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Abstract: Law enforcement agencies rely on accurate crime prediction systems to study past and present crime trends in 

order to forecast and prevent future incidents. Among Deep Learning (DL) approaches, time series prediction using Long 

Short-Term Memory (LSTM) networks is popular because modeling long-term temporal dependencies and sequential 

patterns is necessary for crime data. However, LSTM struggles with large number of parameters due to three gates, 

difficulty in capturing very short-term dependencies and increased memory consumption, limits the prediction on real-time 

crime datasets. For spatial learning, Graph Convolutional Networks (GCNs) have been used to capture crime area based 
correlations and spatial dependencies in crime data. However, GCN often overfit to local graph structures, struggle to 

extract transferable features across diverse regions and exhibit reduced performance when spatial data is noisy or 

incomplete. To overcome such limitations a Graph Convolutional Network with Gated Recurrent Unit (GCN-GRU) is put 

forward in this paper to enhance crime prediction. In this model, GCN dynamically adapts the graph topology based on 

spatial data characteristics to extract relevant features across diverse spatial regions in the crime dataset. Also, this 

mechanism captures both local and global spatial dependencies improve resilient to noisy or incomplete data. By updating 

neighborhood relationships during training, GCN avoids dependence on fixed local structures reducing overfitting and 

improving spatial feature stability. GRU employs only two gates (reset and update) with fewer parameters enabling faster 

training and lower memory usage. Moreover, the reset gate enhances the handling of sudden and short-term variations in 

sequential crime data while preserving the ability to technique long-standing needs. In the temporal modeling module, GRU 

network captures the underlying relationships between sequential crime events and their temporal patterns. Along with this 

Cross-Entropy Loss function is employed to help the method to give greater probabilities to correct crime categories to 

improve classification accuracy and enhance decision confidence in crime prediction. Thus, GCN improves spatial feature 

mapping and GRU enhances temporal sequence learning in enhanced crime classification. Experimental results demonstrate 

that the proposed GCN-GRU outperforms existing baseline approaches in crime prediction.   
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I. INTRODUCTION 
 

The ability for law enforcement to proactively forecast 

and prevent future criminal acts through the analysis of both 

historical records and real-time incident reports makes crime 

prediction an essential component of contemporary urban 

safety management [1]. By detecting patterns and correlations 

in crime data, authorities can optimize resource allocation, 
improve patrol scheduling, and enhance strategic decision-

making to ensure public safety. However, the dynamic nature 

of crime poses significant challenges, as criminal activities are 

influenced by multiple factors such as location, time, social 

dynamics, and environmental conditions, which make the 

prediction problem both spatially and temporally complex [2]. 

 

LSTM networks are popular in temporal modeling 

because to their ability to detect patterns and dependencies in 

sequential data that persist over time [3,4]. This is useful for 
crime datasets, which often exhibit seasonal variations 

alongside sudden, irregular events. However, LSTMs require 
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training a large number of parameters due to their three-gate 

structure (input, forget, output) [5], leading to high 

computation, long training times, and memory overheads. They 

may also struggle to adapt to abrupt short-term changes in 

crime patterns [6]. 

 

For spatial modeling, GCNs have shown promise by 

representing crime-prone areas as graph nodes and using edges 

to model spatial relationships [7,8]. This allows GCNs to 

aggregate context from neighboring regions. However, 

traditional GCNs can overfit to local structures, struggle with 

varying spatial patterns, and perform poorly when data is noisy 

or incomplete due to their fixed graph topology [9,10]. 

 

To solve this issue, this paper proposes an GCN-GRU for 

improved crime prediction. In this model, GCN dynamically 

adapts the graph topology based on spatial data characteristics 
to extract relevant features across diverse spatial regions in the 

crime dataset. This method improves resilience in the face of 

incomplete or noisy data by successfully capturing both global 

and local spatial dependencies. By updating neighborhood 

relationships during training, GCN reduces reliance on fixed 

local structures, thereby minimizing overfitting and improving 

the stability of spatial feature representations. The GRU 

component employs only two gates are reset and update, which 

reduces the number of parameters, enabling faster training and 

lower memory usage compared to LSTM. The reset gate 

strengthens the technique’s facility to handle sudden and short-

term variations in sequential crime data, while still preserving 

the capacity to model long-term dependencies.  

 

In the sequence learning module, GRU captures the 

underlying relationships between sequential crime events and 

their temporal patterns. Applying the Cross-Entropy Loss 

function further improves classification accuracy by training 
the network to provide more weight to the right types of crimes, 

which boosts prediction accuracy and decision confidence. 

Thus, GCN enhances spatial feature mapping, while GRU 

improves temporal sequence learning for more effective crime 

classification. Experimental evaluations show that GCN-GRU 

achieves superior accuracy, resilience to data noise, and faster 

computation compared to baseline models, confirming its 

effectiveness for real-time crime prediction tasks. 

 

The remaining sections of this study are designed as 

follows: Section II summarizes the related literature. Section III 

describes the GCN-GRU model. Section IV presents the 

experimental outcomes and Section V concludes the work 

together with discussing possible future improvements. 

 

II. LITERATURE SURVEY 
 

Liang et al. [11] proposed a Neural Attentive framework 

for Hour-level Crime prediction (NAHC) to enhance crime 

forecasting performance in fine grained temporal settings. To 

address the negative-inflated issue, a knowledge-based data 

improvement technique was used in advance. Using multi-

graph convolution, we built three distinct kinds of graphs to 

represent spatial dependency from all directions.  To describe 

temporal dependency and capture external influences, gated 

recurrent units combined with a temporal attention mechanism 

were used. A fully connected network was used to get the final 

prediction results after learning representations using a 

categorical attention mechanism that was developed to handle 

categorical dependency.  On the other hand, dealing with 

extremely sparse data with little contextual information may 

impact the model's performance.  

 

Dong et al. [12] created a deep Spatio-Temporal 3D 

convolutional neural network (ST3DNetCrime), for the 

purpose of crime prediction at precise spatial temporal scales.  

To rectify the issue of irregular and sparse crime information in 

local spatial temporal contexts, the model used a periodic 

periodic integral mapping.  Its purpose was to record the time-

space correlations of three types of crime data: recent, near-

historical, and distant-historical, and to characterize the spatial 

differences in the contributions of these correlations.  At last, 

thorough testing on Los Angeles-based real-world datasets 

proved that the suggested ST3DNetCrime framework 
outperforms baseline techniques in terms of prediction 

performance and improved robustness. 

 

Tasnim et al. [13] presented an Attention-LSTM (ATTN-

LSTM) and Stacked Bidirectional LSTM (St-Bi-LSTM) based 

framework for crime prediction across multiple districts and 

cities. The dataset consisted of categorical, temporal, and 

spatial information, which was pre-processed and relevant 

features were selected based on correlation. The ATTN-LSTM 

model processed categorical-temporal data, while the St-Bi-

LSTM handled spatial information to capture location-specific 

crime patterns. To address the variability of feature 

distributions across different cities, Feature-Level Fusion 

(FLF) and Decision-Level Fusion (DLF) parts were 

incorporated. The proposed approach aimed to forecast crime 

efficiently than existing methods by leveraging temporal 

sequences and location-specific trends. However, prediction 

accuracy may be affected when training on cities with 
significantly different data distributions. 

 

Rayhan and Hashem [14] presented an Attention based 

Interpretation Spatio-Temporal model (AIST) for crime 

prediction. The adaptive spatio-temporal relationship 

correlations were applied to analyze the crime classes using the 

external factors such as crime vehicular movement and location 

data, repeated crime patterns and real crime records. The 

characteristics were inputted into AIST in order to capture the 

complex and dynamic and non-sequentialconnections of 

environmental reliance and temporal aspects for predicting a 

certain type of crime.  Overfitting problems have merged as a 

result of insufficient data interpretation. 

Zhou et al. [15] created a Hybrid Dynamic Multi-

Perspective Graph Neural Network (HDM-GNN) to detect the 

crime actions. This approach leverages Spatio and temporal 

interactions using varied urban data and incorporates the inter-
regional relations across various perspectives. The compressive 

spatial trends and extensive temporal interactions were 

obtained using the Gated CNN and Graph Attention model. 

But, this model struggles with training spatiotemporal features 

from diverse sequences and effectively fusing complementary 

features. 

 

Wang et al. [16] introduced a Spatial Temporal 

Multivariate Zero-Inflated Negative Binomial Graph Neural 

Networks (STMGNN-ZINB) method. In order to parameterize 
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probability distributions of criminal occurrences, this paradigm 

uses convolution and diffusion networks to examine 

geographical, temporal, and multivariate relationships.  To 

improve prediction accuracy and confidence interval precision, 

STMGNN-ZINB uses a Zero-Inflated Negative Binomial 

technique to handle sparse crime data.  Testing on real-world 

datasets has shown that STMGNN-ZINB is superior to other 

models, making it a more trustworthy resource for studying and 

forecasting criminal behavior. 

 

Wang et al. [17] developed a crime occurrence prediction 

model with multi-type crime correlation learning called Multi-

Type Relations Aware Graph Neural Networks (MRAGNN). 

This model uses dynamic graph networks to capture the data's 

spatio-temporal and type-temporal connections, and it builds a 

spatial/type graph structure of the crime data dynamically.  The 

two dependents' representations were fused using a cross-
modal controlled fusion technique.  The problems caused by 

the imbalance in the data on crime occurrences on classification 

results were finally addressed by applying an enhanced multi-

label classification focus loss.  However, the model's inability 

to adequately address imbalance concerns resulted in less 

accurate results” 

 

III. PROPOSED METHODOLOGY 
 

In this part explains the proposed GCN-GRU model for 

crime prediction in detail. Figure 1 depicts the pipeline of the 

suggested technique. 

 

 Mathematical Definition of Crime Prediction Task 

A variety of spatiotemporal parameters, including 

incident type, time, longitude, and latitude, are systematically 

used to capture crime data. By utilizing a sliding window 

technique, the input data may be expressed as a 

multidimensional vector 𝑋 ∈ 𝑅𝑅∗𝑇∗𝐶, where 𝑅 is the number 

of regions, 𝑇 is the length of the time window, and 𝐶 is the 

number of crime types. In each element 𝑋 of the set 𝑅𝑅∗𝑇∗𝐶  the 

count of crime type 𝑐 in region 𝑟 during time frame 𝑡 is 

indicated. The following is a possible formulation of the task: 

The aim is to forecast the numbers of various crime kinds in 

each area at time T + 1, given the input 𝑋 ∈ 𝑅𝑟∗𝑡∗𝑐. The 

outcome is Y ∈ R^(R*C). 

 

 

 

 

 

 
Fig 1 Pipeline of The Suggested Study 

 

 GCN 

To efficiently use the fundamental connections among 

nodes for robust feature extraction, GCNs—a specialized type 

of CNNs—are trained to work directly on graph-structured data 

[18]. Complex data patterns and interdependencies can be 
better captured by GCNs than by typical statistical methods 

[19]. So, to find patterns in the crime data and extract 

geographical features, GCN was chosen for this investigation. 

The graph data is transformed into a tensor representation after 

processing by the GCN. Figure 2 shows the computational 

workflow, which may be represented by the following 

equations: 

 

A ̃=A+I                                                                                   (1) 

 

(D_ii ) =̃ ∑_j▒(A_ij ) ̃                                                           (2) 

 
H^(l+1)= σ (D ̃^(1/2)  A ̃D ̃^(1/2) H^l ω^l)                           (3) 

 

Here, 𝐻𝑙  signifies the input features at layer 𝑙, σ represents 

the sigmoid function, 𝐴 denotes the adjacency matrix capturing 

the relations among nodes, 𝜔𝑙 signifies the trainable weight 

variables at 𝑙 and 𝐷 represents the diagonal degree matrix 

(typically utilized in the computation of the Laplacian matrix). 
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Fig 2 Architecture of GCN 

 

 Proposed Model of GCN-GRU 

The entire structure of the GCN-GRU model is outlined 

in Figure 3. The training process is then performed as follows: 

In the first step, previous-day crime records are aggregated 

together with a sliding window of a grid-based solution, the 

result will be a matrix with daily time resolution as the model 

input. The feature learning module is then used to learn reliable 

cross-task features that are found and transferred as inputs to 

the prediction module to predict the crime incidence in the next 

day. The two main components of the GCN-GRU design are 

the feature extraction and prediction modules. 

 

 
Fig 3 Architecture of GCN-GRU Technique 

 

 Feature Extraction Module 

The crime spatiotemporal data is initially handled through 

a sliding window mechanism to convert them into a supervised 

learning format. Since the crime data contains spatial 

dependencies, they are captured with the help of GCNs which 

extract detailed spatial features. The feature extraction module 

output, which is referred to as HG is presented as: 

 

HG = GCN (X, A)                                                                  (4) 

 

In (4), 𝑋 indicates the input data. 

 

 Prediction Module 

The relational mechanism in the GRU framework is 

implemented to compute and refresh the relationships between 

crime categories and geographic regions. A full computational 

procedure is shown in Fig. 4. Computation of GRU layers can 

be illustrated as below equations.  

 

The update gate 𝑧𝑡 is computed as in (5) 

 

z_t= σ(W_z (h_(t-1),x_t  )+b_z )                                         (5) 

 

In (6) is used to calculate the reset gate 𝑟𝑡  

 

r_t= σ(W_r (h_(t-1),x_t  )+b_r )                                           (6) 

 

In (7) is used to calculate the candidate hidden state ℎ̂𝑡  
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h ̂_t=tanh⁡(W_h.[r_t  ʘ〖 h〗_(t+1),x_t ]+b_h )              (7) 

 

Finally, the hidden state ℎ𝑡 representing the temporal 

embedding is updated by 

 

h_t= (1-z_t )  ʘ h_(t+1)+z_t  ʘ h ̂_t                                     (8) 

 

Where, 𝑥𝑡 and ℎ𝑡 represents the input feature vector and a 

hidden state at the regression cycle 𝑡, respectively. 𝑊𝑧, 𝑊𝑟 , 𝑊ℎ   
is the weight parameter of the update gate, reset gate and 

candidate hidden state, and  𝑏𝑧 , 𝑏𝑟 , 𝑏ℎ  represents the bias 

parameter of the corresponding one. The activation function is 

represented by 𝜎 ,while element-wise multiplication is 

denoted by ⊙. Figure 4 depicts the GRU architecture. 

 

 
Fig 4 Architecture of GRU 

 
 Loss Function  

Using the ideas outlined in [20], they include a cross-

entropy loss in the model to enhance the accuracy of 

classification in predicting crime category. This approach 

assigns different importance weights to each category based on 

their occurrence frequency in the training dataset, thus 

addressing class imbalance and increasing the technique’s 

simplification ability. The formulation of the cross-entropy loss 

is the following one. 

 
 

L_CE (Y,Y ̂ )= -1/N  ∑_(i=1)^N▒∑_(c=1)^N▒∝_c  y ̂_(i,c)  

log⁡(y ̂_(i,c))                                                                    (9) 

               

Where, 𝑁 indicates the amount of samples, 𝐶 denotes the 

quantity of crime categories, 𝑦̂𝑖,𝑐  represents the binary 

indicator (0 or 1) which is made 1 when sample 𝑖 falls in 

category 𝑐, 𝑦̂𝑖,𝑐  denotes the forecast vision that sample 𝑖 falls 

in category 𝑐, and ∝𝑐 is the adaptive weight for category 𝑐.  

 

The adaptive weight ∝𝑐 is calculated as: 
 

∝_c=  1/(log (β+p_c))                                                        (10) 

 

where 𝑝𝑐 specifies the percentage of samples belonging 

to sort ccc in the training set, and 𝛽 > 1 is a smoothing factor 

to prevent extremely large weights. 

 

In addition to the classification objective, an approach to 

quantifying the discrepancy between anticipated and observed 

crime rates is the Mean Squared Error (MSE) cost: 

 

L_MSE (Y,Y ̂ )=  1/N  ∑_(i=1)^N▒〖(y_i-y ̂_i)〗^2       (11) 

 

Finally, the overall loss function is described by: 

 

〖 Total loss= L〗_MSE+ λ.L_CE                                   (12) 

 

In (11), 𝑌 signifies the predicted output, 𝑌̂ denotes the true 

label, 𝐿𝑀𝑆𝐸  indicates the mean squared error loss, 𝐿𝐶𝐸 denotes 

the cross-entropy loss, and 𝜆 ∈ (0,1) is a balancing coefficient 

that controls the contribution of the classification loss relative 

to the regression loss. 

 

 Model Training 

The GCN-GRU model for crime prediction is trained 

using the optimal hyperparameters summarized in Table 1. In 

addition, crime predictions using the acquired data can be 

accurately made using the trained model.
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Table 1 Parameter Settings 

Parameters Range 

No. of GRU layers 2 

Kernel Size 8 

Filter Size 98 

Pool Size 5 

No. of GCN layers 2 

GRU Output Size 128 

Dropout 0.4 

Momentum 0.9 

Regulation term 1.0 

Batch size 64 

Epochs 100 

Learning rate 0.01 

Optimizer Adam 

Loss function Cross Entropy 

Activation function ReLU / Tanh 

IV. RESULTS AND DISCUSSION 
 

 Dataset Description 

The set of data employed in this framework is ‘Crime in 

India’ [21], which provides comprehensive information on 

various categories of crimes that occurred in India from 2001 

onwards. Multiple factors can be analyzed from this dataset, 

enabling individuals to gain deeper insights into India’s crime 

statistics. It comprises 43 sections covering different types of 

crimes. Some data include district-level details such as police 
districts and special police units, which may vary from revenue 

districts. The majority of the records span the years 2001 to 

2010, with certain files extending to 2011 and 2001–2014. For 

experimental analysis, four major crime classes are considered: 

‘ST_SCcrime,’ ‘Childcrime,’ ‘Womencrime,’ and 

‘Theftcrime.’ Additionally, image and video data related to 

crime terminologies from social media tweets corresponding to 

these four classes are collected. By associating each crime 

record with its respective image and video content, a total of 

9,794 crime instances are obtained for experimentation. 

 

 Experimental Design and Evaluation Metrics 

Comparing the GCN-GRU technique in Python 3.11 to 

other methods like NAHC[11], ST-3DNet[12], STMGNN-

ZINB[16], and MRAGNN[17], this unit determines how well 

the GCN-GRU technique performs. The tests were performed 

on a Windows 10 (64-bit) machine with an Intel® Core™ i5-
4210 CPU running @ 3GHz, 4GB of RAM, and a 1TB Hard 

disk drive.  In both cases, the proposed and baseline models 

were evaluated using the datasets outlined in Section 4.1. From 

the processed data, a total of 9,794 samples were identified, of 

which 7,834 were allocated for training and 1,960 for testing, 

following an 80:20 split.  

 

The following performance measures are used to assess 

the technique's capability to predict criminal conduct. 

 

 Accuracy:  

It is the percentage of occurrences for which predictions 

were accurate divided by the overall amount of cases. 

 

Accuracy= (TP + TN)/ (TP+TN+FP + FN)                     (13) 

Where, A true positive (TP) occurs when the model 

accurately labels an occurrence as a criminal offense.  A false 

positive (FP) occurs when the model mistakenly labels an 

occurrence that is not a criminal as a crime.   If the model 

accurately predicts that an occurrence will not be a crime, we 

say that it is a true negative (TN).  When a crime is mistakenly 

predicted by the model as a non-crime, it is called a false 

negative (FN). 

 

 Precision:  
It quantifies the proportion of TP predictions (accurately 

anticipated criminal events) relative to the total number of 

positive predictions generated by the model. 

 

Precision=TP/(TP+FP)                                                  (14) 

 

 Recall:  

It finds the fraction of correct predictions relative to the 

total number of positive occurrences in the dataset. 

 

Recall=TP/(TP+FN)                                                           (15) 

 

 F1-score: 

A score that finds an ideal balance between recall and 

precision. 

 

F1-score=(2×Precision×Recall)/(Precision+Recall)      (16) 
 

Fig 5 shows the comparison of the performances of 

various crime prediction models using the Crime in India 

dataset. The precision of GCN-GRU model is 5.42%, 4.16%, 

2.81%, and 1.6% higher over the NAHC, ST-3DNet, 

STMGNN-ZINB and MRAGNN models, respectively. In 

terms of recall, GCN-GRU shows improvements of 4.3%, 

3.84%, 2.83% and 1.5% over the same models. Additionally, 

the F1-score of GCN-GRU is higher by 5.41%, 4.15%, 2.8%, 

and 1.59% over the same models, respectively. These 

enhancements are attributed to the model’s effective feature 

extraction and sequential pattern learning in crime prediction. 
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Fig 5 Performance Analysis of Different Crime Prediction Models 

  

 
Fig 6 Accuracy Analysis of Different Crime Prediction Models 

 

Fig 6 illustrates the accuracy of various models evaluated 

on the crime data prediction dataset. The GCN-GRU model 

achieves accuracy that is 5.39% higher than NAHC, 4.13% 

higher than ST-3DNet, 2.79% higher than STMGNN-ZINB, 

and 1.38% higher than MRAGNN. This enhancement is due to 
which the GCN-GRU model maximizes the prediction 

accuracy compared to the other models by effectively learning 

complex features from the historical and social media 

information to predict crime intensities precisely. 

 

V. CONCLUSION 
 

This study proposes the GCN-GRU technique to enhance 

crime prediction by addressing the limitations of traditional 

LSTM and GCN architectures. This model uses a GCN based 

mechanism to dynamically update the graph topology, 

improving spatial feature extraction across diverse and noisy 

crime data regions. The GCN component ensures resilience by 

capturing both local and global dependencies while reducing 

overfitting to fixed neighborhood structures. In the temporal 

dimension, the GRU network, with its reset and update gates, 

reduces computational complexity, improves memory 
efficiency, and effectively models both long-term and sudden 

short-term crime variations. Additionally, the integration of the 

Cross-Entropy Loss function strengthens classification 

accuracy by assigning higher probabilities to correct crime 

categories. By combining these mechanisms, the GCN-GRU 

model achieves efficient spatial-temporal feature learning and 
reduces computational cost. Finally, experimental results 

confirm that the GCN-GRU model surpasses existing crime 

prediction approaches, delivering higher accuracy and 

adaptability for real-world crime forecasting. 
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