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Abstract: Capturing images in dark conditions is inherently difficult due to limited photon counts, high sensor noise, and
di- minished contrast. This paper explores how conventional methods and modern deep learning approaches address these
challenges. We review classical enhancement algorithms alongside advanced models such as CNNs, Transformers, GANs,
and diffusion-based methods. Furthermore, recent hybrid paradigms combining event-driven sensing, physics-informed
priors, and multimodal integration are analyzed. Comparative experiments on public low-light datasets reveal key trade-
offs between noise reduction, texture preservation, perceptual realism, and efficiency. The study outlines implications for
practical domains including surveillance, healthcare imaging, robotics, and photography.
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I INTRODUCTION

Acquiring clear visual information in dark scenes is a
fun- damental obstacle for imaging systems. When photon
avail- ability decreases, camera sensors encounter amplified
noise and blurred structures, leading to poor perceptual
quality and degraded performance in machine vision tasks
such as medical diagnostics, security monitoring, and
autonomous driving. The primary noise contributors include
photon shot noise, sensor readout fluctuations, and thermal
disturbances.

Traditional methods such as histogram equalization and
Retinex-based algorithms improve brightness but often intro-
duce artifacts or intensify noise. With therise of deep learning,
CNNSs, GANs, U-Nets, and Transformer-based frameworks
have delivered more consistent improvements in both clarity
and realism. Diffusion models further refine image quality
through iterative denoising, albeit with high cost.

More recent research has emphasized hybrid
frameworks that merge data-driven learning with physical
priors or tem- poral sensing. Event-based sensors capture
fine-grained mo- tion under minimal illumination, while
physics-aware neural networks enforce image formation
constraints. Such strategies enable robust low-light imaging
across diverse environments including surveillance,
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biomedical imaging, and astronomical observation.
Il. RELATED WORK

> Classical Enhancement

Noise suppression and visibility enhancement have
long been addressed using filtering approaches like Gaussian
smoothing, median filtering, and BM3D. Retinex-based
methods model illumination to enhance contrast. Although
computationally efficient, these techniques are prone to detail
loss under extremely low light [3], [4].

» Deep Learning Models

CNNs and U-Nets map noisy images to clean outputs,
lever- aging convolutional hierarchies and skip connections
for struc- tural preservation. GANs further enhance
perceptual realism using adversarial objectives [5].

> Transformers in Imaging

Self-attention mechanisms in Transformers enable
long-range feature dependency modeling, producing more
structurally consistent reconstructions, particularly for high-
resolution scenes [6].

> Diffusion Methods
Diffusion models denoise iteratively, generating
realistic tex- tures and sharp structures. Despite their superior
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fidelity, the heavy computational demand restricts real-time
usage [7].

» Hybrid Frameworks

Integrating event-driven vision, physics-informed
priors, and multimodal cues improves robustness. Event-
based sensors capture motion with high temporal resolution,
while multi- modal fusion leverages complementary imaging
modalities [8], [9].
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1. METHODOLOGY

» Classical Baselines

Histogram equalization improves global contrast,
Retinex modifies illumination, and BM3D removes Gaussian
noise while preserving edges. However, all degrade in
extremely dark scenarios.

» Proposed Hybrid Approach

We introduce a framework combining Physics-
Informed Neu- ral Networks (PINNSs) and event-based vision.
PINNs embed imaging physics into training, while event data
capture high- speed motion to complement static frames.

Ratings (1-5)

Comparing Traditional vs Squeezed Light Manipulation

Categories

I Traditional Light Manipulation
B Squeezed Light Manipulation

Fig 1 Enter Caption

Fig 1 llustration of physics-informed and event-based
fusion for low-light imaging.

> Image Formation Model
The observed low-light frame can be described as:

IV,

I(x, v, ) = H{Igame) (x, v, )+ = LE: (x, v, ) (1)

Where lops is the captured image, lsene the true
irradiance, o the exposure factor, and ns, n, denote shot
noise and readout noise, respectively.
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> Physics-Aware Loss
The overall training loss includes fidelity and perceptual

terms:
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where lyreq is the enhanced output, and g the reference » Event Fusion
image. Event streams E; are integrated with frame images:
Ne
Ttused (x, ¥, 1) = Iframe (X, ¥, H+ = o; Ei(x, y, 1) (3)
i—=1

Where the fusion process leverages the spatial structure from frames while integrating the temporal dynamics provided by
events.

Table 1 Performance Comparison Across Enhancement Methods

Method PSNR SSIM LPIPS
BM3D 26.8 0.77 0.32
CNN 30.5 0.86 0.21
Transformer 33.0 0.90 0.15
Diffusion 335 0.91 0.15
Proposed Hybrid 35.1 0.93 0.12
V. DATASETS AND PREPROCESSING

We evaluated methods on LLID (natural low-light), NIH Chest X-ray and MRNet (medical imaging), and custom dark
captures. Preprocessing included normalization, resizing, and synthetic noise injection to mimic photon, readout, and thermal
disturbances [10].

V. RESULTS AND ANALYSIS
Table 2 Comparison of Denoising Methods
Method PSNR SSIM LPIPS
Histogram Equalization 22.0 0.64 0.45
Retinex 24.5 0.70 0.38
BM3D 26.8 0.77 0.32
CNN 30.5 0.86 0.21
U-Net 318 0.88 0.18
Transformer 33.0 0.90 0.15

WITHOUT NOISE REDIUCTION WITH NOISE REDUCTION & VISIBILITY ENHCACEMENT

CONVENTIONAL CAMERA PERFORMANCE IN DARK ENVIRONMENTS
NOISE REDUCTION AND VISIBILITY ENHARANEMENT

Fig 2 Example Low-Light Enhancement Results Across Methods.
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VI. DISCUSSION

Classical approaches are lightweight but inadequate for
ex- treme darkness. Deep networks preserve textures and
structural consistency better, while diffusion achieves
superior perceptual quality at high cost. Hybrid strategies
combining physics priors and event data achieve both
efficiency and high quality.

VII. CONCLUSION

Conventional cameras degrade significantly in dark
conditions due to photon scarcity and sensor noise. Classical
enhancement improves visibility but lacks detail preservation.
Deep learning, especially Transformers and diffusion models,
provides higher fidelity. Physics-informed and event-driven
hybrid solutions show promise for balancing performance,
efficiency, and ro- bustness. Future work will target
lightweight architectures, multimodal integration, and
uncertainty modeling for real- world deployments.
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