing - Data Acquisition from the Environment

This is the hardware layer where physical phenomena

(heat, motion) are converted into electrical signals.

 List of Sensors and their Detailed Functions:

Table 1 Sensing - Data Acquisition from the Environment

Sensor Name & Model Primary Function Specific Use in This Project Technical Details

Thermal Camera

*(MLX90640 ESF-

BAA)*

To capture a 2D

map of temperature

distribution without

contact.

To non-invasively estimate the

infant's core body temperature by

measuring the skin temperature at

the inner canthus (tear duct) of the

eye, which is the most reliable

external proxy for core temperature.

Type: Far Infrared (FIR) sensor

array.

Resolution: 32 pixels x 24 pixels

(768 individual temperature

points).

Field of View: 110° x 75° (wide

angle to cover the crib).

Output: A array of 768 raw values

representing object temperature.

Passive Infrared (PIR)

Motion Sensor

(HC-SR501)

To detect

movement of

infrared-radiating

bodies (like

humans).

To monitor the infant's gross motor

activity and sleep patterns. It

distinguishes between states of sleep

(low motion), active sleep (some

motion), and wakefulness/restlessness

(high motion).

Type: Passive Infrared.

Principle: Detects changes in

infrared radiation in its field of

view. It does not measure amount

of motion, only its occurrence.

Output: A digital signal

(HIGH/LOW) indicating motion

detection.

Ambient Temperature &

Humidity Sensor

(DHT22 / AM2302)

To measure the

surrounding air

temperature and

relative humidity.

To provide environmental context for

the thermal camera. Skin temperature

readings can be influenced by room

temperature. This data is used to

improve the accuracy of the fever

detection algorithm.

Type: Digital Sensor with a

capacitive humidity sensor and a

thermistor.

Range: Temperature: -40 to 80°C;

Humidity: 0-100% RH.

Output: Digital signal with

temperature and humidity values.

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/

Volume 10, Issue 10, October– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25oct519

IJISRT25OCT519 www.ijisrt.com 1954

WiFi Module

(ESP-01 ESP8266)

To provide network

connectivity to the

Arduino.

To transmit system status and critical

alerts from the Arduino to a cloud

server, which then pushes

notifications to a parent's smartphone

app.

Type: SoC with integrated TCP/IP

protocol stack.

Interface: UART (Serial) with

Arduino.

Function: Acts as a wireless

communication bridge.

 Stage 2: Pre-Processing - Cleaning and Preparing the

Data

Raw sensor data is often noisy and needs to be filtered

and calibrated before it can be used.

 Thermal Data Pre-Processing:

 Read Raw Data: The Arduino reads the 768 values from

the MLX90640 over the I2C communication protocol.

 Ambient Compensation: The raw sensor readings are

adjusted using the ambient temperature value from the

DHT22. The MLX90640's own library often handles this

using the sensor's own internal ambient temperature

measurement, but the DHT22 provides a reliable

secondary check.

 Noise Filtering (Software): A simple moving average

filter is applied to reduce "spiky" noise in the temperature

readings. For example, each pixel's temperature is

averaged with its previous two readings to smooth the

data.

 Motion Data Pre-Processing:

 Debouncing: The PIR sensor's digital signal is

"debounced" in software to avoid counting a single

motion event multiple times due to electrical noise.

 Quantification: The Arduino doesn't just see "motion" or

"no motion." It counts the number of times the PIR sensor

is triggered (HIGH) within a specific time window (e.g.,

15 minutes). This creates a "Motion Count" metric.

 Stage 3: Feature Extraction - Converting Data into

Meaningful Metrics

In this stage, the cleaned data is analyzed to extract

specific, useful metrics that the algorithm can understand.

 Detailed Thermal Imaging Process:

This is the most complex part of the data processing.

 Target Identification (Region of Interest - ROI):

The system scans the entire 32x24 thermal grid.

It looks for a cluster of pixels (e.g., a 3x3 block) that

is significantly warmer than the surrounding areas and is

located in the expected upper-middle region of the frame

(where the infant's face should be).

This warm spot is identified as the inner canthus of the

eye, which is consistently the warmest point on the face and

has a high correlation with core body temperature.

 Temperature Calculation:

The temperatures of the pixels within this identified ROI

are averaged. This average is stored as T_core_estimate.

If the 3x3 eye-region pixels have temperatures [37.2,

37.5, 37.4, 37.6, 37.8, 37.5, 37.3, 37.4, 37.6]°C,

the T_core_estimate would be (sum / 9) = 37.48°C.

 Motion Index Calculation:

The "Motion Count" from the PIR sensor over the last

15 minutes is converted into a "Motion Index" (Motion_Index

= Total_Motion_Triggers / 15). This gives a normalized value

for activity per minute.

45 triggers in 15 minutes = Motion Index of 3.0 (very

active). 3 triggers in 15 minutes = Motion Index of 0.2 (very

still).

 Stage 4: Decision Logic - The "Brain" of the System

The extracted features (T_core_

estimate, Motion_Index) are fed into a rule-based algorithm

running on the Arduino. The thresholds are customizable by

the parent.

cpp

// Pseudocode for the Decision Logic

void loop() {

float T_core = getCoreTemperature(); // From Stage 3

float motionIdx = getMotionIndex(); // From Stage 3

bool isSleepTime = checkTimeSchedule(); // e.g., 8:00 PM to

6:00 AM

bool fever_flag = false;

bool lethargy_flag = false;

bool restlessness_flag = false;

// Rule 1: Fever Detection

if (T_core > 38.0) { // Threshold for fever

fever_flag = true;

}

// Rule 2 & 3: Behavioral Anomalies (only during sleep times)

if (isSleepTime) {

if (motionIdx < 0.1) { // Threshold for extreme lethargy

lethargy_flag = true;

}

if (motionIdx > 2.0) { // Threshold for excessive restlessness

restlessness_flag = true;

}

}

// Final Alert Triggering Logic

if (fever_flag && lethargy_flag) {

triggerAlert("URGENT: High fever and lethargy detected.");

} else if (fever_flag) {

triggerAlert("WARNING: Fever detected.");

} else if (lethargy_flag) {

triggerAlert("NOTE: Unusually low activity level.");

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/

Volume 10, Issue 10, October– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25oct519

IJISRT25OCT519 www.ijisrt.com 1955

}

}

 Stage 5: Alert and Action - Informing the Caregiver

When the decision logic triggers an alert, the system

moves from monitoring to action.

 Command Sent: The Arduino sends a serial command to

the connected ESP8266 WiFi module.

 Command: "ALERT, URGENT, Fever and Lethargy,

Temp: 38.5C"

 Data Transmission: The ESP8266 connects to the home

WiFi and sends this data packet to a pre-configured cloud

service (e.g., Blynk, Adafruit IO, or a custom MQTT

broker) using an HTTP or MQTT request.

 Notification Push: The cloud service immediately pushes

a notification to the smartphone application that is

subscribed to this data stream.

 Parental Action: The parent receives the alert on their

phone, which allows them to immediately check on the

infant, take a manual temperature reading for

confirmation, and contact a healthcare professional if

necessary.

 Arduino Sketch (Arduino Mega 2560)

Fig 1 Notes before Wiring & Running

 MLX90640 (I²C) needs 3.3V tolerant wiring. Use the

Adafruit MLX90640 library or Melexis library (this

sketch assumes the Adafruit_MLX90640-style API).

Install libraries: Adafruit_MLX90640, DHT sensor

library by Adafruit, ArduinoJson (optional), Wire.

 ESP-01 (ESP8266) should be connected to Serial1

(TX1/RX1 pins on Mega: TX1=18, RX1=19). Use a

proper 3.3V regulator and level shifting. ESP must be

powered by 3.3V @ 300–500 mA regulator.

 PIR HC-SR501 connected to a digital input (with proper

placement). DHT22 data pin to a digital pin with pull-up.

 This system is a monitoring aid, not a medical device.

Place electronics out of infant reach and follow electrical

safety rules.

// Infant Multi-Modal Monitor - Arduino Mega 2560

// MLX90640 (thermal), DHT22 (ambient), PIR (motion),

ESP8266 (Serial1) for alerts

// Author: ChatGPT (example, adapt thresholds & calibration

to your dataset)

#include <Wire.h>

#include <Adafruit_MLX90640.h> // install Adafruit

MLX90640 library

#include <DHT.h>

#define DHTPIN 7

#define DHTTYPE DHT22

#define PIR_PIN 2 // digital input for HC-SR501

#define PIR_DEBOUNCE_MS 200

// Thresholds (example - tune during calibration)

#define FEVER_THRESHOLD 38.0 // deg C (estimated

core)

#define FEVER_READINGS_REQUIRED 3 // consecutive

readings

#define MOTION_WINDOW_MS 1800000UL // 30

minutes window for motion index

#define MOTION_INDEX_LOW 0.1 // fraction (events

per second scaled) -> low activity

#define MOTION_INDEX_HIGH 2.0 // excessive

movement threshold - adjust units

#define THERMAL_FRAME_INTERVAL_MS 10000UL //

10s

#define DHT_INTERVAL_MS 30000UL // 30s

// Calibration coefficients for T_core = a*T_skin + c*T_amb

+ b

// Set to defaults; replace with your calibrated values (see

Python calibration example)

float CAL_A = 0.6823; // skin scale

float CAL_C = 0.0548; // ambient coefficient

float CAL_B = 12.0384; // offset

Adafruit_MLX90640 mlx;

DHT dht(DHTPIN, DHTTYPE);

unsigned long lastThermalMillis = 0;

unsigned long lastDHTMillis = 0;

unsigned long lastPirMillis = 0;

float latestSkinTemp = NAN; // computed from MLX90640

float latestAmbient = NAN;

int feverCounter = 0;

//// Motion tracking - we will count PIR "active seconds" in a

rolling window:

unsigned long motionWindowStart = 0;

unsigned long activeSecondsInWindow = 0;

bool pirState = false;

unsigned long lastPirToggleMillis = 0;

unsigned long lastPirChangeMillis = 0;

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/

Volume 10, Issue 10, October– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25oct519

IJISRT25OCT519 www.ijisrt.com 1956

// Circular buffer of PIR readings can be used for higher

resolution; here we approximate by noting durations

// when PIR output is HIGH (active)

void setup() {

Serial.begin(115200);

Serial1.begin(115200); // ESP8266 baud - ensure ESP set to

this baud

Wire.begin();

Serial.println("Infant monitor starting...");

// init MLX90640

if (!mlx.begin(0x33)) { // default i2c address 0x33

Serial.println("MLX90640 not found. Check wiring.");

while (1);

}

mlx.setMode(MLX90640_CHESS);

mlx.setResolution(MLX90640_ADC_18BIT);

mlx.setRefreshRate(MLX90640_8_HZ); // low refresh rate

for low CPU load

dht.begin();

pinMode(PIR_PIN, INPUT);

motionWindowStart = millis();

lastThermalMillis = millis() -

THERMAL_FRAME_INTERVAL_MS; // do immediate

read

lastDHTMillis = millis() - DHT_INTERVAL_MS;

}

float readThermalAndComputeSkin() {

// Reads MLX90640 frame and computes the "skin"

temperature as average of a small cluster around max pixel

float frame[32*24];

if (!mlx.getFrame(frame)) {

// If direct API differs, replace with appropriate call. This uses

Adafruit's getFrame signature.

Serial.println("Failed to get thermal frame");

return NAN;

}

// Find max pixel index

int maxIdx = 0;

float maxVal = frame[0];

for (int i=1; i<32*24; i++) {

if (frame[i] > maxVal) {

maxVal = frame[i];

maxIdx = i;

}

}

// Compute 3x3 average around max pixel (taking care of

edges)

int col = maxIdx % 32;

int row = maxIdx / 32;

float sum = 0.0;

int count = 0;

for (int r = max(0, row-1); r <= min(23, row+1); r++) {

for (int c = max(0, col-1); c <= min(31, col+1); c++) {

sum += frame[r*32 + c];

count++;

}

}

float skinTemp = sum / (float)count; // raw skin surface

estimate (deg C)

return skinTemp;

}

float predictCoreTemp(float skinTemp, float ambTemp) {

// Apply linear calibration model (derived from calibration)

return CAL_A * skinTemp + CAL_C * ambTemp + CAL_B;

}

void sendAlert(int level, float coreTemp, float motionIndex)

{

// Build a JSON-like string; on the cloud side parse

appropriately

String json = "{";

json += "\"alert_level\":";

json += level;

json += ",\"core_temp\":";

json += String(coreTemp,2);

json += ",\"motion_index\":";

json += String(motionIndex,3);

json += "}";

Serial.print("Sending alert: ");

Serial.println(json);

// send to ESP8266 via Serial1

Serial1.println(json);

// The ESP side should receive and forward to cloud /

smartphone (e.g., Adafruit IO, Blynk, HTTP POST)

}

float computeMotionIndex(unsigned long windowMs,

unsigned long activeSeconds) {

// Normalize motion index: activeSeconds per minute

float windowMinutes = windowMs / 60000.0;

if (windowMinutes <= 0.0) return 0.0;

float secondsPerMinute = activeSeconds / windowMinutes; //

seconds active per minute of window

// This gives larger numbers when there's more continuous

activation

return secondsPerMinute;

}

void loop() {

unsigned long now = millis();

// --- Read thermal frame periodically

if (now - lastThermalMillis >=

THERMAL_FRAME_INTERVAL_MS) {

lastThermalMillis = now;

float skin = readThermalAndComputeSkin();

if (!isnan(skin)) {

latestSkinTemp = skin;

Serial.print("Skin temp (raw): ");

Serial.println(skin, 3);

}

}

// --- Read ambient periodically

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/

Volume 10, Issue 10, October– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25oct519

IJISRT25OCT519 www.ijisrt.com 1957

if (now - lastDHTMillis >= DHT_INTERVAL_MS) {

lastDHTMillis = now;

float Tamb = dht.readTemperature();

if (!isnan(Tamb)) {

latestAmbient = Tamb;

Serial.print("Ambient temp: ");

Serial.println(Tamb, 2);

}

}

// --- PIR handling (approximate active seconds)

bool pirNow = digitalRead(PIR_PIN) == HIGH;

if (pirNow != pirState) {

// state changed

unsigned long changeMillis = now;

if (pirNow) {

// rising edge - start active interval

lastPirChangeMillis = changeMillis;

} else {

// falling edge - add duration to activeSeconds

unsigned long dur = changeMillis - lastPirChangeMillis;

// clamp and add

activeSecondsInWindow += dur / 1000UL;

}

pirState = pirNow;

lastPirToggleMillis = now;

} else {

// if still active, accumulate time since last change (periodic

update)

if (pirState) {

// add small increment

unsigned long delta = now - lastPirToggleMillis;

if (delta >= 1000) {

activeSecondsInWindow += delta / 1000UL;

lastPirToggleMillis = now;

}

}

}

// Manage rolling window - if window exceeded, reset

counters

if (now - motionWindowStart >=

MOTION_WINDOW_MS) {

// Compute motion index for last window

float motionIndex =

computeMotionIndex(MOTION_WINDOW_MS,

activeSecondsInWindow);

Serial.print("Motion index (sec active per minute): ");

Serial.println(motionIndex, 3);

// --- Decision logic using latest values

if (!isnan(latestSkinTemp) && !isnan(latestAmbient)) {

float estimatedCore = predictCoreTemp(latestSkinTemp,

latestAmbient);

Serial.print("Estimated core temp: ");

Serial.println(estimatedCore, 2);

bool feverFlag = false;

bool lethargyFlag = false;

bool restlessnessFlag = false;

// Fever detection: require consecutive readings

if (estimatedCore > FEVER_THRESHOLD) {

feverCounter++;

} else {

feverCounter = 0;

}

if (feverCounter >= FEVER_READINGS_REQUIRED)

feverFlag = true;

// Activity anomaly check during sleep period (assume sleep

schedule known). Here we check always.

if (motionIndex < (MOTION_INDEX_LOW * 60.0)) { //

convert fraction to seconds/min scale—adjust to your tuning

lethargyFlag = true;

} else if (motionIndex > (MOTION_INDEX_HIGH * 60.0))

{

restlessnessFlag = true;

}

// Final alert logic

if (feverFlag && lethargyFlag) {

sendAlert(2, estimatedCore, motionIndex); // urgent

} else if (feverFlag || lethargyFlag || restlessnessFlag) {

sendAlert(1, estimatedCore, motionIndex); // monitor closely

} else {

// no alert - optionally send periodic heartbeat

Serial.println("No alert - system normal.");

}

} else {

Serial.println("Insufficient sensor data to run decision

logic.");

}

// reset window

activeSecondsInWindow = 0;

motionWindowStart = now;

}

// short delay to save CPU

delay(50);

}

 Formula, Signal Processing, and Calibration Steps

Thermal → core temperature model (linear, easily calibrated)

 We use a Linear Model of the form:

Tcore = a ⋅Tskin + c⋅ Tamb + b

Where:

Tskin is the measured hottest-area skin temperature

from MLX90640 (°C),

Tamb is ambient temperature from DHT22 (°C),

a,c,b are calibration coefficients derived from paired

measurements against a clinical thermometer

(tympanic/temporal), fit by least-squares.

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/

Volume 10, Issue 10, October– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25oct519

IJISRT25OCT519 www.ijisrt.com 1958

How to estimate coefficients: collect N samples

 (Tskin,i ,Tamb,i ,Tcore,clin,i) and solve:

𝑚𝑖𝑛

𝑎,𝑏,𝑐
∑ (aTskin, i + cTamb, i + b − Tcore, clin, i)2

𝑛

𝑖=1

This is a linear least-squares problem. The Python

snippet above demonstrates numpy.linalg.lstsq.

Why include Tamb? Skin-to-core offset depends on

ambient: colder room increases skin-to-core gradient.

Including ambient reduces bias.

 MLX90640 Pixel → Skin Temperature Extraction

MLX90640 returns a thermal map (32×24) of object

temperatures per pixel.

To detect the inner canthus (tear duct) region (a reliable

proxy for core temperature), a robust approach:

Find pixel with maximum temperature.

Compute the mean of the 3×3 pixel neighborhood

around that pixel to reduce noise:

𝑇𝑠𝑘𝑖𝑛 =
1

𝑛
∑ 𝑇𝑖, 𝑗

𝑛

𝑘(𝑖𝑗)∈𝑁

Where N is the neighborhood (clamped at edges) and its

size (usually 9).

Optionally apply a temporal smoothing (exponential

moving average, EMA)

EMAt=α⋅Tskin,t+(1−α)⋅EMAt−1

With α . Tskin,t + (1- α)⋅EMAt-1

With α ∈ (0,1) (0,2) to reduce spurious

Motion index (from PIR)We approximate activity as the

number of active seconds (PIR HIGH) over a rolling window

W (seconds). Define:

𝑀𝑜𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥 =
𝐴𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑐𝑜𝑛𝑑𝑠

𝑊𝑖𝑛𝑑𝑜𝑤𝑀𝑖𝑛𝑢𝑡𝑒𝑠
=

𝐴𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑐𝑜𝑛𝑑𝑠

𝑊/60

This metric expresses "seconds active per minute"

averaged over the window. You can use other metrics: event

counts, power spectral density if using accelerometers, or

time-in-motion fraction
𝐴𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑐𝑜𝑛𝑑𝑠

𝑊

 Rule Thresholds (Example):

Lethargy: MotionIndex < low threshold for window

W.

Restlessness: MotionIndex > high threshold for window

W.

Tune thresholds empirically.

Thermal → core temperature model (linear, easily calibrated)

We use a linear model of the form:

Rule-based decision logic

 Example Rules (From Sketch):

 Fever flag if TcoreTcore exceeds threshold (38.0 °C)

for k consecutive readings.

 Lethargy flag if MotionIndex below lower bound for the

rolling window.

 Restlessness flag if MotionIndex above upper bound for

the window.

 ALERT LEVEL 1 when Fever OR Lethargy.

 ALERT LEVEL 2 when both Fever AND Lethargy.

You can replace this with a probabilistic or ML model

later (logistic regression or small neural net).

 Filtering and Smoothing Recommendations

 Use EMA on thermal measure and on motion index to

reduce false positives.

 Debounce PIR signals (ignore very short spikes < 200

ms).

 Require multiple consecutive fever detections (temporal

persistence) to avoid single-frame noise.

 Calibration Procedure (Field)

 Place system in normal ambient conditions.

 For a sample of infants (or controlled subject), measure:

MLX90640 skin reading Tskin,iTskin,i,

DHT22 ambient Tamb,iTamb,i,

Clinical core temp Tcore,clin,iTcore,clin,i with a

validated thermometer.

Acquire at least 30–50 paired samples across a range of

temperatures and ambients if possible.

 Fit linear model by least squares to solve for a,c,ba,c,b.

 Validate on a held-out dataset and compute

sensitivity/specificity for fever detection at your decision

threshold.

 Python Calibration Example (what I ran above)

 The small Python program executed above demonstrates

solving for coefficients a,c,ba,c,b using numpy.

linalg.lstsq. It displays a small calibration table and a

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/

Volume 10, Issue 10, October– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25oct519

IJISRT25OCT519 www.ijisrt.com 1959

sample predicted core temperature. Use that script with

your real calibration data to produce your coefficients and

update the Arduino constants CAL_A, CAL_C, CAL_B.

 ESP8266 / Cloud & Mobile Integration (Brief)

 The Arduino uses Serial1 to send JSON strings to the

ESP-01.

 On the ESP side you can run a small sketch (ESP8266

Arduino core) that opens WiFi, then either:

POST the JSON to a cloud endpoint (Adafruit IO REST

API, Blynk REST, or your server).

Use MQTT to publish to a broker (Adafruit IO MQTT).

Use Firebase / WebSocket / IFTTT webhooks for

notifications.

 Ensure HTTPS/TLS when sending health-related alerts. If

using plain HTTP, add encryption at application level or

use a private LAN.

 Safety & Privacy Reminders

 Encrypt or use authenticated cloud channels (MQTT over

TLS or HTTPS).

 Log minimal personal data; store locally if possible.

 Display a big safety disclaimer: system is an aid —

consult a medical professional if alarms occur.

 Quick Checklist of Parts & Images you Asked for

(Descriptions you can use to Find Photos)

 Arduino Mega 2560 Rev3 (microcontroller board image)

 MLX90640 32×24 Thermal Camera Module (lens + PCB)

 HC-SR501 PIR Motion Sensor (small black plastic lens)

 DHT22 (AM2302) Temperature & Humidity sensor

(white sealed package)

 ESP-01 (ESP8266) WiFi module (small 2×4 pin module)

 5V DC adapter (2A) and 3.3V regulator for

ESP/MLX90640 as required

 Jumper wires, prototyping PCB or enclosure, mounting

brackets

 Full Assembly

Fig 2 Full Assembly

Fig 3 Infant Monitoring System

III. CONCLUSION AND FUTURE WORK

This paper has outlined a feasible and innovative design

for a low-cost, non-invasive infant health monitoring system.

By integrating thermal imaging and passive infrared motion

sensing through an Arduino platform, the system provides a

multi-faceted view of the infant's physiological and

behavioral state, enabling earlier detection of potential illness

than intermittent checks allow.

 Future Iterations of this System will Focus on:

 Machine Learning Integration: Replacing the simple rule-

based algorithm with a lightweight machine learning

model trained on real infant data to improve accuracy and

reduce false alarms.

 Additional Sensors: Incorporating a pulse oximeter sensor

(using reflected infrared light) to monitor blood oxygen

saturation, a critical vital sign in respiratory illnesses.

 Clinical Validation: Conducting a formal study to validate

the system's sensitivity and specificity against clinical

diagnoses in a controlled setting.

The proposed system represents a significant step

towards democratizing advanced health monitoring, giving

parents a powerful tool to safeguard their infant's health with

greater confidence and timeliness.

REFERENCES

[1]. Thompson, M., Vodicka, T. A., Blair, P. S., Buckley,

D. I., Heneghan, C., & Hay, A. D. (2013). Duration of

symptoms of respiratory tract infections in children:

systematic review. BMJ, 347, f7027.

[2]. Ng, D. K., Chan, C. H., Lee, R. S., & Leung, L. C.

(2004). Non-contact assessment of body temperature

using a digital infrared thermal imaging system.

Journal of Medical Engineering & Technology, 28(5),

203-207.

[3]. Jansen, J., Beijers, R., Riksen-Walraven, M., & de

Weerth, C. (2010). Cortisol reactivity in young

infants. Psychoneuroendocrinology, 35(3), 329-338.

(Note: This reference illustrates the link between

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/

Volume 10, Issue 10, October– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25oct519

IJISRT25OCT519 www.ijisrt.com 1960

stress/illness and behavioral changes, a foundational

concept for activity monitoring).

[4]. Kormos, I. L., & Gede, N. (2021). Non-contact

infrared thermometry for fever screening in children.

European Journal of Pediatrics, 180(3), 971-972.

[5]. Arduino SA. (2023). Arduino Mega 2560 Rev3.

Retrieved from

https://docs.arduino.cc/hardware/mega-2560

[6]. Melexis. (2022). MLX90640 Far Infrared Thermal

Sensor Array Datasheet. Retrieved from

https://www.melexis.com/en/product/MLX90640/Far

-Infrared-Thermal-Sensor-Array

[7]. Adafruit Industries. (2023). Adafruit DHT22

Temperature and Humidity Sensor Datasheet.

Retrieved from https://learn.adafruit.com/dht

[8]. Espressif Systems. (2023). ESP8266EX Datasheet:

Wi-Fi SoC for IoT Applications. Retrieved from

https://www.espressif.com/en/products/socs/esp8266

[9]. Ahlers, J., Dietrich, S., & Möller, A. (2020). Low-cost,

non-invasive neonatal monitoring using infrared

thermography and motion analysis. IEEE Sensors

Journal, 20(15), 8563–8572.

[10]. Kumar, S., & Gupta, N. (2021). Implementation of

TinyML models for real-time embedded health

monitoring. International Journal of Embedded

Systems, 13(2), 157–168.

[11]. Park, S., Kim, H., & Cho, J. (2019). Smart baby care

system using IoT and thermal imaging sensors.

Sensors, 19(6), 1452.

[12]. Rahman, M. M., Hasan, M. M., & Islam, M. R. (2020).

Design of a smart infant monitoring system using

Arduino and IoT technology. International Journal of

Computer Applications, 177(36), 25–30.

[13]. Zheng, Y., Lee, K. H., & Tan, S. C. (2021). Thermal

and motion sensor fusion for fever detection in early

childhood environments. Biomedical Signal

Processing and Control, 65, 102334.

[14]. Banerjee, A., & Patel, R. (2022). TinyML-based

logistic regression models for embedded healthcare

diagnostics. IEEE Internet of Things Journal, 9(22),

22405–22415.

 The research was funded by the Russian Science

Foundation (grant No. 25-79-10376)

https://doi.org/10.38124/ijisrt/25oct519
http://www.ijisrt.com/

	Abstract: The early detection of illness in non-verbal infants, particularly at seven months of age, presents a significant challenge in pediatric care. Pre-verbal infants cannot articulate discomfort, leading to potential delays in diagnosis and trea...
	I. INTRODUCTION
	II. SYSTEM DESIGN AND
	OPERATIONAL PROCESS
	 Detailed Process and Sensor Breakdown for Infant Health Monitoring System
	 The Continuous Monitoring Cycle
	 Stage 1: Sensing - Data Acquisition from the Environment
	 List of Sensors and their Detailed Functions:
	Table 1 Sensing - Data Acquisition from the Environment

	 Stage 2: Pre-Processing - Cleaning and Preparing the Data
	 Stage 3: Feature Extraction - Converting Data into Meaningful Metrics
	 Detailed Thermal Imaging Process:

	 Stage 4: Decision Logic - The "Brain" of the System
	 Stage 5: Alert and Action - Informing the Caregiver
	 Arduino Sketch (Arduino Mega 2560)
	Fig 1 Notes before Wiring & Running
	 Formula, Signal Processing, and Calibration Steps
	Thermal → core temperature model (linear, easily calibrated)
	 We use a Linear Model of the form:
	Tcore = a ⋅Tskin + c⋅ Tamb + b
	Where:
	Tskin is the measured hottest-area skin temperature from MLX90640 (C),
	Tamb is ambient temperature from DHT22 (C),
	a,c,b are calibration coefficients derived from paired measurements against a clinical thermometer (tympanic/temporal), fit by least-squares.
	Why include Tamb? Skin-to-core offset depends on ambient: colder room increases skin-to-core gradient. Including ambient reduces bias.
	 MLX90640 Pixel → Skin Temperature Extraction
	MLX90640 returns a thermal map (32×24) of object temperatures per pixel.
	To detect the inner canthus (tear duct) region (a reliable proxy for core temperature), a robust approach:
	Find pixel with maximum temperature.
	Compute the mean of the 3×3 pixel neighborhood around that pixel to reduce noise:
	𝑇𝑠𝑘𝑖𝑛=,1-𝑛.,𝑘(𝑖𝑗)∈𝑁-𝑛-𝑇𝑖,𝑗.
	Where N is the neighborhood (clamped at edges) and its size (usually 9).
	Optionally apply a temporal smoothing (exponential moving average, EMA)
	EMAt​=α⋅Tskin,t​+(1−α)⋅EMAt−1
	With α . Tskin,t + (1- α)⋅EMAt-1
	With α ∈ (0,1) (0,2) to reduce spurious
	Motion index (from PIR)We approximate activity as the number of active seconds (PIR HIGH) over a rolling window W (seconds). Define:
	𝑀𝑜𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥=,𝐴𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑐𝑜𝑛𝑑𝑠-𝑊𝑖𝑛𝑑𝑜𝑤𝑀𝑖𝑛𝑢𝑡𝑒𝑠.= ,𝐴𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑐𝑜𝑛𝑑𝑠-𝑊/60.
	This metric expresses "seconds active per minute" averaged over the window. You can use other metrics: event counts, power spectral density if using accelerometers, or time-in-motion fraction ,𝐴𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑐𝑜𝑛𝑑𝑠-𝑊.
	 Rule Thresholds (Example):
	Lethargy: MotionIndex < low threshold for window
	W.
	Restlessness: MotionIndex > high threshold for window
	W. (1)
	Tune thresholds empirically.
	Thermal → core temperature model (linear, easily calibrated)
	Rule-based decision logic
	 Filtering and Smoothing Recommendations
	 Calibration Procedure (Field)

	 Python Calibration Example (what I ran above)
	 ESP8266 / Cloud & Mobile Integration (Brief)
	 Safety & Privacy Reminders
	 Quick Checklist of Parts & Images you Asked for (Descriptions you can use to Find Photos)
	III. CONCLUSION AND FUTURE WORK
	REFERENCES

