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Abstract: Law enforcement agencies rely on accurate crime prediction systems to study past and present crime trends in
order to forecast and prevent future incidents. Among Deep Learning (DL) approaches, time series prediction using Long
Short-Term Memory (LSTM) networks is popular because modeling long-term temporal dependencies and sequential
patterns is necessary for crime data. However, LSTM struggles with large number of parameters due to three gates,
difficulty in capturing very short-term dependencies and increased memory consumption, limits the prediction on real-time
crime datasets. For spatial learning, Graph Convolutional Networks (GCNSs) have been used to capture crime area based
correlations and spatial dependencies in crime data. However, GCN often overfit to local graph structures, struggle to
extract transferable features across diverse regions and exhibit reduced performance when spatial data is noisy or
incomplete. To overcome such limitations a Graph Convolutional Network with Gated Recurrent Unit (GCN-GRU) is put
forward in this paper to enhance crime prediction. In this model, GCN dynamically adapts the graph topology based on
spatial data characteristics to extract relevant features across diverse spatial regions in the crime dataset. Also, this
mechanism captures both local and global spatial dependencies improve resilient to noisy or incomplete data. By updating
neighborhood relationships during training, GCN avoids dependence on fixed local structures reducing overfitting and
improving spatial feature stability. GRU employs only two gates (reset and update) with fewer parameters enabling faster
training and lower memory usage. Moreover, the reset gate enhances the handling of sudden and short-term variations in
sequential crime data while preserving the ability to technique long-standing needs. In the temporal modeling module, GRU
network captures the underlying relationships between sequential crime events and their temporal patterns. Along with this
Cross-Entropy Loss function is employed to help the method to give greater probabilities to correct crime categories to
improve classification accuracy and enhance decision confidence in crime prediction. Thus, GCN improves spatial feature
mapping and GRU enhances temporal sequence learning in enhanced crime classification. Experimental results demonstrate
that the proposed GCN-GRU outperforms existing baseline approaches in crime prediction.
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1 INTRODUCTION of crime poses significant challenges, as criminal activities are

influenced by multiple factors such as location, time, social

The ability for law enforcement to proactively forecast
and prevent future criminal acts through the analysis of both
historical records and real-time incident reports makes crime
prediction an essential component of contemporary urban
safety management [1]. By detecting patterns and correlations
in crime data, authorities can optimize resource allocation,
improve patrol scheduling, and enhance strategic decision-
making to ensure public safety. However, the dynamic nature
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dynamics, and environmental conditions, which make the
prediction problem both spatially and temporally complex [2].

LSTM networks are popular in temporal modeling
because to their ability to detect patterns and dependencies in
sequential data that persist over time [3,4]. This is useful for
crime datasets, which often exhibit seasonal variations
alongside sudden, irregular events. However, LSTMs require
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training a large number of parameters due to their three-gate
structure (input, forget, output) [5], leading to high
computation, long training times, and memory overheads. They
may also struggle to adapt to abrupt short-term changes in
crime patterns [6].

For spatial modeling, GCNs have shown promise by
representing crime-prone areas as graph nodes and using edges
to model spatial relationships [7,8]. This allows GCNSs to
aggregate context from neighboring regions. However,
traditional GCNs can overfit to local structures, struggle with
varying spatial patterns, and perform poorly when data is noisy
or incomplete due to their fixed graph topology [9,10].

To solve this issue, this paper proposes an GCN-GRU for
improved crime prediction. In this model, GCN dynamically
adapts the graph topology based on spatial data characteristics
to extract relevant features across diverse spatial regions in the
crime dataset. This method improves resilience in the face of
incomplete or noisy data by successfully capturing both global
and local spatial dependencies. By updating neighborhood
relationships during training, GCN reduces reliance on fixed
local structures, thereby minimizing overfitting and improving
the stability of spatial feature representations. The GRU
component employs only two gates are reset and update, which
reduces the number of parameters, enabling faster training and
lower memory usage compared to LSTM. The reset gate
strengthens the technique’s facility to handle sudden and short-
term variations in sequential crime data, while still preserving
the capacity to model long-term dependencies.

In the sequence learning module, GRU captures the
underlying relationships between sequential crime events and
their temporal patterns. Applying the Cross-Entropy Loss
function further improves classification accuracy by training
the network to provide more weight to the right types of crimes,
which boosts prediction accuracy and decision confidence.
Thus, GCN enhances spatial feature mapping, while GRU
improves temporal sequence learning for more effective crime
classification. Experimental evaluations show that GCN-GRU
achieves superior accuracy, resilience to data noise, and faster
computation compared to baseline models, confirming its
effectiveness for real-time crime prediction tasks.

The remaining sections of this study are designed as
follows: Section Il summarizes the related literature. Section Il1
describes the GCN-GRU model. Section IV presents the
experimental outcomes and Section V concludes the work
together with discussing possible future improvements.

1. LITERATURE SURVEY

Liang et al. [11] proposed a Neural Attentive framework
for Hour-level Crime prediction (NAHC) to enhance crime
forecasting performance in fine grained temporal settings. To
address the negative-inflated issue, a knowledge-based data
improvement technique was used in advance. Using multi-
graph convolution, we built three distinct kinds of graphs to
represent spatial dependency from all directions. To describe
temporal dependency and capture external influences, gated
recurrent units combined with a temporal attention mechanism
were used. A fully connected network was used to get the final
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prediction results after learning representations using a
categorical attention mechanism that was developed to handle
categorical dependency. On the other hand, dealing with
extremely sparse data with little contextual information may
impact the model's performance.

Dong et al. [12] created a deep Spatio-Temporal 3D
convolutional neural network (ST3DNetCrime), for the
purpose of crime prediction at precise spatial temporal scales.
To rectify the issue of irregular and sparse crime information in
local spatial temporal contexts, the model used a periodic
periodic integral mapping. Its purpose was to record the time-
space correlations of three types of crime data: recent, near-
historical, and distant-historical, and to characterize the spatial
differences in the contributions of these correlations. At last,
thorough testing on Los Angeles-based real-world datasets
proved that the suggested ST3DNetCrime framework
outperforms baseline techniques in terms of prediction
performance and improved robustness.

Tasnim et al. [13] presented an Attention-LSTM (ATTN-
LSTM) and Stacked Bidirectional LSTM (St-Bi-LSTM) based
framework for crime prediction across multiple districts and
cities. The dataset consisted of categorical, temporal, and
spatial information, which was pre-processed and relevant
features were selected based on correlation. The ATTN-LSTM
model processed categorical-temporal data, while the St-Bi-
LSTM handled spatial information to capture location-specific
crime patterns. To address the variability of feature
distributions across different cities, Feature-Level Fusion
(FLF) and Decision-Level Fusion (DLF) parts were
incorporated. The proposed approach aimed to forecast crime
efficiently than existing methods by leveraging temporal
sequences and location-specific trends. However, prediction
accuracy may be affected when training on cities with
significantly different data distributions.

Rayhan and Hashem [14] presented an Attention based
Interpretation Spatio-Temporal model (AIST) for crime
prediction. The adaptive spatio-temporal relationship
correlations were applied to analyze the crime classes using the
external factors such as crime vehicular movement and location
data, repeated crime patterns and real crime records. The
characteristics were inputted into AIST in order to capture the
complex and dynamic and non-sequentialconnections of
environmental reliance and temporal aspects for predicting a
certain type of crime. Overfitting problems have merged as a
result of insufficient data interpretation.

Zhou et al. [15] created a Hybrid Dynamic Multi-
Perspective Graph Neural Network (HDM-GNN) to detect the
crime actions. This approach leverages Spatio and temporal
interactions using varied urban data and incorporates the inter-
regional relations across various perspectives. The compressive
spatial trends and extensive temporal interactions were
obtained using the Gated CNN and Graph Attention model.
But, this model struggles with training spatiotemporal features
from diverse sequences and effectively fusing complementary
features.

Wang et al. [16] introduced a Spatial Temporal
Multivariate Zero-Inflated Negative Binomial Graph Neural
Networks (STMGNN-ZINB) method. In order to parameterize
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probability distributions of criminal occurrences, this paradigm
uses convolution and diffusion networks to examine
geographical, temporal, and multivariate relationships. To
improve prediction accuracy and confidence interval precision,
STMGNN-ZINB uses a Zero-Inflated Negative Binomial
technique to handle sparse crime data. Testing on real-world
datasets has shown that STMGNN-ZINB is superior to other
models, making it a more trustworthy resource for studying and
forecasting criminal behavior.

Wang et al. [17] developed a crime occurrence prediction
model with multi-type crime correlation learning called Multi-
Type Relations Aware Graph Neural Networks (MRAGNN).
This model uses dynamic graph networks to capture the data's
spatio-temporal and type-temporal connections, and it builds a
spatial/type graph structure of the crime data dynamically. The
two dependents' representations were fused using a cross-
modal controlled fusion technique. The problems caused by
the imbalance in the data on crime occurrences on classification
results were finally addressed by applying an enhanced multi-
label classification focus loss. However, the model's inability
to adequately address imbalance concerns resulted in less
accurate results”
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I PROPOSED METHODOLOGY

In this part explains the proposed GCN-GRU model for
crime prediction in detail. Figure 1 depicts the pipeline of the
suggested technique.

» Mathematical Definition of Crime Prediction Task

A variety of spatiotemporal parameters, including
incident type, time, longitude, and latitude, are systematically
used to capture crime data. By utilizing a sliding window
technique, the input data may be expressed as a
multidimensional vector X € RR*T*¢, where R is the number
of regions, T is the length of the time window, and C is the
number of crime types. In each element X of the set R®*T*C the
count of crime type c in region r during time frame t is
indicated. The following is a possible formulation of the task:
The aim is to forecast the numbers of various crime kinds in
each area at time T + 1, given the input X € R™t¢, The
outcome is Y € RMR*C).

Crime Dataset ]
Spatial
Modeling
GCN
Temporal
Modeling
GRU
~,
Classification
Output
S
Fig 1 Pipeline of The Suggested Study
» GCN
To efficiently use the fundamental connections among A=A+l 1)
nodes for robust feature extraction, GCNs—a specialized type : 5
of CNNs—are trained to work directly on graph-structured data D)= FiAldj) )
[18]. Complex data patterns and interdependencies can be N L
better captured by GCNs than by typical statistical methods H(1+1)= o (D M(1/2) AD ~(1/2) HM o) ©)]

[19]. So, to find patterns in the crime data and extract
geographical features, GCN was chosen for this investigation.
The graph data is transformed into a tensor representation after
processing by the GCN. Figure 2 shows the computational
workflow, which may be represented by the following
equations:

Here, H' signifies the input features at layer [, ¢ represents
the sigmoid function, A denotes the adjacency matrix capturing
the relations among nodes, w' signifies the trainable weight
variables at [ and D represents the diagonal degree matrix
(typically utilized in the computation of the Laplacian matrix).
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Hidden layer

Fig 2 Architecture of GCN

» Proposed Model of GCN-GRU

The entire structure of the GCN-GRU model is outlined
in Figure 3. The training process is then performed as follows:
In the first step, previous-day crime records are aggregated
together with a sliding window of a grid-based solution, the
result will be a matrix with daily time resolution as the model

input. The feature learning module is then used to learn reliable
cross-task features that are found and transferred as inputs to
the prediction module to predict the crime incidence in the next
day. The two main components of the GCN-GRU design are
the feature extraction and prediction modules.

Temporal
A Theft Assault

& &

Spatial

Feature Extraction
using GCN

Spatial

/ﬁ. /i':.;'."'

MSE Loss —

.| Gated Recurrent
Unit (GRU)

Prediction

Total Loss

v

Cross-entropy loss —

Normal
Distribution

Fig 3 Architecture of GCN-GRU Technique

> Feature Extraction Module

The crime spatiotemporal data is initially handled through
a sliding window mechanism to convert them into a supervised
learning format. Since the crime data contains spatial
dependencies, they are captured with the help of GCNs which
extract detailed spatial features. The feature extraction module
output, which is referred to as HG is presented as:

HG = GCN (X, A) 4)
In (4), X indicates the input data.
Prediction Module

The relational mechanism in the GRU framework is
implemented to compute and refresh the relationships between
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crime categories and geographic regions. A full computational
procedure is shown in Fig. 4. Computation of GRU layers can
be illustrated as below equations.

The update gate z, is computed as in (5)

z t=o(W_z(h_(t-1),x_t )+b_z) (5)
In (6) is used to calculate the reset gate r,

r t=o(W r(h_(t-1),x_t )+b r) (6)

In (7) is used to calculate the candidate hidden state h,
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Finally, the hidden state h, representing the temporal
embedding is updated by
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Where, x, and h, represents the input feature vector and a
hidden state at the regression cycle t, respectively. W,, W,., W,
is the weight parameter of the update gate, reset gate and
candidate hidden state, and b,, b,, b, represents the bias
parameter of the corresponding one. The activation function is
represented by o ,while element-wise multiplication is

ht=(-2t) Oh (tH])z t OhL ®) denoted by . Figure 4 depicts the GRU architecture.
hy
F 3

Reset gate =~ Update gate
h,_, > — X oy » C,
-—
s ” _ 9y
o

L - =
N
"wb"'

tanh

T

Xy

Fig 4 Architecture of GRU

» Loss Function

Using the ideas outlined in [20], they include a cross-
entropy loss in the model to enhance the accuracy of
classification in predicting crime category. This approach
assigns different importance weights to each category based on
their occurrence frequency in the training dataset, thus
addressing class imbalance and increasing the technique’s
simplification ability. The formulation of the cross-entropy loss
is the following one.

L CE(Y,Y")=-1UN ¥ _(i=)"N. ¥ (c=1)"N. _c ¥~ (i,c)
logi/oi(y”_(i,c)) €)

Where, N indicates the amount of samples, C denotes the
quantity of crime categories, J;. represents the binary
indicator (0 or 1) which is made 1 when sample i falls in
category c, ¥; . denotes the forecast vision that sample i falls
in category c, and o, is the adaptive weight for category c.

The adaptive weight «_ is calculated as:

ox_c= 1/(log (B+p_c)) (10)
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where p, specifies the percentage of samples belonging
to sort ccc in the training set, and 8 > 1 is a smoothing factor
to prevent extremely large weights.

In addition to the classification objective, an approach to

quantifying the discrepancy between anticipated and observed
crime rates is the Mean Squared Error (MSE) cost:

L MSE (Y,Y")= UN ¥_(i=1)

(y_i-y Dl ~2 (1)
Finally, the overall loss function is described by:
[ Total loss= L) MSE+ AL CE (12)

In (11), Y signifies the predicted output, ¥ denotes the true
label, Lsg indicates the mean squared error loss, L denotes
the cross-entropy loss, and 4 € (0,1) is a balancing coefficient
that controls the contribution of the classification loss relative
to the regression loss.

» Model Training

The GCN-GRU model for crime prediction is trained
using the optimal hyperparameters summarized in Table 1. In
addition, crime predictions using the acquired data can be
accurately made using the trained model.
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Table 1 Parameter Settings

Parameters Range
No. of GRU layers 2
Kernel Size 8
Filter Size 98
Pool Size 5
No. of GCN layers 2
GRU Output Size 128
Dropout 0.4
Momentum 0.9
Regulation term 1.0
Batch size 64
Epochs 100
Learning rate 0.01
Optimizer Adam
Loss function Cross Entropy
Activation function ReL U/ Tanh

V. RESULTS AND DISCUSSION

» Dataset Description

The set of data employed in this framework is ‘Crime in
India’ [21], which provides comprehensive information on
various categories of crimes that occurred in India from 2001
onwards. Multiple factors can be analyzed from this dataset,
enabling individuals to gain deeper insights into India’s crime
statistics. It comprises 43 sections covering different types of
crimes. Some data include district-level details such as police
districts and special police units, which may vary from revenue
districts. The majority of the records span the years 2001 to
2010, with certain files extending to 2011 and 2001-2014. For
experimental analysis, four major crime classes are considered:
‘ST _SCcrime,’ ‘Childcrime,’ ‘Womencrime,’ and
‘Theftcrime.” Additionally, image and video data related to
crime terminologies from social media tweets corresponding to
these four classes are collected. By associating each crime
record with its respective image and video content, a total of
9,794 crime instances are obtained for experimentation.

» Experimental Design and Evaluation Metrics

Comparing the GCN-GRU technique in Python 3.11 to
other methods like NAHC[11], ST-3DNet[12], STMGNN-
ZINBJ[16], and MRAGNNJ[17], this unit determines how well
the GCN-GRU technique performs. The tests were performed
on a Windows 10 (64-bit) machine with an Intel® Core™ i5-
4210 CPU running @ 3GHz, 4GB of RAM, and a 1TB Hard
disk drive. In both cases, the proposed and baseline models
were evaluated using the datasets outlined in Section 4.1. From
the processed data, a total of 9,794 samples were identified, of
which 7,834 were allocated for training and 1,960 for testing,
following an 80:20 split.

The following performance measures are used to assess
the technique's capability to predict criminal conduct.

e Accuracy:
It is the percentage of occurrences for which predictions
were accurate divided by the overall amount of cases.

Accuracy= (TP + TN)/ (TP+TN+FP + FN) (13)
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Where, A true positive (TP) occurs when the model
accurately labels an occurrence as a criminal offense. A false
positive (FP) occurs when the model mistakenly labels an
occurrence that is not a criminal as a crime.  If the model
accurately predicts that an occurrence will not be a crime, we
say that it is a true negative (TN). When a crime is mistakenly
predicted by the model as a non-crime, it is called a false
negative (FN).

e Precision:

It quantifies the proportion of TP predictions (accurately
anticipated criminal events) relative to the total number of
positive predictions generated by the model.

Precision=TP/(TP+FP) (14)

e Recall:
It finds the fraction of correct predictions relative to the
total number of positive occurrences in the dataset.

Recall=TP/(TP+FN) (15)

e Fl1-score:
A score that finds an ideal balance between recall and
precision.

F1-score=(2xPrecisionxRecall)/(Precision+Recall) (16)

Fig 5 shows the comparison of the performances of
various crime prediction models using the Crime in India
dataset. The precision of GCN-GRU model is 5.42%, 4.16%,
2.81%, and 1.6% higher over the NAHC, ST-3DNet,
STMGNN-ZINB and MRAGNN models, respectively. In
terms of recall, GCN-GRU shows improvements of 4.3%,
3.84%, 2.83% and 1.5% over the same models. Additionally,
the F1-score of GCN-GRU is higher by 5.41%, 4.15%, 2.8%,
and 1.59% over the same models, respectively. These
enhancements are attributed to the model’s effective feature
extraction and sequential pattern learning in crime prediction.
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Fig 5 Performance Analysis of Different Crime Prediction Models
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Fig 6 Accuracy Analysis of Different Crime Prediction Models

Fig 6 illustrates the accuracy of various models evaluated
on the crime data prediction dataset. The GCN-GRU model
achieves accuracy that is 5.39% higher than NAHC, 4.13%
higher than ST-3DNet, 2.79% higher than STMGNN-ZINB,
and 1.38% higher than MRAGNN. This enhancement is due to
which the GCN-GRU model maximizes the prediction
accuracy compared to the other models by effectively learning
complex features from the historical and social media
information to predict crime intensities precisely.

V. CONCLUSION

This study proposes the GCN-GRU technique to enhance
crime prediction by addressing the limitations of traditional
LSTM and GCN architectures. This model uses a GCN based
mechanism to dynamically update the graph topology,
improving spatial feature extraction across diverse and noisy
crime data regions. The GCN component ensures resilience by
capturing both local and global dependencies while reducing
overfitting to fixed neighborhood structures. In the temporal
dimension, the GRU network, with its reset and update gates,
reduces computational complexity, improves memory
efficiency, and effectively models both long-term and sudden
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short-term crime variations. Additionally, the integration of the
Cross-Entropy Loss function strengthens classification
accuracy by assigning higher probabilities to correct crime
categories. By combining these mechanisms, the GCN-GRU
model achieves efficient spatial-temporal feature learning and
reduces computational cost. Finally, experimental results
confirm that the GCN-GRU model surpasses existing crime
prediction approaches, delivering higher accuracy and
adaptability for real-world crime forecasting.
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