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Abstract: Small object detection in high resolution satellite imagery for search and rescue (SAR) operations remains chal- 

lenging, with targets sometimes 3-4 pixels in width, compared to full images of 1000-pixel resolution. Using the SaRNet 

dataset containing 2,552 satellite images from a real missing person search, we evaluated three modifications to a 

baseline Faster R-CNN Feature Pyramid Network architecture to improve the recall performance metric on small object 

detection. We tested (A) Focal Loss integration to address class imbalance since targets represent <0.16% of image area, 

(B) multi-scale training and testing at higher image resolutions (10-20% up-scaled) and (C) decreased anchor sizes. 

Results were mixed. Focal Loss was the only successful modification, improving small object recall by 4.4 percentage 

points (10.4% relative improvement) while also increasing recall on large objects. Surprisingly, both anchor optimization 

and multi-scale training degraded performance despite theoretical justification. Optimized anchor sizes decreased recall 

across all object sizes and caused the worst AR-d20 per- formance drop (-12.64 points), revealing that geometric anchor 

coverage doesn’t guarantee detection improvement in transfer learning contexts. Multi-scale training decreased medium-

sized object recall by 9.5 percentage points, contradicting recent super- resolution research. This work provides the first 

systematic evaluation of modifications of the baseline model for the SaRNet dataset towards improved small object 

detection. For operational SAR systems where lives depend on detection performance, our results recommend Focal 

Loss integration while cautioning against modifications that disrupt pre-trained model configura- tions. 
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I. INTRODUCTION 

 

Search and rescue (SAR) operations in remote terrain 

re- quire rapid coverage of vast inaccessible areas where tra- 

ditional ground searches are impractical or dangerous to 

manually search through. High-resolution satellites present a 

solution to this need due to their ability to survey areas 

within hours. However, a critical challenge lies in detecting 

small targets of interest, like missing persons, that occupy 

only a few pixels in satellite images. 

 

 

This study uses the Search and Rescue dataset 

(SaRNet) from [1], which contains 2,552 satellite images of 

1000×1000 pixels each, collected during a real search 

operation for a missing paraglider pilot. The dataset includes 

4,206 bounding box annotations marking potential targets 

(paragliding wings, parachutes, etc.) identified by 

volunteers. The images were split into a training, validation 

and test set for deep learning application. Figure 1 presents 

the distribution of ground truth bounding box areas from the 

test set, demonstrating the predominance of small objects in 

SAR scenarios. The smallest bounding box in this test set 

was 12 square pixels in area. 
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Fig 1 The Size Distribution of the Bounding Boxes in the SaRNet Test Dataset. Test Set Sizes were used for Size Categorization 

because the Models’ Recall Scores, which are Calculated by Size Groups, are Based on Performance on the Test Set Images. 

 

For this study, test set objects were categorized into 

three groups based on tertiles of the test set bounding box 

pixel area distribution as decided: ”small” (< 213 pixels²), 

”medium” (213-501 pixels²), and ”large” (> 501 pixels²). 

This categorization ensures equal representation, with 137 

test bounding box objects in each size category. Figure 2 

presents cropped satellite images of a small, medium, and 

large bounding box object from the SaRNet test set. 

Evidently, the smallest target appears nearly impossible to 

distinguish, while the medium and large ones are only 

marginally more visible. The cluttered and diverse 

landscapes surrounding the targets create further challenges 

regarding visibility. 

 

The authors of [1] utilize the Faster Region-based 

Convolutional Neural Network (Faster R-CNN) with a 

ResNet-50 Feature Pyramid Network (FPN) backbone, 

implemented in Detectron2 [6], an open-source object 

detection model library, to assess the usability of their 

created dataset. The Faster- RCNN architecture, introduced 

by [2], is a two-stage object detection framework that has 

demonstrated robust performance across diverse detection 

tasks. The architecture consists of a Region Proposal 

Network (RPN) that generates object propos- als, followed 

by a classification and regression head that lo- calize and 

filter proposals into final detections. The ResNet-50 

backbone leverages FPNs [7] to construct multi-scale 

feature representations. This hierarchical feature extraction 

enables detection of objects at different scales by utilizing 

feature maps from multiple network layers. The Faster-

RCNN model was pre-trained on the MS-COCO dataset. In 

this research, the model titled ”faster rcnn R 50 FPN 3x” 

in the Detectron2 model zoo with parameters defined by 

authors of [1] fine tuned on the labeled SaRNet dataset was 

considered the baseline model, since they found it to yield 

the highest performance on their dataset. Their custom 

performance metric, ”AR-d20”, is the Average Recall-

Density to 20, which measures the average recall across 

detection density thresholds from 0 to 20 detections per 

square kilometer, providing an operationally relevant 

evaluation related to the human resources needed for 

verifying candidate detections in real SAR missions. The 

baseline model’s AR-d20 was calculated to be 41.82. 

 

 
Fig 2 Examples of SaRNet Test set Images Cropped Around a Labeled Small, Medium, and Large Sized Bounding Box Target 

Object (Based on this Study’s Size Categorization). 
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A method more commonly used to assess the 

performance of machine learning models is recall, defined 

as the number of correctly identified targets divided by the 

total number of targets to be found. This research calculated 

the recall of the baseline model for test set targets, grouped 

by object size. Recall is prioritized by [1] because in SAR 

operations, finding all possible targets for visual inspection 

is prioritized over being selective about predictions for the 

sake of accuracy. The data in Table 1 show a clear decrease 

in recall with decreasing object size, using the baseline 

model. Small object recall is only 42.3% which is 35.1 

percentage points lower than the recall for large objects. 

In a real SAR mission, this means roughly 42.3% of small 

objects will be recovered by the baseline model. This 

performance gap motivated our investigation into training 

modifications specifically targeted at improving small object 

detection. 

 

Table 1 Baseline Model Recall Scores 

Baseline Model Recall (%) on Test Set Bounding Boxes 

Small Medium Large 

42.3 71.5 77.4 

 

This paper presents an evaluation of three 

modifications to the baseline Faster R-CNN architecture: 

integration of Focal Loss, increased image-scale during 

training and testing, and reduction of anchor sizes to better 

match small targets. The contributions of this research are 

the following: 

 

 This work provides the first controlled comparison of 

targeted modifications specifically designed to increase 

recall of small object detection in satellite imagery in the 

SaRNet dataset. 

 This study demonstrates the first successful integration 

of Focal Loss with the SaRNet dataset, achieving a 

10.4% relative improvement in small object recall while 

increasing recall on larger objects. 

 We provide evidence that geometric anchor-ground truth 

overlap do not directly translate to detection perfor- 

mance, revealing complicated interactions between pre- 

trained features and anchor scales in transfer learning 

scenarios. 

 Our results reveal unexpected performance degrada- 

tions when scaling up images for training and testing, 

revealing that multi-scale training benefits might not 

generalize across all remote sensing applications. 

 

By evaluating the three model modifications through 

both recall and the SAR-specific AR-d20 measure, we show 

that detection improvements don’t always trans- late to 

operational effectiveness in time-critical search scenarios. 

 

II. METHODS 

 

The three controlled modifications made to the 

baseline model are described in the following subsections. 

The Results section of this paper describes the training and 

test results of each of these modifications. 

 

 Baseline + Focal Loss 

Small object detection in satellite imagery suffers from 

extreme class imbalance, where the vast majority of image 

regions represent background landscape pixels, and only a 

small fraction contain target objects. This imbalance is 

partic- ularly severe for the objects in our chosen dataset 

occupying 3-40 pixel-wide regions in 1000×1000 images, 

representing less than 0.16% of the total image area. 

[4] introduced Focal Loss specifically to address this 

chal- lenge in dense object detection scenarios. Traditional 

cross- entropy loss used by Faster R-CNN assigns equal 

importance to all training examples, allowing the 

overwhelming number of negative background samples to 

dominate the loss and gradient computations. This prevents 

the model from focusing on the rare but critical small object 

instances. Focal Loss addresses class imbalance by down-

weighting the contribution of easily classified examples 

while maintaining full loss for difficult ex- amples, 

preventing the overwhelming number of background pixels 

from dominating the training signal. We replaced the 

baseline model’s cross-entropy classification loss with Focal 

Loss, implementing the α -balanced variant proposed by [4], 

adopting their recommended hyperparameters: γ = 2.0 and 

α = 0.25. The focusing parameter γ = 2.0 reduces the loss 

contribution from well-classified background regions by up 

to two orders of magnitude, while α = 0.25 compensates for 

the severe foreground-background class imbalance inherent 

in satellite imagery. 

 

 Baseline + Multi-Scale Training 

Multi-scale training is a widely adopted technique in 

object detection that involves training models on images 

resized to different scales within each epoch. Specifically, 

images are randomly resized to one of several predefined 

scales, forcing the model to learn representations that 

generalize across scale variations. This approach exposes 

the network to objects at different resolutions, improving 

scale invariance and detection robustness across object sizes. 

 

The baseline model employs multi-scale training with 

image scales ranging from 640 to 800 pixels, which 

downsize the SaRNet 1000×1000 pixel input images. This 

downsizing is particularly detrimental for small object 

detection, as it reduces already tiny 3-40 pixel objects, 

making them nearly impossible to detect reliably. 

 

Research in satellite imagery object detection has 

demon- strated that small objects benefit significantly from 

training and testing at higher resolutions [5]. Inspired by 

these efforts, we modified the input scaling strategy to focus 

on maintaining or increasing object resolution. We ensured 

that our 1000×1000 pixel images are resized to maintain 

the original resolution or scaled up to 1100 or 1200 pixels 

during training. During inference, we consistently test at 
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1200 pixels, providing our small objects with at most 44% 

more pixels compared to the original resolution. This 

approach significantly improves the detectability of small 

objects like the search targets. 

 

 Baseline + Small Anchor Sizes 

In Faster R-CNN, anchor boxes are predefined 

rectangular regions of fixed sizes and aspect ratios that are 

systematically placed across the FPN feature maps. The 

RPN uses these anchors as reference templates, predicting 

for each anchor whether it contains an object and generates 

refined bound- ing box coordinates through regression 

offsets. The default Detectron2 anchor configuration uses 

anchor sizes (widths) of [32, 64, 128, 256, 512] pixels, 

designed for images containing larger objects. Anchor boxes 

must overlap sufficiently with ground truth objects to 

provide positive training examples [2]. When anchor boxes 

are too large relative to target objects, the Intersection over 

Union (IoU) scores become inadequately low, preventing the 

network from learning to detect these objects. For our 

dataset containing objects ranging in width of 3 to 40 

pixels, the default 32-pixel minimum anchor size creates a 

fundamental mismatch. Small objects may fail to achieve 

the required IoU threshold with default anchors, rendering 

them invisible during training. 

 

 
Fig 3 Distribution of Training Set Object Sizes (Square Root of Bounding Box area) with K-Means Optimized Anchor Sizes 

Shown as Vertical Lines. 

 

Recent advances in small object detection 

emphasize the importance of data-driven anchor 

optimization, rather than manual selection. Zhao and 

Song (2024) found that using clustering analysis to 

identify optimal anchor sizes increased Faster R-CNN 

precision on aerial maritime search and rescue footage [3]. 

Following their practices for anchor optimization, we 

employed K-means clustering to determine optimal anchor 

sizes directly from our ground truth bounding box 

distribution. K-means clustering for anchor optimization 

operates by treating each ground truth bounding box as a 

data point rep- resented by its dimensions (width and 

height). The algorithm groups these bounding boxes into K 

clusters (in our case, K=5) by minimizing the within-cluster 

sum of squared distances. Each cluster’s centroid 

represents an optimal anchor size that best represents the 

objects in that cluster. This unsupervised approach 

automatically finds the natural size groupings present in the 

dataset, removing the need for manual anchor size 

selection and ensuring that the chosen anchors closely 

match the actual object size distribution. 

 

The algorithm was configured to find five anchor sizes 

that maximize coverage of our small object dataset. As 

shown in Figure 3., the K-means algorithm successfully 

identified five anchor positions that correspond to peaks and 

density concen- trations in the object size distribution of the 

training samples. The optimal anchor sizes were: [8, 14, 20, 

26, 33] pixel widths. This configuration achieved 66.9% 

total coverage of all ground truth objects, with only 16 

objects (0.5%) remaining uncovered. The per-anchor 

coverage analysis revealed varying effectiveness across the 

anchor spectrum: 41.4% coverage for 8-pixel anchors, 

78.4% for 14-pixel anchors, 86.0% for 20- pixel anchors, 

72.7% for 26-pixel anchors, and 55.8% for 33-pixel 

anchors. Overall, this configuration provides optimal 

coverage for our 3-20 pixel object range, with the 

smallest 8-pixel anchors enabling detection of the tiniest 

objects while the 33-pixel anchors accommodate the larger 

end of the size spectrum. 

 

 Training Procedure 

All three model modification experiments maintained 

iden- tical controlled variables with the baseline model to 

ensure fair comparison and isolate the impact of each 

modification. The baseline architecture consisted of a Faster 

R-CNN with ResNet-50-FPN backbone, pre-trained on MS-

COCO and fine- tuned on the SaRNet training and validation 

https://doi.org/10.38124/ijisrt/25oct244
http://www.ijisrt.com/


Volume 10, Issue 10, October– 2025                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                               https://doi.org/10.38124/ijisrt/25oct244 

 

 

IJISRT25OCT244                                                               www.ijisrt.com                                                                               915 

set images to find the labeled targets. Training was 

conducted using Stochastic Gradient Descent (SGD) with a 

base learning rate of 0.0001, batch size of 4 images per 

iteration, and 2 data loading workers. All models were 

trained for exactly 5,000 iterations without learning rate 

decay. The RPN used IoU thresholds of [0.2, 0.4] for 

proposal generation, while the Region of Interest (ROI) 

heads maintained a batch size of 128 regions per image. The 

standard loss configuration employed cross- entropy loss for 

classification and smooth L1 loss for bounding box 

regression, with identical loss weighting schemes (with the 

exception of the modified model using Focal Loss). All 

models used the same random seed initialization and were 

trained on identical hardware (single Tesla T4 GPU via 

Google Colab) to ensure computational consistency. The 

SaRNet dataset parti- tion remained constant with 

70%/20%/10% splits for training, validation, and testing 

respectively. The SaRNet-specific AR- d20 metric was 

calculated for each model modification using the test set. 

 

III. RESULTS 

 

Table 2 Modified Models’ Recall Score Comparison 

 Recall (%) on Test Set Bounding Boxes 

Modified Model Small ∆B Medium ∆B Large ∆B 

Baseline + Focal Loss 46.7 +4.4 69.3 -2.2 78.8 +1.4 

Baseline + Multi-scale 39.4 -2.9 62.0 -9.5 77.4 +0 

Baseline + Small Anchors 40.9 -1.4 66.4 -5.1 75.9 -1.5 

 

Figure 4 presents the training set and validation set loss 

over the iterations the models were trained for. While the 

models could have trained for less iterations without 

significantly compromising performance as seen by their 

immediate drop in loss within the first few hundred 

iterations and steady plateau until the end, this research 

aimed to keep parameters like maximum iterations 

controlled to the baseline model to isolate the effects of the 

three primary model modifications. Table 2 presents the 

recall performance of each model modification across the 

three object size categories on the test set. Table 3 

presents the AR-d20 metric results for each model. In both 

 

Table 3 Modified Models’ AR-d20 Score Comparison 

Modified Model AR-d20 ∆B 

Baseline + Focal Loss 37.23 -4.59 

Baseline + Multi-scale 36.06 -5.76 

Baseline + Small Anchors 29.18 -12.64 

 

 
Fig 4 Training and Validation Loss Curves for Three Model Modifications Over 5,000 Iterations. All Models Exhibit Rapid 

Convergence within the First 500 Iterations Followed by Stable Plateaus. Notable Differences in Final Loss Values: Small 

Anchors (∼0.1), Focal Loss (∼0.3), and Multi-Scale (∼0.5). 
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 Note: y-Axis Scales Differ Between Subplots to Show 

Convergence Behavior. 

 

Tables 2 and 3, ∆B refers to the change from the 

baseline model’s performance for that particular metric. 

 

The Baseline + Focal Loss integration emerged as 

the most effective single modification, demonstrating the 

only improvement in small object detection performance. 

Small object recall increased by 4.4 percentage points from 

the baseline model to 46.7% (relative increase of 10.4%). 

While medium-sized object performance decreased slightly 

(-2.2 percentage points), large object detection improved by 

1.4 percentage points to 78.8%, achieving the highest 

performance in this category across all modifications. This 

pattern suggests that Focal Loss successfully addressed the 

class imbalance problem inherent in small object detection 

without severely compromising performance on larger, 

easier-to-find objects. In regards to its loss convergence, the 

close alignment between training and validation curves 

throughout the 5,000 iterations indicates learning without 

overfitting. Rather than driving loss toward zero through 

easy background predictions, the Focal Loss mechanism 

maintained meaningful loss contributions from challenging 

examples, explaining the moderate final loss values coupled 

with improved detection performance. The AR- d20 metric 

decreased modestly from 41.82 to 37.23 (-4.59), 

representing the smallest decrease among all modifications 

and suggesting that Focal Loss provides a decent balance 

between standard detection metrics and operational search 

requirements. 

 

The Baseline + Multi-scale model performed below the 

baseline model metrics across all object categories. Small 

objects suffered a 2.9 percentage point decrease to 

39.4% recall, while medium objects experienced the most 

severe impact with a 9.5 percentage point reduction to 

62.0% recall. Large object performance remained 

unchanged at 77.4%. These results indicate that the chosen 

scale range (1000, 1100, 1200 pixels for training and 1200 

pixels for testing) may have introduced domain shift effects 

that outweighed the predicted benefits of increased pixel 

resolution for small objects. The convergence analysis 

supports this interpretation, showing that Multi-scale training 

achieved the highest final loss (∼ 0.5) among all 

modifications. The elevated loss plateau suggests the 

model struggled to reconcile conflicting gradients from 

objects appearing at different sizes across training scales. 

Slight divergence between training and validation curves in 

later iterations indicates potential overfitting to the scale- 

augmented training distribution, which failed to generalize 

effectively to the test conditions. The AR-d20 performance 

decreased substantially from 41.82 to 36.06 (-5.76). 

 

The Baseline + Small (decreased) Anchor size model 

showed modest negative impacts across all categories. Small 

object recall decreased by 1.4 percentage points to 40.9%, 

medium objects declined by 5.1 percentage points to 66.4%, 

and large objects dropped by 1.5 percentage points to 

75.9%. The consistent degradation across all object sizes 

suggests that the K-means derived anchor sizes may 

have disrupted the feature map-anchor alignment optimized 

in the pre-trained model. This demonstrates the complexity 

of anchor opti- mization in transfer learning scenarios. 

Paradoxically, this modification achieved the lowest final 

training loss (∼0.1) while producing the worst overall 

performance. This can be attributed to the abundance of 

”easy” negative samples created by placing numerous small 

anchors across large image regions with sparse objects. The 

tight convergence between training and validation losses 

indicates the model learned stable but suboptimal 

predictions, focusing on confidently predicting background 

rather than improving object detection capability. The AR-

d20 metric saw the most severe degradation among all 

modifications (-12.64 to 29.18), suggesting that optimized 

anchor coverage alone is not enough to maintain operational 

detection performance in transfer learning contexts. 

 

IV. CONCLUSION 

 

This systematic evaluation of small object detection 

strate- gies for satellite SAR operations reveals critical 

insights about the gap between theoretical optimization and 

practical perfor- mance. While Focal Loss was the only 

successful modification improving small object recall by 

10.4% relative to baseline, both anchor optimization and 

multi-scale training unexpect- edly worsened performance. 

These counterintuitive results highlight fundamental 

challenges in adapting general computer vision techniques to 

specialized domains: geometric anchor coverage does not 

guarantee detection improvement when pre- trained features 

expect different anchor-feature relationships, and higher 

resolution training can introduce domain shift that negates 

the benefits of increased pixel detail. 

 

For practical deployment in search and rescue 

operations where detection performance directly impacts 

human lives, our findings provide clear guidance: 

implement Focal Loss to handle extreme class imbalance 

while maintaining the default anchor configuration and 

training scales. 

 

Future research should explore adaptive approaches 

that can reconcile pre-trained model expectations with 

domain- specific requirements, potentially through learnable 

anchor mechanisms or domain adaptation techniques that 

preserve the benefits of transfer learning while 

accommodating the challenges of small object detection in 

satellite imagery. Future work could also investigate 

combined approaches, particularly Focal Loss integration 

with other architectural changes. 

 

This comprehensive evaluation provides the SAR com- 

munity with evidence-based recommendations for 

optimizing satellite imagery analysis systems, potentially 

reducing search times and improving outcomes in life-

critical operations. 
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