https://doi.org/10.38124/ijisrt/25sep1185

ISSN No: -2456-2165

Conventional Camera Performance in Dark Environments – Noise Reduction and Visibility Enhancement

Dr. Seshaiah Merikapudi¹; Nishal Chhetri²; Junaid Ansari³; Rohan S. Ghatge⁴; G. Manjunatha⁵

1,2,3,4,5 Department of Computer Science and Engineering SJC Institute of Technology, Chikkaballapur, India

Publication Date: 2025/10/11

Abstract: Capturing images in dark conditions is inherently difficult due to limited photon counts, high sensor noise, and di-minished contrast. This paper explores how conventional methods and modern deep learning approaches address these challenges. We review classical enhancement algorithms alongside advanced models such as CNNs, Transformers, GANs, and diffusion-based methods. Furthermore, recent hybrid paradigms combining event-driven sensing, physics-informed priors, and multimodal integration are analyzed. Comparative experiments on public low-light datasets reveal key trade-offs between noise reduction, texture preservation, perceptual realism, and efficiency. The study outlines implications for practical domains including surveillance, healthcare imaging, robotics, and photography.

Keywords: Low-Light Imaging, Noise Suppression, Image En- Hancement, Deep Learning, CNN, Transformer, Diffusion Models, Sensor Fusion.

How to Cite: Dr. Seshaiah Merikapudi; Nishal Chhetri; Junaid Ansari; Rohan S. Ghatge; G. Manjunatha (2025). Conventional Camera Performance in Dark Environments – Noise Reduction and Visibility Enhancement. *International Journal of Innovative Science and Research Technology*, 10(9), 2906-2909. https://doi.org/10.38124/ijisrt/25sep1185

I. INTRODUCTION

Acquiring clear visual information in dark scenes is a fun- damental obstacle for imaging systems. When photon avail- ability decreases, camera sensors encounter amplified noise and blurred structures, leading to poor perceptual quality and degraded performance in machine vision tasks such as medical diagnostics, security monitoring, and autonomous driving. The primary noise contributors include photon shot noise, sensor readout fluctuations, and thermal disturbances.

Traditional methods such as histogram equalization and Retinex-based algorithms improve brightness but often introduce artifacts or intensify noise. With the rise of deep learning, CNNs, GANs, U-Nets, and Transformer-based frameworks have delivered more consistent improvements in both clarity and realism. Diffusion models further refine image quality through iterative denoising, albeit with high cost.

More recent research has emphasized hybrid frameworks that merge data-driven learning with physical priors or tem- poral sensing. Event-based sensors capture fine-grained mo- tion under minimal illumination, while physics-aware neural networks enforce image formation constraints. Such strategies enable robust low-light imaging across diverse environments including surveillance,

biomedical imaging, and astronomical observation.

II. RELATED WORK

> Classical Enhancement

Noise suppression and visibility enhancement have long been addressed using filtering approaches like Gaussian smoothing, median filtering, and BM3D. Retinex-based methods model illumination to enhance contrast. Although computationally efficient, these techniques are prone to detail loss under extremely low light [3], [4].

➤ Deep Learning Models

CNNs and U-Nets map noisy images to clean outputs, lever- aging convolutional hierarchies and skip connections for struc- tural preservation. GANs further enhance perceptual realism using adversarial objectives [5].

> Transformers in Imaging

Self-attention mechanisms in Transformers enable long-range feature dependency modeling, producing more structurally consistent reconstructions, particularly for high-resolution scenes [6].

➤ Diffusion Methods

Diffusion models denoise iteratively, generating realistic tex- tures and sharp structures. Despite their superior

Volume 10, Issue 9, September – 2025

ISSN No: -2456-2165

https://doi.org/10.38124/ijisrt/25sep1185

fidelity, the heavy computational demand restricts real-time usage [7].

> Hybrid Frameworks

Integrating event-driven vision, physics-informed priors, and multimodal cues improves robustness. Event-based sensors capture motion with high temporal resolution, while multi- modal fusion leverages complementary imaging modalities [8], [9].

III. METHODOLOGY

> Classical Baselines

Histogram equalization improves global contrast, Retinex modifies illumination, and BM3D removes Gaussian noise while preserving edges. However, all degrade in extremely dark scenarios.

> Proposed Hybrid Approach

We introduce a framework combining Physics-Informed Neu- ral Networks (PINNs) and event-based vision. PINNs embed imaging physics into training, while event data capture high- speed motion to complement static frames.

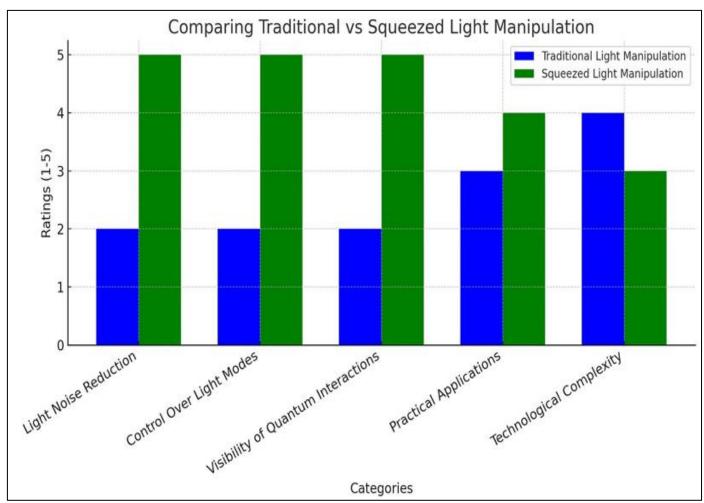


Fig 1 Enter Caption

Fig 1 Illustration of physics-informed and event-based fusion for low-light imaging.

➤ Image Formation Model

The observed low-light frame can be described as:

$$I(x, y, t) = H\{I_{\text{frame}}\}(x, y, t) + \sum_{i=1}^{N_e} \lambda_i E_i(x, y, t) \quad (1)$$

Where I_{obs} is the captured image, I_{scene} the true irradiance, α the exposure factor, and n_s , n_r denote shot noise and readout noise, respectively.

➤ Physics-Aware Loss

The overall training loss includes fidelity and perceptual terms:

ISSN No: -2456-2165

https://doi.org/10.38124/ijisrt/25sep1185

$$L = \lambda_1 \cdot MSE (I_{pred}, I_{gt}) + \lambda_2 \cdot SSIM (I_{pred}, I_{gt})$$
 (2)

where I_{pred} is the enhanced output, and I_{gt} the reference image.

> Event Fusion

Event streams E_i are integrated with frame images:

$$I_{\text{fused}}(x, y, t) = I_{\text{frame}}(x, y, t) + \sum_{i=1}^{Ne} \alpha_i E_i(x, y, t) \quad (3)$$

Where the fusion process leverages the spatial structure from frames while integrating the temporal dynamics provided by events.

Table 1 Performance Comparison Across Enhancement Methods

Method	PSNR	SSIM	LPIPS
BM3D	26.8	0.77	0.32
CNN	30.5	0.86	0.21
Transformer	33.0	0.90	0.15
Diffusion	33.5	0.91	0.15
Proposed Hybrid	35.1	0.93	0.12

IV. DATASETS AND PREPROCESSING

We evaluated methods on LLID (natural low-light), NIH Chest X-ray and MRNet (medical imaging), and custom dark captures. Preprocessing included normalization, resizing, and synthetic noise injection to mimic photon, readout, and thermal disturbances [10].

V. RESULTS AND ANALYSIS

Table 2 Comparison of Denoising Methods

Method	PSNR	SSIM	LPIPS	
Histogram Equalization	22.0	0.64	0.45	
Retinex	24.5	0.70	0.38	
BM3D	26.8	0.77	0.32	
CNN	30.5	0.86	0.21	
U-Net	31.8	0.88	0.18	
Transformer	33.0	0.90	0.15	

Fig 2 Example Low-Light Enhancement Results Across Methods.

https://doi.org/10.38124/ijisrt/25sep1185

VI. DISCUSSION

Classical approaches are lightweight but inadequate for ex- treme darkness. Deep networks preserve textures and structural consistency better, while diffusion achieves superior perceptual quality at high cost. Hybrid strategies combining physics priors and event data achieve both efficiency and high quality.

VII. CONCLUSION

Conventional cameras degrade significantly in dark conditions due to photon scarcity and sensor noise. Classical enhancement improves visibility but lacks detail preservation. Deep learning, especially Transformers and diffusion models, provides higher fidelity. Physics-informed and event-driven hybrid solutions show promise for balancing performance, efficiency, and ro- bustness. Future work will target lightweight architectures, multimodal integration, and uncertainty modeling for real- world deployments.

ACKNOWLEDGMENT

The authors thank SJC Institute of Technology for institutional support, datasets, and research guidance.

REFERENCES

- [1]. K. Zhang et al.," Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising," IEEE TIP, 2017.
- [2]. M. Chen et al.," Low-Light Image Enhancement for Vision Applications: A Review," ACM CSUR, 2022.
- [3]. K. Dabov et al.," Image Denoising by Sparse 3D Transform-Domain Collaborative Filtering," IEEE TIP 2007
- [4]. D. Jobson et al.," A Multiscale Retinex for Bridging the Gap Between Color Images and Human Observation," IEEE TIP, 1997.
- [5]. O. Ronneberger et al.," U-Net: Convolutional Networks for Biomedical Image Segmentation," MICCAI, 2015.
- [6]. A. Dosovitskiy et al.," An Image is Worth 16x16 Words: Transformers for Image Recognition," ICLR, 2021.
- [7]. J. Ho et al.," Denoising Diffusion Probabilistic Models," NeurIPS, 2020.
- [8]. Y. Chen et al.," Physics-informed Deep Learning for Low-Light Imag- ing," IEEE TCI, 2021.
- [9]. H. Kim et al.," Event-based Vision for Low-Light Motion Detection," IEEE RAL, 2020.
- [10]. L. Shorten et al.," A Survey on Image Data Augmentation for Deep Learning," J. Big Data, 2019.