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Abstract: Unsustainable agricultural practices and declining soil fertility have led to a notable reduction in global crop
productivity. The excessive and indiscriminate use of chemical fertilizers not only deteriorates soil health but also possess a
significant risk to human well-being. Consequently, farmers across the globe have increasingly adopted biofertilizers and
biopesticides to preserve the natural equilibrium of the soil ecosystem. Biofertilizers represent an environmentally benign
and economically viable alternative to chemical fertilizers. Their plant growth-promoting attributes are manifested through
direct mechanisms such as biological nitrogen fixation, nutrient solubilization and mobilization (notably of N, P, K, S, Zn
and Fe) and the synthesis of phytohormones including auxins, cytokinins, gibberellins and ethylene. Indirectly, plant growth-
promoting rhizobacteria (PGPR) contribute to the suppression of phytopathogens via antibiotic production, siderophore
secretion, hydrolytic enzyme activity, and the induction of systemic resistance. In contrast to conventional chemical
fertilizers, biofertilizers offer a cost-effective, sustainable, and renewable solution that ensures the long-term preservation

of soil fertility and agricultural productivity.
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L. INTRODUCTION

The exponential growth of the global human population
and the escalating demand for food have necessitated an
increased dependence on chemical fertilizers and pesticides
within the conventional agricultural system (Santos et al.,
2012). The widespread application of synthetic fertilizers has
significantly contributed to enhanced crop productivity,
primarily through the provision of essential macronutrients
such as phosphorus, nitrogen and potassium. Their extensive
utilization is largely attributed to their perceived cost-
effectiveness and the immediate yield benefits they confer
upon agriculture (Van Vuuren et al., 2010). However, the
prolonged use of these agrochemicals has precipitated a series
of detrimental consequences, including the degradation of
soil quality, heightened air and water contamination,
biodiversity loss and rising threats to human health (Aggani,
2013). Moreover, the indiscriminate application of chemical
pesticides has adversely influenced soil fertility, disrupted
agricultural ecology and impeded the optimal growth and
development of cultivated crops (Rahman & Zhang, 2018).
The dynamic interplay among plants, soil and microbial
communities exerts a profound influence on soil vitality and
overall plant productivity (Harman et al., 2020). Soil
microbes, in particular, engage in intricate symbiotic and
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associative relationships with plant roots and among
themselves, executing a multitude of essential biochemical
and ecological functions indispensable for sustaining soil
health and ecological equilibrium (Kumar et al., 2021).

The bioavailability and bio accessibility of nutrient
uptake in plants can be significantly augmented through the
application of biofertilizers as eco-friendly, bio-based organic
formulations derived from plants or animal residues or from
active and dormant microbial cells. The incorporation of
fertilizers into irrigation systems, commonly referred to as
fertigation, facilitates efficient nutrient delivery (S.
Sreeremya, 2017). Certain potent microorganisms possess the
capacity to render iron bioavailable to plants by converting it
into absorbable forms (Dr.S.Sreeremya, 2019). The
utilization of sustainable bioresources constitutes a pivotal
strategy for environmental conservation and ecological
balance (Dr.S.Sreeremya, 2020). Moreover, biopolymers
serve a critical function in enhancing biofertilizer
performance by acting as biodegradable carrier matrices or
protective coatings (Midhul et al., 2025). Consequently, the
deployment of biofertilizers has become indispensable for
augmenting the planet’s agricultural productivity. Employing
biological and organic fertilizers supports farm sustainability
within a low-input agricultural framework.
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Biofertilizers are predominantly formulated in solid or
powdered form and are conventionally immobilized onto
suitable carrier materials such as clay minerals, rice bean,
peat, lignite, wheat bran, humus and wood charcoal. These
carriers enhance the stability, handling, and shelf life of
microbial inoculants (Bhattacharjee and Dey, 2014). When
judiciously applied, biofertilizers confer numerous
agronomic benefits, including the reduction in dependence on
synthetic fertilizers (Askary et al., 2009), mitigation of
environmental pollution (Bhattarai & Hess, 1993),
improvement in nutrient availability and uptake efficiency
(Kour et al., 2019), and stimulation of plant growth through
the secretion of bioactive compounds (Rao et al., 1983).
Collectively, these effects contribute to the soil’s biological,
chemical, and physical attributes (Hossain, 2015) while also
inducing systemic resistance in plants against certain
pathogens (Jagnow, 1990). Furthermore, due to their cost-
effectiveness,  biofertilizers  remain  accessible to
economically marginalized farming communities.

The majority of microorganisms inhibiting the
rhizosphere possess the inherent capacity to decompose
complex organic substrates into simpler, plant-assimilable
compounds, thereby facilitating root proliferation through the
serration of growth-promoting phytohormones. Plant growth-
promoting microorganisms play an indispensable role in
regulating key ecological and biochemical processes,
including organic matter mineralization, mobilization of
essential nutrients such as nitrogen, phosphorous, potassium,
magnesium, and iron, and overall enhancement of plant vigor
(Lalitha, 2017). Among these, Plant Growth-Promoting
Rhizobacteria (PGPR) constitute a prominent microbial
consortium widely employed as biofertilizers. PGPR promote
plant development and health through both direct and indirect
mechanisms. Directly, they stimulate plant growth via
atmospheric nitrogen fixation, phosphorus solubilization,
siderophore synthesis, and the production of phytohormones
such as indole-3-acetic acid (IAA) gibberellic acid,
cytokinins, and ethylene (Backer et al. 2018). Biological
nitrogen fixation (BNF), primarily executed by rhizosphere-
dwelling prokaryotes, represents a cornerstone process in
sustainable nutrient cycling (Kumar & Gera, 2013). Only a
limited group of diazotrophic microorganisms possess the
enzymatic machinery to convert atmospheric nitrogen (N2)
into ammonium (NH4"), a soluble, non-toxic form readily
assimilated by plants for biomolecule synthesis (Kumar &
Gera, 2013). BNF thereby serves as a natural and eco-
efficient alternative to synthetic nitrogen fertilizers,
mitigating their detrimental environmental impact (Saikia &
Jain, 2007). Another crucial component of soil biota
comprises mycorrhizal associations, which significantly
enhanced the host plant’s ability to withstand adverse edaphic
conditions such as drought by expanding the absorptive
surface area of roots and facilitating nutrient uptake
(Lehmann et al., 2016). Mycorrhizal fungi not only bolster
plant growth but also act as biocontrol agents, protecting
against pathogenic organisms (Leaungvutiviroj et al., 2010).
This study underscores a comprehensive overview of Plant
Growth-Promoting Rhizobacteria (PGPR) based
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biofertilizers and elucidates their multifaceted mechanisms
that underpin sustainable agricultural development.

» Plant Growth Promoting Rhizobacteria

Biofertilizers play a pivotal role in enhancing plant
productivity through a spectrum of biological mechanisms.
Their influence manifests via direct mechanisms such as
nitrogen fixing, nutrient solubilization and mobilization, and
phytohormone synthesis (Figure: 1) as well as indirect
mechanisms, including the production of secondary
metabolites like antibiotics, siderophores, and other
antimicrobial compounds (Figure: 2). Extensive research has
demonstrated that the plant growth-promoting attributes of
biofertilizers are primarily attributed to bacterial genera such
as Azospirillum, Rhizobium, Bacillus spp., Pseudomonas
spp., Burkholderia, Paenibacillus Enterobacter,
Herbaspirillum, Pantoea, Bradyrhizobium, Azotobacter, and
Serratia. These Plant Growth-Promoting Rhizobacteria
(PGPR) have been extensively characterized and globally
recognized for their agronomic benefits as biofertilizers
(Tabassum et al., 2017). Within the rhizosphere, PGPR
activities enhance the concentration and bioavailability of
essential nutrients to plants. Depending on their ecological
functions and symbiotic interactions, biofertilizers exhibit
diverse classifications. Remarkably, a single biofertilizer
formulation may comprise either a microbial consortium
embodying multiple PGP traits or a single PGPR strain
exhibiting multifaceted growth-promoting capabilities (Aloo
et al., 2022). PGPR may facilitate plant growth directly by
modulating endogenous phytohormone levels or by
improving resource acquisition, and indirectly by mitigating
the deleterious impacts of pathogenic microorganisms that
hinder plant growth and development. Prominent examples of
growth-promoting bacteria include Rhizobium,
Bradyrhizobium,  Sinorhizobium, Azospirillum, Nostoc,
Anabaena, Acetobacter, and others includes Bacillus
megaterium, Azolla, and Bacillus polymyxa. These microbial
taxa substantially enhance crop yield, root proliferation, and
overall plant vigor (Mahanty et al., 2016). Notably, PGPR can
directly stimulate plant growth through the secretion of
phytohormones or signalling molecules, while their indirect
actions, such as the biosynthesis of antimicrobial and stress-
mitigating compounds, confer resilience against biotic and
abiotic stressors. Owing to these multifaceted properties, they
are often referred to as bio stimulants (Kaushal et al., 2023).
PGPR-based biofertilizers can be functionally classified
based on their ability to increase the bioavailability of specific
mineral nutrients. Distinct PGPR strains are implicated in
various processes, including nitrogen fixing (conversion of
atmospheric N into bioavailable NH3; or NH4"), nutrient
solubilization (transformation of insoluble phosphorus into
H,POy4, conversion of bound potassium into ionic K*, and
mobilization of zinc into Zn®'), substrate oxidation
(generation of SO4? through sulfur compound oxidation), and
metal chelation via the secretion of siderophores, phenolic
compounds, and organic acids that scavenge Fe** and other
trace elements essential for plants metabolism (Mitter et al.,
2021, Colombo et al., 2013, Malusa & Vassilev, 2014).
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Indirect Mechanisms of Action of
Plant Growth Promoting Rhizobacteria (PGPR)
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Fig 1 Direct Mechanism of Action of PGPR

Figure: 1 Keenly depicts the direct phenomena by
which the PGPR copious the plant growth. The prokaryote
precisely boosts the nutrient accretion through the process of
biological nitrogen fixation, the other process is solubilizing
the available nutrients in the environment and also
mobilization (N, P, K, S, and micronutrients), These PGPR’s
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also ooze phytochemicals in the form of phytohormones that
simulate root and shoot development. These sequential
processes mainly boost the plant nutrition, garners elevated
growth, and ultimately aggrandize the crop yield in an eco-
friendly manner.
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Fig 2 Indirect Mechanism of Action of PGPR

Figure 2 Keenly depicts the direct phenomena by which
the PGPR copious the plant growth. The prokaryote precisely
boosts the nutrient accretion through the process of biological
nitrogen fixation, the other process is solubilizing the
available nutrients in the environment and also mobilization
(N, P, K, S, and micronutrients), These PGPR’s also ooze
phytochemicals in the form of phytohormones that simulate
root and shoot development. These sequential processes
mainly boost the plant nutrition, garners elevated growth, and
ultimately aggrandize the crop yield in an eco-friendly
manner.

» Nitrogen Fixers

Nitrogen-fixing microorganisms possess a specialized
enzyme complex known as nitrogenase, which facilitates the
reduction of atmospheric nitrogen (N») into ammonia (NH3)
during the process of Biological Nitrogen Fixation (BNF)
(Figure 3) (Chakraborty & Tribedi, 2019). These diazotrophic
microorganisms are broadly categorized into two groups
which are symbiotic and non-symbiotic. Symbiotic nitrogen
fixers, exemplified by members of the family Rhizobiaceae,
establish mutualistic associations with leguminous plants,
forming nodules on their roots where nitrogen fixation occurs
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(Ahemad & Kha, 2011). In contrast, non-symbiotic nitrogen
fixers, such as Cyanobacteria, Azospirillum, and
Azotobacter, function independently or as endophytes within
plant tissues without forming nodules (Bhattacharyya & Jha,
2011). The symbiotic Rhizobium species, belonging to the
Rhizobiaceae family within the a-proteobacteria class, infect
the root hairs of leguminous plants, initiating a highly
regulated and complex host-microbe interaction that
culminates in the formation of nodules. Within these nodules,
Rhizobia differentiate into Bacteroides, functioning as
intercellular symbionts that facilitate nitrogen fixation (Allito
et al., 2015). A distinct hemoprotien, leghemoglobin, plays a
crucial role in modulating oxygen concentration within root
nodules, ensuring optimal conditions for nitrogenase activity.
The globin portion of leghemoglobin is synthesized by the
plant, while the heme cofactor is produced by the bacterial
symbiont, both components being expressed exclusively
upon successful infection by RhAizobium. During this
symbiotic exchange, the plant supplies the Bacteroides with
organic acids derived from photosynthetically produced
sugars, while receiving amino acids rather than free ammonia
in return (Mohammadi & Sohrabi, 2012). Collectively, the
genera  Rhizobium,  Bradyrhizobium,  Sinorhizobium,
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Azorhizobium, and Mesorhizobium are referred to a Rhizobia.
On the other hand, non-symbiotic nitrogen-fixing bacteria,
commonly known as diazotrophs, can establish facultative
associations with non-leguminous plants, fixing nitrogen
without forming specialized structures (Verma et al., 2010).

Members of the genus Azospirillum are characterized as
motile, oxidase-positive, curved rod-shaped bacteria that are
Gram-negative to Gram-variable and capable of acetylene
reduction under microaerophilic conditions. These bacteria
predominantly inhibit the rhizosphere, where their
colonization dynamics have been extensively studied through
reporter gene fusion and microscopy-based analyses
(Steenhoudt & Vanderleyden, 2000). Although the genus
encompasses multiple species, such as A. halopraeferens,
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Azospirillum amazonense, and A. brasilense, the most
agriculturally beneficial strains include A. lipoferum and A.
brasilense. These organisms are prolific producers of
phytohormones, including gibberellins, naphthalene acetic
acid (NAA), and B-complex vitamins, which collectively
enhance root development, improve mineral assimilation, and
suppress certain root-borne diseases (Mathivanan et al. 2015).
Similarly, Azotobacter species secrete bioactive compounds
that stimulate root proliferation and inhibits the growth of
pathogenic microorganisms within the rhizosphere (Youssef
and Eissa 2014). Notably, Azotobacter indicum synthesizes a
diverse array of antifungal antibiotics capable of suppressing
pathogenic fungi in the root zone, thereby minimizing
nutrient loss, reducing seedling mortality, and improving
overall plant vigor (Martin et al. 2011).

BIOLOGICAL NITROGEN FIXATION (BNF)
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Fig 3 Biological Nitrogen Fixation

Figure: 3 This representation clearly embodies the
sequential process of biological nitrogen fixation and
subsequent nitrogen transformations in soil; the whole
scenario of nitrogen fixation is influenced by different
environmentally friendly microbes. In the whole process of
nitrogen fixation Atmospheric nitrogen (N:) is converted into
ammonia (NHs) by the nitrogen-fixing bacteria then it is bio
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transformed into ammonium (NH4"). Ammonification is a
key step in nutrient cycling, hence Ammonifying bacteria
mediates the decomposition of organic material (humus),
releasing the additional ammonium into the soil. The specific
Nitrifying bacteria oxidize the chemical compound
ammonium into nitrate (NOs~), which can be instantly taken
by plant root. After these sequential steps, some nitrogen is
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cycled back into the atmosphere through the action of certain
denitrifying bacteria, the destined role of these bacteria is to
convert nitrates into N: gas. The compound formed as
ammonium is then up taken by water transport system(xylem)
and food transport system (phloem) by the plant root. This
cycle mainly delineates the pivotal aspects of soil microbial
flora in maintaining nitrogen availability and supporting the
plant’s enhanced productivity.

» Nutrient Mobilization/Solubilization

Soil serves as a substantial reserve of essential macro-
and micronutrients, such as nitrogen, phosphorus, potassium,
and trace elements. Nevertheless, the majority of these
nutrients persist in insoluble, inaccessible, or highly complex
forms, rendering them unavailable for plant uptake.
Biofertilizers play a pivotal role in nutrient solubilization and
mobilization by facilitating the bioconversion of these
unavailable nutrient forms into soluble, bioavailable
derivatives that can be readily assimilated by plants.

o Phosphate Solubilization

Phosphorus is indispensable to nearly all primary
metabolic pathways, including respiration, photosynthesis,
energy translocation, signal transduction, cell division and
elongation, and macromolecular biosynthesis. It fortifies
plants against abiotic stress such as cold and enhance disease
resistance (Khan et al.,, 2009). Although soils generally
contain abundant phosphorus, most of it exists in insoluble
forms, unavailable for plant utilization. Plants primarily
absorb phosphorus fraction comprises inositol phosphate
(soil phytate), phosphomonoesters, and phosphotriesters,
whereas apatite represents the predominant inorganic form
(Mahdi et al., 2010). Certain soil microorganisms excrete low
molecular weight organic acids such as citric and gluconic
acid that promote the solubilization of inorganic phosphate
(Glick, 2012). The hydroxyl and carboxyl moieties of these
acids chelate cations bound to phosphate, liberating
phosphorus into its soluble form. Conversely, organic
phosphorous undergo mineralization via phosphatase enzyme
that catalyse the hydrolysis of phosphoric esters (McComb et
al., 2013). Microbial inoculants, biofertilizers, therefore serve
as ecologically sustainable alternatives to chemical
phosphorus fertilizers (Alori et al., 2017). Among the most
efficient phosphate-solublizing bacteria (PSB) are members
of genera Pseudomonas and Bacillus (Babalola and Glick.,
2012). Xanthomonas, Klebsiella, Gordonia, Delftia sp.,
Gordonia, Enterobacter, Pantoea, Vibrio proteolyticus,
Burkholderia, Erwinia, Azotobacter, Flavobacterium,
Microbacterium, Beijerinckia, and Rhizobium are among the
other bacteria that have been found (Chen et al., 2006; Sharan
et al., 2007, Farajzadeh et al., 2012, Selvakumar et al., 2007,
Koulman et al., 2011).

e Potassium Mobilization

Potassium, the third essential macronutrient which is
integral to plant metabolism, growth and developmental
physiology. Deficiency of potassium results in stunted
growth, poor seed formation, underdeveloped roots and
reduced yields (Hell & Mendel., 2010). Microbial inoculants
inhabiting the rhizosphere such as Aspergillus, Bacillus spp.,
Clostridium spp., Burkholderia, Acidothiobacillus
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ferrooxidans, Psedomonas, Paenibacillus spp., Bacillus
mucilaginosus, B. circulans and B. edaphicus have been
reported to release potassium from potassium-bearing
minerals into bioavailable forms (D. Liu et al.,, 2012).
Microorganisms like Bacillus mucilaginosus and B.
edaphicus organic acids that effectively solubilize rock-
derived potassium sources (Sakr et al., 2014). Significant
mobilization of potassium from waste mica which is a natural
source that has been observed with inoculants such as B.
mucilaginosus, Azotobacter chroococcum and Rhizobium,
resulting in enhanced wheat growth (Singh et al., 2010).

o Sulfur Dissolving Microorganisms

Sulfur constitutes the fourth major nutrient essential for
crop productivity, following nitrogen, phosphorus, and
potassium, and is among the sixteen indispensable elements
for plant growth. Soil microbial activity mediates sulfur
transformations through mineralization, immobilization,
oxidation, and reduction processes. Sulfur-oxidizing bacteria
synthesize organic molecules from carbon dioxide while
producing sulfuric acid as a byproduct of sulfur oxidation.
The enzyme sulfatase, secreted by sulfur-dissolving
microorganisms, facilitates the conversion of sulfur
compounds into bioavailable forms (Hayes et al., 2000).

A diverse consortium of sulfur bacteria is involved in
the oxidation and reduction of inorganic sulfur compounds.
Thiobacillus spp are particularly significant, as they generate
soil acidity through sulfur oxidation, thereby enhancing
nutrient solubilization and soil fertility (Yang et al., 2010).
Additionally, various fungal taxa, including Penicillium spp.,
Epicoccum nigrum, Alternaria tenuis, Scolecobasidium
constrictum, Aspergillus, Auerobasidium pullulans, and
Myrothecium cinctum, are capable of oxidizing elemental
sulfur and thiosulfate (Shinde et al., 1996).

» Phytohormones Production

Phytohormones, or plant growth regulators, are crucial
for orchestrating plant growth, differentiation, and
developmental processes (Peleg & Blumwald, 2011).
Rhizospheric microorganisms have been found to synthesize
or modulate the endogenous concentrations of these
hormones in host plants, thereby influencing hormonal
balance and stress physiology (Glick, 2012). Numerous
PGPR (Plant Growth Promoting Rhizobacteria) strains, such
as Arthrobacter giacomelloi, Azospirillum brasilense,
Pseudomonas  fluorescens, Bradyrhizobium japonicum,
Bacillus licheniformis, and Paenibacillus polymyxa are
known to produce cytotoxins that stimulate cell division,
tissue differentiation, and organogenesis, while reducing the
root-to-shoot ratio (Perrig et al., 2007; Arkhipova et al.,
2007). Auxins, particularly indole-3-acetic acid (IAA), are
the most extensively studied microbial phytohormones, with
approximately 80% of rhizospheric isolates reported to
secrete IAA as a secondary metabolite (Ahemad & Khan,
2011). IAA enhances root initiation and elongation,
improving nutrient and water uptake efficiency (Khare &
Arora, 2010). Ethylene, another critical phytohormone,
functions in plant defence and senescence regulation.
Although excessive ethylene can inhibit root elongation and
auxin transport, moderate levels, often induced by
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Azospirillum brasilense, promote root hair proliferation and
development in plants such as tomato (Ribaudo et al., 2006).
Gibberellins, similarly, foster primary root elongation and
lateral root expansion, and are synthesized by bacterial genera
such as Acinetobacter spp., Achromobacter, Azotobacter spp.,
Azospirillum, Rhizobium, Gluconobacter, Bacillus, and
Herbaspirillum (Dodd et al., 2010).

II. INDIRECT MECHANISM OF
BIOFERTILIZERS -ANTIBIOTIC AND
SIDEROPHORE PRODUCTION

Numerous microbial strains produce antibiotic
metabolites, such as aldehydes, hydrogen cyanide, alcohols,
sulfides, ketones, diacetylphloroglucinol, viscosinamide,
mupirocin, pyocyanin, phenazine derivatives, zwittermicin A,
pyrrolnitrin, pyoluteorin, and oomycin A, that suppress
phytopathogens (Bhattacharyya & Jha, 2011). Biofertilizer
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fluorescens, and Bacillus subtilis enhance plant growth and
mitigate diseases caused by Fusarium, Pythium, Rhizoctonia,
and  Sclerotium  species. Additionally, rhizobacteria
synthesize compounds such as phenazines, cyclic
lipopeptides, and 2,4-diacetylphloroglucinol, which trigger
Induced Systemic Resistance (ISR) in plants, thereby
enhancing immunity (Pieterse et al., 2014). Siderophores, low
molecular weight (400-1500 Da) ferric ion chelators, are
secreted by bacteria, fungi, actinomycetes, and some algae
under iron-limited conditions (Arora et al., 2013). They
facilitate iron acquisition by form Fe siderophore complexes
that are easily assimilated by plants. For instance,
Pseudomonas fluorescens C7 produces pyoverdine, which
enhances iron uptake and plant vigor in Arabidopsis thaliana
(Parray et al., 2016). Moreover, under heavy metal stress,
siderophore-producing microbes alleviate toxicity by
sequestering metals, thereby safeguarding plant health
(Rajkumar et al., 2010).

including Trichoderma harzianum, Pseudomonas
Table 1 Role of Biofertilizer in Plant Growth Promotion and Biocontrol
Biofertilizer Function Role in biocontrol Reference
Rhizobium Nitrogen fixing NA (Vessey, 2003)

R. leguminosarum

cytokinin

Solubilization of minerals
such as phosphorus and

By secreting antibiotics and
cell wall-degrading
enzymes that can inhibit
the phytopathogens

(Afzal and Bano, 2008)

Bradyrhizobium sp.
siderophores and 1A

By solubilizing phosphate,

By producing HCN (Afzal and Bano,2008)

B. japonicum
IAA, siderophores

Phosphate solubilization,

By secreting antibiotics and
cell wall-degrading
enzymes that can inhibit

(Bardin et al., 2004)

the phytopathogens

Acidothiobacillus, Sulphte Solubilizing NA (Gonzélez-Lépez et al., 2005)

Thiomicrospira, Thiosphaera, Microorganism (Sahoo et al., 2014)
Paracoccus, Xanthobacter, (Bhattacharyya & Jha, 2011)

Frankia Nitrogen fixing NA (Simonet et al., 1990)
Azorhizobium Nitrogen fixing NA (Sabry et al., 1997)
Beijerinckia Nitrogen fixing NA (De Felipe, 2006)
M. mediterraneum Phosphate solubilizing NA (Afzal and Bano, 2008)

Burkholderia Phosphate solubilizing Producing the antibiotics (Bhattacharyya and Jha,
pyrrolnitrin 2012)
Mycobacterium IAA synthesis Induction of the plant stress (Egamberdiyeva, 2007)
resistance
Acidothiobacillus ferrooxidans By solubilizing potassium NA (Liuetal., 2012)
Phyllobacterium Siderophore production NA (Flores-Felix et al., 2015)
Chryseobacterium Siderophore production NA (Radzki et al., 2013)

Paenibacillus Indole acetic acid synthesis Chitinases and glucanases (Bent et al., 2001)
Streptomyces IAA synthesis, siderophore Producing glucanases (Verma et al., 2010)
1. CONCLUSION through the synthesis of antibiotics, siderophores, and the

Plant Growth Rhizobacteria (PGPR), functioning as
potent biofertilizers and biostimulants, constitute an
indispensable component of sustainable agriculture
paradigms. These  microorganisms facilitate  plant
development through direct physiological processes such as
biological nitrogen fixation, nutrient solubalization, and
phytohormone biosynthesis. Concurrently, they indirectly
fortify plant health by mitigating pathogenic invasions
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induction of systematic resistance mechanism. Prominent
genera, includes Rhizobium, Azospirillum, Azotobacter,
Bradyrhizobium, Pseudomonas spp., and Bacillus, exemplify
remarkable ecological versatility across diverse edaphic and
crop environments. By augmenting the bioavailability of vital
macronutrients which are nitrogen, potassium, phosphorus
and sulfur, PGPR effectively curtail the dependence on
synthetic fertilizers, thereby diminishing their adverse
ecological ramifications. Moreover, these Rhizobacteria
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bolster plant resilience under abiotic stress conditions by
modulating endogenous hormonal equilibria and reinforcing
stress adaptation pathways. Consequently, PGPR not only
enhance soil fertility and crop productivity but also underpin

ecologically  harmonious,

economically viable, and

environmentally benign agricultural practices. In the face of
escalating global challenges such as soil nutrient exhaustion,
climatic fluctuations, and mounting food security concerns,
PGPR-based biofertilizers emerge as a promising and

sustainable alternative to conventional agronomic
approaches.
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