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Abstract: The increasing occurrence of multidrug-resistant (MDR) bacteria, commonly known as superbugs. It is a leading
global health threat. The antibiotic discovery pipeline is effectively stagnant due to excessive costs, a long lead time for drug
development, and decreased profits for pharmaceutical companies. Artificial intelligence (Al) and machine learning (ML)
have proven to be thriving zeitgeists for advancing antimicrobial research through the rapid evaluations of large biological
and chemical datasets, predicting antimicrobial activity, identifying novel drug targets, and optimizing pharmacokinetics.
This review outlines the various applications of Al-based endeavours in solving the issue of MDR pathogens. These include
target identification, virtual screenings, de novo drug design, drug repurposing, optimizing pharmacokinetics, and
integrating with experimental systems biology. We will discuss significant discoveries such as halicin and abaucin, as well as
limitations including data availability and interpretability. We will explore regulatory aspects and ethical aspects of Al and
ML applications, and we will propose future directions for integrating Al and ML in clinical microbiology and personalized
medicine to subsume the global antimicrobial resistance (AMR) crisis.
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l. INTRODUCTION typically return less revenue than medicines for long-term
diseases. Consequently, large pharmaceutical companies

Antimicrobial resistance (AMR) is becoming a serious
problem for global health, food security, and the economy:. In
2019, about 4.95 million deaths were linked to bacterial
AMR, and 1.27 million of these were directly caused by
resistant infections (Tang et al., 2023). If the current situation
continues, AMR could lead to 10 million deaths each year by
2050 (Price, 2016).Some of the most alarming bacteria
include methicillin-resistant Staphylococcus aureus (MRSA),
carbapenem-resistant enterobacteriaceae (CRE),
vancomycin-resistant Enterococcus (VRE), Acinetobacter
baumannii and Pseudomonas aeruginosa in shown (figure 1)
(Brown & Wright, 2016; Stokes et al., 2020). Antibiotic
resistance is growing, but the development of new antibiotics
has slowed considerably. Making a new antibiotic takes a
long time about 10-15 years and costs over US$1 billion
(DiMasi et al., 2016). Throughout the drug discovery process,
candidates fail during development, while antibiotics
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have shifted their R&D focus away from antibiotics and
towards drug development for long-term diseases (Payne et
al., 2007). Since the 1980s, there have been few new classes
of antibiotics developed, which shows that we need new ways
to find drugs (Preuer et al., 2018).
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Fig 1 Antimicrobial Resistance (AMR)
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1. ARTIFICIAL INTELLIGENCE IN DRUG
DISCOVERY

Artificial intelligence comprises a variety of computing
approaches that mimic human learning and decision-making.
The typical methods for drug discovery include machine
learning has been used to predict bioactivity and toxicity
through techniques such as random forests, support vector
machines, and gradient boosting (Vamathevan et al., 2019).
Deep Learning (DL) employs convolutional and recurrent
neural networks to learn complex molecular interactions from
extensive datasets (H. Chen et al., 2018a).Generative models,
such as generative adversarial networks (GANSs) and variation
auto encoders (VAES), are able to create new ant bacterially
active compounds (Sanchez-Lengeling & Aspuru-Guzik,
2018). NLP mining of biological literature, clinical notes, and
patents to discover new compounds and processes (Wei et al.,
2016). RL is an iterative optimization method for molecular
design that enables exploration of a wide range of chemical
spaces (Popova et al., 2018). Al provides numerous distinct
benefits in combating MDR pathogens: Efficiently explores
over 10% drug-like compounds (Polishchuk et al., 2013).Used
virtual screening to prioritize compounds for wet-lab
validation (Rifaioglu et al., 2019). Discovered novel drug
targets through genomic & proteomic databases (Ahn &
Wang, 2008). Use of existing non-antibiotic medicines to
treat bacterial infections (Opal, 2016). Predicting effective
antibiotic combinations to combat resistance (17).
Optimizing pharmacokinetics (ADMET) early in the
discovery process in shown (Table 1) (Eddershaw et al.,
2000).

Table 1 Applications of Artificial Intelligence in Drug Discovery

Al Technique /

Application in Drug Examples / Methods

Key Benefits / Outcomes

Approach Discovery
Machine Learning Predicts bioactivity, Random Forests, Support Enhances accuracy in compound
(ML) toxicity, and target Vector Machines (SVM), screening and toxicity prediction (J.

interactions Gradient Boosting

Zhang et al., 2025).

Deep Learning (DL)

Convolutional Neural
Networks (CNNs), Recurrent
Neural Networks (RNNS)

Learns complex molecular
interactions from large
datasets

Identifies novel molecular patterns and
relationships (H. Chen et al., 2018b).

Generative Models

Generative Adversarial
Networks (GANS), Variational
Autoencoders (VAES)

Designs new drug-like
molecules with desired
properties

Generates novel antibacterially active
compounds (Gangwal et al., 2024).

Natural Language
Processing (NLP)

Extracts knowledge from
scientific texts, patents,
and clinical data

Text mining, entity
recognition, semantic analysis

Identifies new drug targets and
compound interactions (Withers et al.,
2025).

Reinforcement
Learning (RL)

Optimizes molecular
design iteratively

Policy gradient algorithms,
reward-based learning

Explores vast chemical spaces and
refines lead compounds (Jarallah et
al., 2025).

Virtual Screening

Prioritizes promising
compounds for
experimental testing

Docking simulations, ML-
based scoring

Reduces time and cost in wet-lab
screening (Cosconati et al., 2010).

Genomic & Discovers novel drug Omics data mining, network- Enables target-specific antibiotic
Proteomic Al targets from biological based learning discovery (Liu et al., 2019).
Analysis databases
Drug Repurposing | Identifies new antibacterial | Predictive modeling, molecular Saves cost and accelerates
with Al uses for existing drugs similarity analysis development timeline (A. Singh,

2024).
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Al for Drug Suggests synergistic Deep learning, Bayesian Combats multi-drug resistance (MDR)
Combination antibiotic combinations optimization effectively (Elalouf et al., 2025).
Prediction
Al in ADMET Optimizes QSAR modeling, deep neural Improves drug safety and efficacy
Prediction pharmacokinetics and networks profiles (Pathan et al., 2025).
toxicity early in discovery

I11. AIl-ASSISTED TARGET IDENTIFICATION

The growing availability of bacterial genome sequences
makes it easier to identify key genes and proteins. Al tools
like PATRIC and the Comprehensive Antibiotic Resistance
Database (CARD) combine genomic, proteomic, and
phenotypic data to pinpoint vulnerabilities in multidrug-
resistant (MDR) pathogens (McArthur et al., 2013). Machine
learning is used to rank potential drug targets by their
essentiality, conservation, and role in virulence (Bi et al.,
2025). Some essential bacterial proteins cannot be targeted by
drugs. Al models help find druggable proteins by analyzing
their structures, binding sites, and similarity to known targets
(Kandoi et al., 2015). AlphaFold, a deep learning system, can
predict protein structures with near-experimental accuracy,
making it a major advancement (Jumper et al., 2021). This
enables the discovery of hitherto unidentified binding sites in
proteins. Rational drug design is accelerated by combining
molecular docking simulations with AlphaFold prediction.

V. FINDING LEADS AND
SCREENING VIRTUALLY

Conventional high-throughput screening (HTS) screens
thousands to millions of different chemicals in vitro, a lengthy
and costly process. Al makes this task much easier with the
use of virtual screening with extensive chemical libraries. For
example, deep neural networks developed and trained with
ChEMBL datasets predict antimicrobial activity among
biochemically diverse set of drugs. Support vector machines
and random forests have been used to sort antibiotics and non-
antibiotics (S. Singh et al., 2024). The ability to design de
novo therapeutics is among the most revolutionary
capabilities of artificial intelligence. Generative adversarial
networks (GANs) and reinforcement learning algorithms
have the ability to identify new scaffolds that are not available
in chemical libraries (Gangwal & Lavecchia, 2024a).
Identifying Halcion by MIT researchers in 2020 was a
landmark achievement in the field since it utilized a deep
learning system to screen over 100 million molecules.
Halcion performed quite favourably against MDR
Acinetobacter baumannii, among other infections. Another
Al platform recently discovered abaucin, a narrow-spectrum
antibiotic that targets A. baumannii, demonstrating that Al
can create pathogen-specific drugs (Awan et al., 2024).

V. THE USE OF Al IN REGARDS
TO DRUG REPURPOSING

Drug repurposing is one of the most commonly
employed method for finding new indications for a drug due
to their already characterized pharmacokinetics and safety. Al
algorithms have the potential to identify non-antibiotic
medications that possess antibacterial properties. For
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example, machine learning approaches discovered that
mitoxantrone, a cancer drug, is an efflux pump inhibitor that
also kills bacteria (Kulkarni et al., 2023). An NLP-driven
analysis of academic databases has identified some
psychiatric and cardiovascular medications with unexpected
antibacterial properties (Wang et al., 2009). Al can figure out
which combinations of medicines work best against
resistance, which will help humans utilize them better. Deep
learning frameworks like Deep Synergy use transcriptomic
and chemo genomic data to create models of synergistic
interactions. Al-guided screening, for example, found that
combinations of B-lactams and B-lactamase inhibitors worked
against Enterobacteriaceae that were resistant to carbapenems
(Yu et al., 2022). Such methods help make current types of
antibiotics last longer.

VI. Al IN DRUG OPTIMIZATION AND
PHARMACOKINETICS

Many new medications fail because they either cause
harmful side effects or do not work effectively in the body.
Testing Absorption, Distribution, Metabolism, Excretion, and
Toxicity (ADMET) the usual way takes a long time and costs
a lot. Al can predict these properties early, making drug
development quicker and cheaper. Al models using large
datasets such as ADMET lab and PubChem can predict these
properties early in the drug development process (Li et al.,
2019). Deep learning can even predict several features at the
same time, such as solubility, bioavailability, and liver
toxicity (Mostafa & Chen, 2024). For antibiotics, there are
extra challenges like poor tissue penetration, trouble crossing
the Gram-negative outer membrane, and resistance from
efflux pumps. Al can simulate how drugs interact with
bacterial membranes and predict their uptake, helping to
improve and speed up the design of new compounds in shown
(figure 2) (Popa et al., 2022). In addition to ADMET,
reinforcement learning (RL) can help optimize drug
candidates by gradually modifying structures to improve
efficacy and reduce toxicity. RL operates on the principle of
feedback via scoring mechanisms that take into account
multiple factors, that is, potency, selectivity, and molecules’
"drug-likeness” (Gangwal & Lavecchia, 2024b). An example
of RL is the application of riboswitch-binding molecules for
antibacterial potential, which yielded modifications that
offered increased stability and less side effect availability
(Machtel et al., 2016). Generative chemistry platforms (e.g.,
Insilico Medicine’s Chemistry42 and BenevolentAl's
molecular design tools) have also been used to optimize
antibiotic leads (lIvanenkov et al., 2023). These platforms
afford researchers the ability to vary structures to enhance
activity against Gram-negative bacteria, which has been a
challenge for those developing antibiotics for decades
(Rossiter et al., 2017).
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Fig 2 Al in Drug Development

VIL. EXPERIMENTAL METHODS
WITH Al INTEGRATION

Al technologies in microfluidics make it possible to do
drug screening at a high-throughput level with very little
amounts of microorganisms (Qiao et al., 2025). After some
drugs, machine vision and ML algorithms have measured
morphological measurements, growth curves, and
survival/mortality rates of bacteria (Navarro-Lopez et al.,
2024). In the laboratory, this expedited our validation of the
in silico predictions, giving provide real time feedback on
phenotypes. Robotic platforms utilizing supervised learning,
for example the Eve robot scientist, design screening
experimental protocols with Al that remove manual labor
process, as well as speeding the identification of novel
antimicrobials (Serrano et al., 2024a). The discipline of
systems biology integrates genomes, transcriptomics,
proteomics, and metabolomics to offer a comprehensive
analysis of bacterial physiology under pharmacological
influence.. Artificial Intelligence (Al) models such as multi-
omics deep neural networks reveal relationships among gene
expression, metabolic fluxes, and phenotypes of antibiotic
resistance (Pinu et al., 2019). For instance, one research
project  successfully combined transcriptomic and
metabolomic information to identify new metabolism
bottlenecks in E. coli resistant strains for downstream
therapeutic applications (Kim et al., 2019). Network-based
machine learning (ML) algorithms can also assess cellular
networks of bacterial protein-protein interaction and reveal
synergistic vulnerabilities (James & Mufioz-Mufioz, n.d.).
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VIII. PROBLEMS AND LIMITATIONS

Al models are only as strong as the data they are trained
on. Unfortunately, antimicrobial datasets are often
fragmented, inconsistent, or biased toward compounds that
have more study (Pennisi et al., 2025). The primary problem
with current antibiotic treatments is that antimicrobial
resistance is rapidly spreading in hospitals and communities
(Kushwaha et al., 2025). While rare pathogens, such as
Acinetobacter baumannii may lack sufficient data to
generalize the model findings, under-reporting of negative
results leads to the training data being biased toward false
positives (Peleg et al., 2008). Publicly available datasets (e.g.
ChEMBL, PubChem Bioassay, CARDS) may be informative,
but require curation and standardization to overcome these
deficiencies to include in the training of Al models.
Therefore, a collaborative effort to share datasets of the
highest quality and rigor is needed across academia, industry
and government agencies (Wilkinson et al., 2016).Deep
learning models are often treated as "black boxes," so being
able to ascertain what led to the model predicting activity in
a certain compound is complicated. Never the less, regulatory
agencies like the FDA and European Medicines Agency
(EMA) require mechanistic insight to approve drug
candidates, and therefore prohibit translation of models. To
help mitigate this issue, explainable Ai (XAl) techniques are
being developed to increase interpretability of predictions,
with methods ranging from attention maps to Shapley
additive explanations (SHAP) (Serrano et al., 2024b).
However, just as important as accuracy and explain ability, is
experimental validation. Any prediction made proving a new
compound interacts with a target protein can only be valuable
once demonstrated an accurate prediction and/or validated by
use of wet-lab based assays in vitro, in vivo models, and
eventually human clinical trial testing (Y. Zhang et al., 2024).

IX. ETHICAL, REGULATORY,
AND ECONOMIC PERSPECTIVES

The quick adoption of Al in health care raises ethical
challenges, including data privacy, and algorithmic
discrimination and equitable access. Many Al models are
trained on very big datasets from high income countries,
leading to what might be a lack of relevance for low- and
middle-income countries, where AMR burden is highest.
Fairness and transparency in Al-driven antibiotic discovery is
essential (Weiner et al., 2025). Another moral dilemma has to
do with how to take care of newly found antibiotics. Even if
Al accelerates discovery, improper use could accelerate
resistance emergence. Responsible deployment frameworks
are necessary to prevent overuse of novel antibiotics (Cesaro
et al.,, 2025). Regulatory pathways for pharmaceuticals
identified using artificial intelligence (Al) are still in their
infancy. Agencies such as the FDA and EMA have insisted
on strict validation of their computational predictions, which
attended to slow the rate of translation (Derraz et al., 2024).
Antibiotics are still considered economically unattractive due
to short treatments durations and restricted use. In response,
policymakers are trailing interventions, such as pull
incentives (subscription models, market entry rewards) to
encourage antibiotic products into development (So & Shah,
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2014). Al may help reduce their costs for R&D activities, but
will still need to figure out the market reform to enable
sustainable innovation (L. Chen et al., 2025).

X. FUTURE PERSPECTIVES

The future of antimicrobial discovery will be in hybrid
models that marry computational horsepower with humans.
The choice for antimicrobial therapy is usually straight
forward when the etiologic agents and their susceptibility
patterns are known (A. Singh & Kumar, 2025). That means
rather than Al completely autonomous, it serves as a partner
that generates hypotheses, and microbiologists and chemists
provide context and experimental verification, adding to our
confidence (Arnold et al., 2025). This combination can
shorten cycles of discovery overall and reduce attrition rates.
Al has the ability to further precision medicine in infectious
disease beyond drug development. Al could allow patient-
specific data about microbiome, resistance profiles, and
pharmacogenomics to inform personalized antibiotic
prescribing (Serrano et al., 2024c). It would be the best option
in regards to treatment and destruction of the microbiome and
resistance profiles. Developing technologies, especially Al-
based rapid diagnostics and precision therapeutic
suggestions, are poised to transform the clinical landscape of
infections in the next decade (McCoubrey et al., n.d.).
Environmental sequencing has been used to identify dark
taxa, or fungi with no cultivated examples (e.g., the lllumina,
PacBio, or Nanopore) and programs like NCBI GenBank,
MycoBank, and UNITE facilitate the identification of species
and the updating of taxonomy (Dubey, n.d.). It is important to
know commonly involved pathogens and current antibiotic
sensitivity patterns to treat respiratory infections. Knowledge
of current patterns of pathogens involved in respiratory
infection and antibiotic sensitivity patterns may help greatly
in treating infections, avoiding complications, and reducing
mortality as well as in making antibiotic policy at
departmental, institutional, or regional level (A. Singh &
Kumar, 2025).

XI. CONCLUSION

Al has changed the process for antibiotic discovery at a
moment when multidrug-resistant bacteria are causing
increasing concern for global health security. Al accelerates
each stage of the process from target identification to
compound screening to drug optimization and ultimately drug
repurposing. Landmark discoveries such as halicin and
abaucin show the disruptive potential of computational
models to discover entirely new classes of antibiotics.
Nonetheless, challenges still exist, such as limited data
availability, model interpretability and regulatory
uncertainty. Addressing these obstacles requires an
interdisciplinary strategy among computer scientists,
microbiologists, pharmacologists and policy makers. In
addition, the pathways must be economically viable so that
antibiotics discovered using Al will eventually reach the
market and be responsibly utilized. If these technologies can
be incorporated with systems biology and precision medicine,
Al can help to replenish the antibiotic pipeline; it may also
improve how we think about personalized antimicrobial
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treatment; thus, beginning a new era of personalized
medicine. By utilizing the synergies between human
knowledge and machine intelligence, we could shift the
balance against the worldwide AMR crisis.
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