Volume 10, Issue 10, October— 2025
ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/250ct244

A Comparative Study of Training
Modifications for Small Object Detection In
Satellite-Based Search and Rescue Missions

Gauri Todur?

Santa Clara High School Santa Clara, USA

Publication Date: 2025/10/17

Abstract: Small object detection in high resolution satellite imagery for search and rescue (SAR) operations remains chal-
lenging, with targets sometimes 3-4 pixels in width, compared to full images of 1000-pixel resolution. Using the SaRNet
dataset containing 2,552 satellite images from a real missing person search, we evaluated three modifications to a
baseline Faster R-CNN Feature Pyramid Network architecture to improve the recall performance metric on small object
detection. We tested (A) Focal Loss integration to address class imbalance since targets represent <0.16% of image area,
(B) multi-scale training and testing at higher image resolutions (10-20% up-scaled) and (C) decreased anchor sizes.
Results were mixed. Focal Loss was the only successful modification, improving small object recall by 4.4 percentage
points (10.4% relative improvement) while also increasing recall on large objects. Surprisingly, both anchor optimization
and multi-scale training degraded performance despite theoretical justification. Optimized anchor sizes decreased recall
across all object sizes and caused the worst AR-d20 per- formance drop (-12.64 points), revealing that geometric anchor
coverage doesn’t guarantee detection improvement in transfer learning contexts. Multi-scale training decreased medium-
sized object recall by 9.5 percentage points, contradicting recent super- resolution research. This work provides the first
systematic evaluation of modifications of the baseline model for the SaRNet dataset towards improved small object
detection. For operational SAR systems where lives depend on detection performance, our results recommend Focal
Loss integration while cautioning against modifications that disrupt pre-trained model configura- tions.
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l. INTRODUCTION This study uses the Search and Rescue dataset

(SaRNet) from [1], which contains 2,552 satellite images of

Search and rescue (SAR) operations in remote terrain
re- quire rapid coverage of vast inaccessible areas where tra-
ditional ground searches are impractical or dangerous to
manually search through. High-resolution satellites present a
solution to this need due to their ability to survey areas
within hours. However, a critical challenge lies in detecting
small targets of interest, like missing persons, that occupy
only a few pixels in satellite images.
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1000x1000 pixels each, collected during a real search
operation for a missing paraglider pilot. The dataset includes
4,206 bounding box annotations marking potential targets
(paragliding wings, parachutes, etc.) identified by
volunteers. The images were split into a training, validation
and test set for deep learning application. Figure 1 presents
the distribution of ground truth bounding box areas from the
test set, demonstrating the predominance of small objects in
SAR scenarios. The smallest bounding box in this test set
was 12 square pixels in area.
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Fig 1 The Size Distribution of the Bounding Boxes in the SaRNet Test Dataset. Test Set Sizes were used for Size Categorization
because the Models’ Recall Scores, which are Calculated by Size Groups, are Based on Performance on the Test Set Images.

For this study, test set objects were categorized into
three groups based on tertiles of the test set bounding box
pixel area distribution as decided: ”small” (< 213 pixels?),
“medium” (213-501 pixels?), and “large” (> 501 pixels?).
This categorization ensures equal representation, with 137
test bounding box objects in each size category. Figure 2
presents cropped satellite images of a small, medium, and
large bounding box object from the SaRNet test set.
Evidently, the smallest target appears nearly impossible to
distinguish, while the medium and large ones are only
marginally more visible. The cluttered and diverse
landscapes surrounding the targets create further challenges
regarding visibility.

The authors of [1] utilize the Faster Region-based
Convolutional Neural Network (Faster R-CNN) with a
ResNet-50 Feature Pyramid Network (FPN) backbone,
implemented in Detectron2 [6], an open-source object
detection model library, to assess the usability of their
created dataset. The Faster- RCNN architecture, introduced
by [2], is a two-stage object detection framework that has
demonstrated robust performance across diverse detection

tasks. The architecture consists of a Region Proposal
Network (RPN) that generates object propos- als, followed
by a classification and regression head that lo- calize and
filter proposals into final detections. The ResNet-50
backbone leverages FPNs [7] to construct multi-scale
feature representations. This hierarchical feature extraction
enables detection of objects at different scales by utilizing
feature maps from multiple network layers. The Faster-
RCNN model was pre-trained on the MS-COCO dataset. In
this research, the model titled “faster_rcnn_R_50_FPN_3x"
in the Detectron2 model zoo with parameters defined by
authors of [1] fine tuned on the labeled SaRNet dataset was
considered the baseline model, since they found it to yield
the highest performance on their dataset. Their custom
performance metric, “AR-d20”, is the Average Recall-
Density to 20, which measures the average recall across
detection density thresholds from O to 20 detections per
square kilometer, providing an operationally relevant
evaluation related to the human resources needed for
verifying candidate detections in real SAR missions. The
baseline model’s AR-d20 was calculated to be 41.82.

Labeled Test Set Examples: Targets by Size
Medium (Area: 464 px?)

-,

Small (Area: 160 px?)

Large (Area: 988 px?)
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Fig 2 Examples of SaRNet Test set Images Cropped Around a Labeled Small, Medium, and Large Sized Bounding Box Target
Object (Based on this Study’s Size Categorization).
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A method more commonly used to assess the
performance of machine learning models is recall, defined
as the number of correctly identified targets divided by the
total number of targets to be found. This research calculated
the recall of the baseline model for test set targets, grouped
by object size. Recall is prioritized by [1] because in SAR
operations, finding all possible targets for visual inspection
is prioritized over being selective about predictions for the
sake of accuracy. The data in Table 1 show a clear decrease
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in recall with decreasing object size, using the baseline
model. Small object recall is only 42.3% which is 35.1
percentage points lower than the recall for large objects.
In a real SAR mission, this means roughly 42.3% of small
objects will be recovered by the baseline model. This
performance gap motivated our investigation into training
modifications specifically targeted at improving small object
detection.

Table 1 Baseline Model Recall Scores
Baseline Model Recall (%) on Test Set Bounding Boxes
Small Medium Large
42.3 715 774

This paper presents an evaluation of three
modifications to the baseline Faster R-CNN architecture:
integration of Focal Loss, increased image-scale during
training and testing, and reduction of anchor sizes to better
match small targets. The contributions of this research are
the following:

e This work provides the first controlled comparison of
targeted modifications specifically designed to increase
recall of small object detection in satellite imagery in the
SaRNet dataset.

e This study demonstrates the first successful integration
of Focal Loss with the SaRNet dataset, achieving a
10.4% relative improvement in small object recall while
increasing recall on larger objects.

e We provide evidence that geometric anchor-ground truth
overlap do not directly translate to detection perfor-
mance, revealing complicated interactions between pre-
trained features and anchor scales in transfer learning
scenarios.

e Our results reveal unexpected performance degrada-
tions when scaling up images for training and testing,
revealing that multi-scale training benefits might not
generalize across all remote sensing applications.

By evaluating the three model modifications through
both recall and the SAR-specific AR-d20 measure, we show
that detection improvements don’t always trans- late to
operational effectiveness in time-critical search scenarios.

1. METHODS

The three controlled modifications made to the
baseline model are described in the following subsections.
The Results section of this paper describes the training and
test results of each of these modifications.

> Baseline + Focal Loss

Small object detection in satellite imagery suffers from
extreme class imbalance, where the vast majority of image
regions represent background landscape pixels, and only a
small fraction contain target objects. This imbalance is
partic- ularly severe for the objects in our chosen dataset
occupying 3-40 pixel-wide regions in 1000x1000 images,
representing less than 0.16% of the total image area.
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[4] introduced Focal Loss specifically to address this
chal- lenge in dense object detection scenarios. Traditional
cross- entropy loss used by Faster R-CNN assigns equal
importance to all training examples, allowing the
overwhelming number of negative background samples to
dominate the loss and gradient computations. This prevents
the model from focusing on the rare but critical small object
instances. Focal Loss addresses class imbalance by down-
weighting the contribution of easily classified examples
while maintaining full loss for difficult ex- amples,
preventing the overwhelming number of background pixels
from dominating the training signal. We replaced the
baseline model’s cross-entropy classification loss with Focal
Loss, implementing the « -balanced variant proposed by [4],
adopting their recommended hyperparameters: y = 2.0 and
o = 0.25. The focusing parameter y = 2.0 reduces the loss
contribution from well-classified background regions by up
to two orders of magnitude, while o = 0.25 compensates for
the severe foreground-background class imbalance inherent
in satellite imagery.

» Baseline + Multi-Scale Training

Multi-scale training is a widely adopted technique in
object detection that involves training models on images
resized to different scales within each epoch. Specifically,
images are randomly resized to one of several predefined
scales, forcing the model to learn representations that
generalize across scale variations. This approach exposes
the network to objects at different resolutions, improving
scale invariance and detection robustness across object sizes.

The baseline model employs multi-scale training with
image scales ranging from 640 to 800 pixels, which
downsize the SaRNet 1000x1000 pixel input images. This
downsizing is particularly detrimental for small object
detection, as it reduces already tiny 3-40 pixel objects,
making them nearly impossible to detect reliably.

Research in satellite imagery object detection has
demon- strated that small objects benefit significantly from
training and testing at higher resolutions [5]. Inspired by
these efforts, we modified the input scaling strategy to focus
on maintaining or increasing object resolution. We ensured
that our 1000%1000 pixel images are resized to maintain
the original resolution or scaled up to 1100 or 1200 pixels
during training. During inference, we consistently test at
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1200 pixels, providing our small objects with at most 44%
more pixels compared to the original resolution. This
approach significantly improves the detectability of small
objects like the search targets.

» Baseline + Small Anchor Sizes

In Faster R-CNN, anchor boxes are predefined
rectangular regions of fixed sizes and aspect ratios that are
systematically placed across the FPN feature maps. The
RPN uses these anchors as reference templates, predicting
for each anchor whether it contains an object and generates
refined bound- ing box coordinates through regression
offsets. The default Detectron2 anchor configuration uses
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anchor sizes (widths) of [32, 64, 128, 256, 512] pixels,
designed for images containing larger objects. Anchor boxes
must overlap sufficiently with ground truth objects to
provide positive training examples [2]. When anchor boxes
are too large relative to target objects, the Intersection over
Union (loU) scores become inadequately low, preventing the
network from learning to detect these objects. For our
dataset containing objects ranging in width of 3 to 40
pixels, the default 32-pixel minimum anchor size creates a
fundamental mismatch. Small objects may fail to achieve
the required loU threshold with default anchors, rendering
them invisible during training.

Optimized Anchor Sizes Based on Training Data
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Fig 3 Distribution of Training Set Object Sizes (Square Root of Bounding Box area) with K-Means Optimized Anchor Sizes
Shown as Vertical Lines.

Recent advances in small object detection
emphasize the importance of data-driven anchor
optimization, rather than manual selection. Zhao and
Song (2024) found that using clustering analysis to
identify optimal anchor sizes increased Faster R-CNN
precision on aerial maritime search and rescue footage [3].
Following their practices for anchor optimization, we
employed K-means clustering to determine optimal anchor
sizes directly from our ground truth bounding box
distribution. K-means clustering for anchor optimization
operates by treating each ground truth bounding box as a
data point rep- resented by its dimensions (width and
height). The algorithm groups these bounding boxes into K
clusters (in our case, K=5) by minimizing the within-cluster
sum of squared distances. Each cluster’s centroid
represents an optimal anchor size that best represents the
objects in that cluster. This unsupervised approach
automatically finds the natural size groupings present in the
dataset, removing the need for manual anchor size
selection and ensuring that the chosen anchors closely
match the actual object size distribution.

The algorithm was configured to find five anchor sizes
that maximize coverage of our small object dataset. As
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shown in Figure 3., the K-means algorithm successfully
identified five anchor positions that correspond to peaks and
density concen- trations in the object size distribution of the
training samples. The optimal anchor sizes were: [8, 14, 20,
26, 33] pixel widths. This configuration achieved 66.9%
total coverage of all ground truth objects, with only 16
objects (0.5%) remaining uncovered. The per-anchor
coverage analysis revealed varying effectiveness across the
anchor spectrum: 41.4% coverage for 8-pixel anchors,
78.4% for 14-pixel anchors, 86.0% for 20- pixel anchors,
72.7% for 26-pixel anchors, and 55.8% for 33-pixel
anchors. Overall, this configuration provides optimal
coverage for our 3-20 pixel object range, with the
smallest 8-pixel anchors enabling detection of the tiniest
objects while the 33-pixel anchors accommodate the larger
end of the size spectrum.

» Training Procedure

All three model modification experiments maintained
iden- tical controlled variables with the baseline model to
ensure fair comparison and isolate the impact of each
modification. The baseline architecture consisted of a Faster
R-CNN with ResNet-50-FPN backbone, pre-trained on MS-
COCO and fine- tuned on the SaRNet training and validation
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set images to find the labeled targets. Training was
conducted using Stochastic Gradient Descent (SGD) with a
base learning rate of 0.0001, batch size of 4 images per
iteration, and 2 data loading workers. All models were
trained for exactly 5,000 iterations without learning rate
decay. The RPN used loU thresholds of [0.2, 0.4] for
proposal generation, while the Region of Interest (ROI)
heads maintained a batch size of 128 regions per image. The
standard loss configuration employed cross- entropy loss for
classification and smooth L1 loss for bounding box
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regression, with identical loss weighting schemes (with the
exception of the modified model using Focal Loss). All
models used the same random seed initialization and were
trained on identical hardware (single Tesla T4 GPU via
Google Colab) to ensure computational consistency. The
SaRNet dataset parti- tion remained constant with
70%/20%/10% splits for training, validation, and testing
respectively. The SaRNet-specific AR- d20 metric was
calculated for each model modification using the test set.

RESULTS

Table 2 Modified Models’ Recall Score Comparison

Recall (%) on Test Set Bounding Boxes
Modified Model Small AB Medium AB Large AB
Baseline + Focal Loss 46.7 +4.4 69.3 -2.2 78.8 +1.4
Baseline + Multi-scale 394 -2.9 62.0 -9.5 77.4 +0
Baseline + Small Anchors 40.9 -1.4 66.4 -5.1 75.9 -1.5

Figure 4 presents the training set and validation set loss
over the iterations the models were trained for. While the
models could have trained for less iterations without
significantly compromising performance as seen by their
immediate drop in loss within the first few hundred
iterations and steady plateau until the end, this research

aimed to keep parameters like maximum iterations
controlled to the baseline model to isolate the effects of the
three primary model modifications. Table 2 presents the
recall performance of each model modification across the
three object size categories on the test set. Table 3
presents the AR-d20 metric results for each model. In both

Table 3 Modified Models” AR-d20 Score Comparison

Modified Model AR-d20 AB
Baseline + Focal Loss 37.23 -4,59
Baseline + Multi-scale 36.06 -5.76

Baseline + Small Anchors 29.18 -12.64

Training and Validation Loss
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Fig 4 Training and Validation Loss Curves for Three Model Modifications Over 5,000 Iterations. All Models Exhibit Rapid
Convergence within the First 500 Iterations Followed by Stable Plateaus. Notable Differences in Final Loss Values: Small
Anchors (~0.1), Focal Loss (~0.3), and Multi-Scale (~0.5).
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o Note: y-Axis Scales Differ Between Subplots to Show
Convergence Behavior.

Tables 2 and 3, AB refers to the change from the
baseline model’s performance for that particular metric.

The Baseline + Focal Loss integration emerged as
the most effective single modification, demonstrating the
only improvement in small object detection performance.
Small object recall increased by 4.4 percentage points from
the baseline model to 46.7% (relative increase of 10.4%).
While medium-sized object performance decreased slightly
(-2.2 percentage points), large object detection improved by
1.4 percentage points to 78.8%, achieving the highest
performance in this category across all modifications. This
pattern suggests that Focal Loss successfully addressed the
class imbalance problem inherent in small object detection
without severely compromising performance on larger,
easier-to-find objects. In regards to its loss convergence, the
close alignment between training and validation curves
throughout the 5,000 iterations indicates learning without
overfitting. Rather than driving loss toward zero through
easy background predictions, the Focal Loss mechanism
maintained meaningful loss contributions from challenging
examples, explaining the moderate final loss values coupled
with improved detection performance. The AR- d20 metric
decreased modestly from 4182 to 37.23 (-4.59),
representing the smallest decrease among all modifications
and suggesting that Focal Loss provides a decent balance
between standard detection metrics and operational search
requirements.

The Baseline + Multi-scale model performed below the
baseline model metrics across all object categories. Small
objects suffered a 2.9 percentage point decrease to
39.4% recall, while medium objects experienced the most
severe impact with a 9.5 percentage point reduction to
62.0% recall. Large object performance remained
unchanged at 77.4%. These results indicate that the chosen
scale range (1000, 1100, 1200 pixels for training and 1200
pixels for testing) may have introduced domain shift effects
that outweighed the predicted benefits of increased pixel
resolution for small objects. The convergence analysis
supports this interpretation, showing that Multi-scale training
achieved the highest final loss (~ 0.5) among all
modifications. The elevated loss plateau suggests the
model struggled to reconcile conflicting gradients from
objects appearing at different sizes across training scales.
Slight divergence between training and validation curves in
later iterations indicates potential overfitting to the scale-
augmented training distribution, which failed to generalize
effectively to the test conditions. The AR-d20 performance
decreased substantially from 41.82 to 36.06 (-5.76).

The Baseline + Small (decreased) Anchor size model
showed modest negative impacts across all categories. Small
object recall decreased by 1.4 percentage points to 40.9%,
medium objects declined by 5.1 percentage points to 66.4%,
and large objects dropped by 1.5 percentage points to
75.9%. The consistent degradation across all object sizes
suggests that the K-means derived anchor sizes may
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have disrupted the feature map-anchor alignment optimized
in the pre-trained model. This demonstrates the complexity
of anchor opti- mization in transfer learning scenarios.
Paradoxically, this modification achieved the lowest final
training loss (~0.1) while producing the worst overall
performance. This can be attributed to the abundance of
“easy” negative samples created by placing numerous small
anchors across large image regions with sparse objects. The
tight convergence between training and validation losses
indicates the model Ilearned stable but suboptimal
predictions, focusing on confidently predicting background
rather than improving object detection capability. The AR-
d20 metric saw the most severe degradation among all
modifications (-12.64 to 29.18), suggesting that optimized
anchor coverage alone is not enough to maintain operational
detection performance in transfer learning contexts.

V. CONCLUSION

This systematic evaluation of small object detection
strate- gies for satellite SAR operations reveals critical
insights about the gap between theoretical optimization and
practical perfor- mance. While Focal Loss was the only
successful modification improving small object recall by
10.4% relative to baseline, both anchor optimization and
multi-scale training unexpect- edly worsened performance.
These counterintuitive results highlight fundamental
challenges in adapting general computer vision techniques to
specialized domains: geometric anchor coverage does not
guarantee detection improvement when pre- trained features
expect different anchor-feature relationships, and higher
resolution training can introduce domain shift that negates
the benefits of increased pixel detail.

For practical deployment in search and rescue
operations where detection performance directly impacts
human lives, our findings provide clear guidance:
implement Focal Loss to handle extreme class imbalance
while maintaining the default anchor configuration and
training scales.

Future research should explore adaptive approaches
that can reconcile pre-trained model expectations with
domain- specific requirements, potentially through learnable
anchor mechanisms or domain adaptation techniques that
preserve  the benefits of transfer learning while
accommodating the challenges of small object detection in
satellite imagery. Future work could also investigate
combined approaches, particularly Focal Loss integration
with other architectural changes.

This comprehensive evaluation provides the SAR com-
munity  with  evidence-based recommendations for
optimizing satellite imagery analysis systems, potentially
reducing search times and improving outcomes in life-
critical operations.

ACKNOWLEDGMENTS

This research was inspired by the author’s participation
in the MIT Beaver Works Summer Institute (BWSI)

Www.ijisrt.com 916


https://doi.org/10.38124/ijisrt/25oct244
http://www.ijisrt.com/

Volume 10, Issue 10, October— 2025 International Journal of Innovative Science and Research Technology
ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/250ct244

studying Remote Sensing for Disaster Response. The author
would like to thank the BWSI instructors and guest
speakers for the insights into the field of remote sensing for
search and rescue applications, technical computer science
lessons, and encouragement. This research was designed and
conducted by the author. The code used in this research can
be found here:
https://github.com/GT1235/SearchAndRescueModels

REFERENCES

[1].  Thoreau, Michael & Wilson, Frazer. (2021). SaRNet:
A Dataset for Deep Learning Assisted Search and
Rescue  with  Satellite  Imagery.  204-208.
10.1109/1SPA52656.2021.9552103.

[2]. S. Ren, K. He, R. Girshick and J. Sun, Faster
R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks” in IEEE Transactions on
Pattern Analysis & Machine Intelligence, vol. 39, no.
06, pp. 1137-1149, June 2017,  doi:
10.1109/TPAMI.2016.2577031.

[3]. Zhao, B., Song, R. Enhancing two-stage object
detection models via data-driven anchor box
optimization in UAV-based maritime SAR. Sci Rep
14, 4765 (2024). https://doi.org/10.1038/s41598-024-
55570-z.

[4]. T.-Y. Lin, P. Goyal, R. Girshick, K. He and P.
Dolla’r, ”Focal Loss for Dense Object Detection,” in
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 42, no. 2, pp. 318-327, 1 Feb. 2020,
doi: 10.1109/TPAMI.2018.2858826.

[5]. J. Shermeyer and A. Van Etten, "The Effects of
Super-Resolution on Object Detection Performance
in Satellite Imagery,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), Long Beach,
CA, USA, 2019, pp. 1432-1441, doi:
10.1109/CVPRW.2019.00184.

[6]. Yuxin Wu and Alexander Kirillov and
Francisco Massa and Wan-Yen Lo and Ro0ss

Girshick, Detectron2,
https://github.com/facebookresearch/detectron2,
2019.

[7].  Lin, Tsung-Yi et al. “Feature Pyramid Networks for
Object Detection.” 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR)
(2016): 936-944.

JISRT250CT244 Www.ijisrt.com 917


https://doi.org/10.38124/ijisrt/25oct244
http://www.ijisrt.com/

