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Abstract: The increasing occurrence of multidrug-resistant (MDR) bacteria, commonly known as superbugs. It is a leading 

global health threat. The antibiotic discovery pipeline is effectively stagnant due to excessive costs, a long lead time for drug 

development, and decreased profits for pharmaceutical companies. Artificial intelligence (AI) and machine learning (ML) 

have proven to be thriving zeitgeists for advancing antimicrobial research through the rapid evaluations of large biological 

and chemical datasets, predicting antimicrobial activity, identifying novel drug targets, and optimizing pharmacokinetics. 

This review outlines the various applications of AI-based endeavours in solving the issue of MDR pathogens. These include 

target identification, virtual screenings, de novo drug design, drug repurposing, optimizing pharmacokinetics, and 

integrating with experimental systems biology. We will discuss significant discoveries such as halicin and abaucin, as well as 

limitations including data availability and interpretability. We will explore regulatory aspects and ethical aspects of AI and 

ML applications, and we will propose future directions for integrating AI and ML in clinical microbiology and personalized 

medicine to subsume the global antimicrobial resistance (AMR) crisis. 
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I. INTRODUCTION 

 

Antimicrobial resistance (AMR) is becoming a serious 

problem for global health, food security, and the economy. In 

2019, about 4.95 million deaths were linked to bacterial 

AMR, and 1.27 million of these were directly caused by 

resistant infections (Tang et al., 2023). If the current situation 

continues, AMR could lead to 10 million deaths each year by 

2050 (Price, 2016).Some of the most alarming bacteria 

include methicillin-resistant Staphylococcus aureus (MRSA), 

carbapenem-resistant enterobacteriaceae (CRE), 

vancomycin-resistant Enterococcus (VRE), Acinetobacter 
baumannii and Pseudomonas aeruginosa in shown (figure 1) 

(Brown & Wright, 2016; Stokes et al., 2020). Antibiotic 

resistance is growing, but the development of new antibiotics 

has slowed considerably. Making a new antibiotic takes a 

long time about 10–15 years and costs over US$1 billion 

(DiMasi et al., 2016). Throughout the drug discovery process, 

candidates fail during development, while antibiotics 

typically return less revenue than medicines for long-term 

diseases. Consequently, large pharmaceutical companies 

have shifted their R&D focus away from antibiotics and 

towards drug development for long-term diseases (Payne et 

al., 2007). Since the 1980s, there have been few new classes 

of antibiotics developed, which shows that we need new ways 

to find drugs (Preuer et al., 2018). 
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Fig 1 Antimicrobial Resistance (AMR) 

II. ARTIFICIAL INTELLIGENCE IN DRUG 

DISCOVERY 

 

Artificial intelligence comprises a variety of computing 

approaches that mimic human learning and decision-making. 

The typical methods for drug discovery include machine 

learning has been used to predict bioactivity and toxicity 

through techniques such as random forests, support vector 
machines, and gradient boosting (Vamathevan et al., 2019). 

Deep Learning (DL) employs convolutional and recurrent 

neural networks to learn complex molecular interactions from 

extensive datasets (H. Chen et al., 2018a).Generative models, 

such as generative adversarial networks (GANs) and variation 

auto encoders (VAEs), are able to create new ant bacterially 

active compounds (Sanchez-Lengeling & Aspuru-Guzik, 

2018). NLP mining of biological literature, clinical notes, and 

patents to discover new compounds and processes (Wei et al., 

2016). RL is an iterative optimization method for molecular 

design that enables exploration of a wide range of chemical 
spaces (Popova et al., 2018). AI provides numerous distinct 

benefits in combating MDR pathogens: Efficiently explores 

over 10⁶⁰ drug-like compounds (Polishchuk et al., 2013).Used 

virtual screening to prioritize compounds for wet-lab 

validation (Rifaioglu et al., 2019). Discovered novel drug 

targets through genomic & proteomic databases (Ahn & 

Wang, 2008). Use of existing non-antibiotic medicines to 

treat bacterial infections (Opal, 2016). Predicting effective 

antibiotic combinations to combat resistance (17). 

Optimizing pharmacokinetics (ADMET) early in the 

discovery process in shown (Table 1) (Eddershaw et al., 

2000). 

 

Table 1 Applications of Artificial Intelligence in Drug Discovery 

AI Technique / 

Approach 

Application in Drug 

Discovery 

Examples / Methods Key Benefits / Outcomes 

Machine Learning 

(ML) 

Predicts bioactivity, 

toxicity, and target 

interactions 

Random Forests, Support 

Vector Machines (SVM), 

Gradient Boosting 

Enhances accuracy in compound 

screening and toxicity prediction (J. 

Zhang et al., 2025). 

Deep Learning (DL) Learns complex molecular 

interactions from large 

datasets 

Convolutional Neural 

Networks (CNNs), Recurrent 

Neural Networks (RNNs) 

Identifies novel molecular patterns and 

relationships (H. Chen et al., 2018b). 

Generative Models Designs new drug-like 
molecules with desired 

properties 

Generative Adversarial 
Networks (GANs), Variational 

Autoencoders (VAEs) 

Generates novel antibacterially active 
compounds (Gangwal et al., 2024). 

Natural Language 

Processing (NLP) 

Extracts knowledge from 

scientific texts, patents, 

and clinical data 

Text mining, entity 

recognition, semantic analysis 

Identifies new drug targets and 

compound interactions (Withers et al., 

2025). 

Reinforcement 

Learning (RL) 

Optimizes molecular 

design iteratively 

Policy gradient algorithms, 

reward-based learning 

Explores vast chemical spaces and 

refines lead compounds (Jarallah et 

al., 2025). 

Virtual Screening Prioritizes promising 

compounds for 

experimental testing 

Docking simulations, ML-

based scoring 

Reduces time and cost in wet-lab 

screening (Cosconati et al., 2010). 

Genomic & 

Proteomic AI 

Analysis 

Discovers novel drug 

targets from biological 

databases 

Omics data mining, network-

based learning 

Enables target-specific antibiotic 

discovery (Liu et al., 2019). 

Drug Repurposing 

with AI 

Identifies new antibacterial 

uses for existing drugs 

Predictive modeling, molecular 

similarity analysis 

Saves cost and accelerates 

development timeline (A. Singh, 
2024). 
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AI for Drug 

Combination 

Prediction 

Suggests synergistic 

antibiotic combinations 

Deep learning, Bayesian 

optimization 

Combats multi-drug resistance (MDR) 

effectively (Elalouf et al., 2025). 

AI in ADMET 

Prediction 

Optimizes 

pharmacokinetics and 

toxicity early in discovery 

QSAR modeling, deep neural 

networks 

Improves drug safety and efficacy 

profiles (Pathan et al., 2025). 

 

III. AI-ASSISTED TARGET IDENTIFICATION 

 

The growing availability of bacterial genome sequences 

makes it easier to identify key genes and proteins. AI tools 
like PATRIC and the Comprehensive Antibiotic Resistance 

Database (CARD) combine genomic, proteomic, and 

phenotypic data to pinpoint vulnerabilities in multidrug-

resistant (MDR) pathogens (McArthur et al., 2013). Machine 

learning is used to rank potential drug targets by their 

essentiality, conservation, and role in virulence (Bi et al., 

2025). Some essential bacterial proteins cannot be targeted by 

drugs. AI models help find druggable proteins by analyzing 

their structures, binding sites, and similarity to known targets 

(Kandoi et al., 2015). AlphaFold, a deep learning system, can 

predict protein structures with near-experimental accuracy, 
making it a major advancement (Jumper et al., 2021). This 

enables the discovery of hitherto unidentified binding sites in 

proteins. Rational drug design is accelerated by combining 

molecular docking simulations with AlphaFold prediction. 

 

IV. FINDING LEADS AND 

SCREENING VIRTUALLY 

 

Conventional high-throughput screening (HTS) screens 

thousands to millions of different chemicals in vitro, a lengthy 

and costly process. AI makes this task much easier with the 

use of virtual screening with extensive chemical libraries. For 
example, deep neural networks developed and trained with 

ChEMBL datasets predict antimicrobial activity among 

biochemically diverse set of drugs. Support vector machines 

and random forests have been used to sort antibiotics and non-

antibiotics (S. Singh et al., 2024). The ability to design de 

novo therapeutics is among the most revolutionary 

capabilities of artificial intelligence. Generative adversarial 

networks (GANs) and reinforcement learning algorithms 

have the ability to identify new scaffolds that are not available 

in chemical libraries (Gangwal & Lavecchia, 2024a). 

Identifying Halcion by MIT researchers in 2020 was a 
landmark achievement in the field since it utilized a deep 

learning system to screen over 100 million molecules. 

Halcion performed quite favourably against MDR 

Acinetobacter baumannii, among other infections. Another 

AI platform recently discovered abaucin, a narrow-spectrum 

antibiotic that targets A. baumannii, demonstrating that AI 

can create pathogen-specific drugs (Awan et al., 2024). 

 

V. THE USE OF AI IN REGARDS 

TO DRUG REPURPOSING 

 

Drug repurposing is one of the most commonly 
employed method for finding new indications for a drug due 

to their already characterized pharmacokinetics and safety. AI 

algorithms have the potential to identify non-antibiotic 

medications that possess antibacterial properties. For 

example, machine learning approaches discovered that 

mitoxantrone, a cancer drug, is an efflux pump inhibitor that 

also kills bacteria (Kulkarni et al., 2023). An NLP-driven 

analysis of academic databases has identified some 
psychiatric and cardiovascular medications with unexpected 

antibacterial properties (Wang et al., 2009). AI can figure out 

which combinations of medicines work best against 

resistance, which will help humans utilize them better. Deep 

learning frameworks like Deep Synergy use transcriptomic 

and chemo genomic data to create models of synergistic 

interactions. AI-guided screening, for example, found that 

combinations of β-lactams and β-lactamase inhibitors worked 

against Enterobacteriaceae that were resistant to carbapenems 

(Yu et al., 2022). Such methods help make current types of 

antibiotics last longer. 
 

VI. AI IN DRUG OPTIMIZATION AND 

PHARMACOKINETICS 

 

Many new medications fail because they either cause 

harmful side effects or do not work effectively in the body. 

Testing Absorption, Distribution, Metabolism, Excretion, and 

Toxicity (ADMET) the usual way takes a long time and costs 

a lot. AI can predict these properties early, making drug 

development quicker and cheaper. AI models using large 

datasets such as ADMET lab and PubChem can predict these 

properties early in the drug development process (Li et al., 
2019). Deep learning can even predict several features at the 

same time, such as solubility, bioavailability, and liver 

toxicity (Mostafa & Chen, 2024). For antibiotics, there are 

extra challenges like poor tissue penetration, trouble crossing 

the Gram-negative outer membrane, and resistance from 

efflux pumps. AI can simulate how drugs interact with 

bacterial membranes and predict their uptake, helping to 

improve and speed up the design of new compounds in shown 

(figure 2) (Popa et al., 2022). In addition to ADMET, 

reinforcement learning (RL) can help optimize drug 

candidates by gradually modifying structures to improve 
efficacy and reduce toxicity. RL operates on the principle of 

feedback via scoring mechanisms that take into account 

multiple factors, that is, potency, selectivity, and molecules’ 

"drug-likeness” (Gangwal & Lavecchia, 2024b). An example 

of RL is the application of riboswitch-binding molecules for 

antibacterial potential, which yielded modifications that 

offered increased stability and less side effect availability 

(Machtel et al., 2016). Generative chemistry platforms (e.g., 

Insilico Medicine’s Chemistry42 and BenevolentAI's 

molecular design tools) have also been used to optimize 

antibiotic leads (Ivanenkov et al., 2023). These platforms 

afford researchers the ability to vary structures to enhance 
activity against Gram-negative bacteria, which has been a 

challenge for those developing antibiotics for decades 

(Rossiter et al., 2017). 
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Fig 2 AI in Drug Development 

 

VII. EXPERIMENTAL METHODS 

WITH AI INTEGRATION 

 

AI technologies in microfluidics make it possible to do 

drug screening at a high-throughput level with very little 

amounts of microorganisms (Qiao et al., 2025). After some 

drugs, machine vision and ML algorithms have measured 

morphological measurements, growth curves, and 

survival/mortality rates of bacteria (Navarro-López et al., 

2024). In the laboratory, this expedited our validation of the 

in silico predictions, giving provide real time feedback on 

phenotypes. Robotic platforms utilizing supervised learning, 
for example the Eve robot scientist, design screening 

experimental protocols with AI that remove manual labor 

process, as well as speeding the identification of novel 

antimicrobials (Serrano et al., 2024a). The discipline of 

systems biology integrates genomes, transcriptomics, 

proteomics, and metabolomics to offer a comprehensive 

analysis of bacterial physiology under pharmacological 

influence.. Artificial Intelligence (AI) models such as multi-

omics deep neural networks reveal relationships among gene 

expression, metabolic fluxes, and phenotypes of antibiotic 

resistance (Pinu et al., 2019). For instance, one research 
project successfully combined transcriptomic and 

metabolomic information to identify new metabolism 

bottlenecks in E. coli resistant strains for downstream 

therapeutic applications (Kim et al., 2019). Network-based 

machine learning (ML) algorithms can also assess cellular 

networks of bacterial protein-protein interaction and reveal 

synergistic vulnerabilities (James & Muñoz-Muñoz, n.d.). 

VIII. PROBLEMS AND LIMITATIONS 

 

AI models are only as strong as the data they are trained 

on. Unfortunately, antimicrobial datasets are often 

fragmented, inconsistent, or biased toward compounds that 

have more study (Pennisi et al., 2025). The primary problem 

with current antibiotic treatments is that antimicrobial 

resistance is rapidly spreading in hospitals and communities 
(Kushwaha et al., 2025). While rare pathogens, such as 

Acinetobacter baumannii may lack sufficient data to 

generalize the model findings, under-reporting of negative 

results leads to the training data being biased toward false 

positives (Peleg et al., 2008). Publicly available datasets (e.g. 

ChEMBL, PubChem Bioassay, CARDS) may be informative, 

but require curation and standardization to overcome these 

deficiencies to include in the training of AI models. 

Therefore, a collaborative effort to share datasets of the 

highest quality and rigor is needed across academia, industry 

and government agencies (Wilkinson et al., 2016).Deep 
learning models are often treated as "black boxes," so being 

able to ascertain what led to the model predicting activity in 

a certain compound is complicated. Never the less, regulatory 

agencies like the FDA and European Medicines Agency 

(EMA) require mechanistic insight to approve drug 

candidates, and therefore prohibit translation of models. To 

help mitigate this issue, explainable Ai (XAI) techniques are 

being developed to increase interpretability of predictions, 

with methods ranging from attention maps to Shapley 

additive explanations (SHAP) (Serrano et al., 2024b). 

However, just as important as accuracy and explain ability, is 

experimental validation. Any prediction made proving a new 
compound interacts with a target protein can only be valuable 

once demonstrated an accurate prediction and/or validated by 

use of wet-lab based assays in vitro, in vivo models, and 

eventually human clinical trial testing (Y. Zhang et al., 2024). 

 

IX. ETHICAL, REGULATORY, 

AND ECONOMIC PERSPECTIVES 

 

The quick adoption of AI in health care raises ethical 

challenges, including data privacy, and algorithmic 

discrimination and equitable access. Many AI models are 
trained on very big datasets from high income countries, 

leading to what might be a lack of relevance for low- and 

middle-income countries, where AMR burden is highest. 

Fairness and transparency in AI-driven antibiotic discovery is 

essential (Weiner et al., 2025). Another moral dilemma has to 

do with how to take care of newly found antibiotics. Even if 

AI accelerates discovery, improper use could accelerate 

resistance emergence. Responsible deployment frameworks 

are necessary to prevent overuse of novel antibiotics (Cesaro 

et al., 2025). Regulatory pathways for pharmaceuticals 

identified using artificial intelligence (AI) are still in their 

infancy. Agencies such as the FDA and EMA have insisted 
on strict validation of their computational predictions, which 

attended to slow the rate of translation (Derraz et al., 2024). 

Antibiotics are still considered economically unattractive due 

to short treatments durations and restricted use. In response, 

policymakers are trailing interventions, such as pull 

incentives (subscription models, market entry rewards) to 

encourage antibiotic products into development (So & Shah, 
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2014). AI may help reduce their costs for R&D activities, but 

will still need to figure out the market reform to enable 

sustainable innovation (L. Chen et al., 2025). 

 

X. FUTURE PERSPECTIVES 

 

The future of antimicrobial discovery will be in hybrid 

models that marry computational horsepower with humans. 
The choice for antimicrobial therapy is usually straight 

forward when the etiologic agents and their susceptibility 

patterns are known (A. Singh & Kumar, 2025). That means 

rather than AI completely autonomous, it serves as a partner 

that generates hypotheses, and microbiologists and chemists 

provide context and experimental verification, adding to our 

confidence (Arnold et al., 2025). This combination can 

shorten cycles of discovery overall and reduce attrition rates. 

AI has the ability to further precision medicine in infectious 

disease beyond drug development. AI could allow patient-

specific data about microbiome, resistance profiles, and 
pharmacogenomics to inform personalized antibiotic 

prescribing (Serrano et al., 2024c). It would be the best option 

in regards to treatment and destruction of the microbiome and 

resistance profiles. Developing technologies, especially AI-

based rapid diagnostics and precision therapeutic 

suggestions, are poised to transform the clinical landscape of 

infections in the next decade (McCoubrey et al., n.d.). 

Environmental sequencing has been used to identify dark 

taxa, or fungi with no cultivated examples (e.g., the Illumina, 

PacBio, or Nanopore) and programs like NCBI GenBank, 

MycoBank, and UNITE facilitate the identification of species 

and the updating of taxonomy (Dubey, n.d.). It is important to 
know commonly involved pathogens and current antibiotic 

sensitivity patterns to treat respiratory infections. Knowledge 

of current patterns of pathogens involved in respiratory 

infection and antibiotic sensitivity patterns may help greatly 

in treating infections, avoiding complications, and reducing 

mortality as well as in making antibiotic policy at 

departmental, institutional, or regional level (A. Singh & 

Kumar, 2025). 

 

XI. CONCLUSION 

 
AI has changed the process for antibiotic discovery at a 

moment when multidrug-resistant bacteria are causing 

increasing concern for global health security. AI accelerates 

each stage of the process from target identification to 

compound screening to drug optimization and ultimately drug 

repurposing. Landmark discoveries such as halicin and 

abaucin show the disruptive potential of computational 

models to discover entirely new classes of antibiotics. 

Nonetheless, challenges still exist, such as limited data 

availability, model interpretability and regulatory 

uncertainty. Addressing these obstacles requires an 

interdisciplinary strategy among computer scientists, 
microbiologists, pharmacologists and policy makers. In 

addition, the pathways must be economically viable so that 

antibiotics discovered using AI will eventually reach the 

market and be responsibly utilized. If these technologies can 

be incorporated with systems biology and precision medicine, 

AI can help to replenish the antibiotic pipeline; it may also 

improve how we think about personalized antimicrobial 

treatment; thus, beginning a new era of personalized 

medicine. By utilizing the synergies between human 

knowledge and machine intelligence, we could shift the 

balance against the worldwide AMR crisis. 
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