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I. INTRODUCTION 
 

Mathematics has always played a central role in the 

development of statistical methods, and regression 

analysis stands as one of its most influential contributions. 

Regression models provide a systematic framework to 

describe, interpret, and predict relationships between 

variables. In the modern era of data-driven decision 

making, these models form the backbone of fields ranging 

from economics and social sciences to biology, 

engineering, and artificial intelligence. By allowing 

researchers and practitioners to quantify associations 

between independent and dependent variables, regression 
not only aids in understanding existing phenomena but 

also in forecasting future outcomes with measurable 

accuracy. 

 

Two of the most widely used approaches in 

regression analysis are linear regression and logistic 

regression. Linear regression focuses on modeling 

relationships where the dependent variable is continuous, 

relying on the principle of minimizing error through the 

least squares method. In contrast, logistic regression 

addresses classification problems, where the outcome is 
categorical, often binary. Both models, while conceptually 

distinct, share deep mathematical foundations that rely on 

optimization, calculus, and probability theory. Their 

underlying formulations—closed-form solutions in the 

case of linear regression—highlight the essential role of 

mathematical rigor in ensuring reliability and 

interpretability. 

 

The significance of regression extends far beyond 

theoretical mathematics. In practical applications, 

regression models allow us to analyze real-world datasets, 
detect patterns, and guide policy or strategy. For instance, 

linear regression can be used to project refugee population 

growth using historical data, while logistic regression can 

support healthcare decision-making by classifying 

medical outcomes such as tumor malignancy. 

 

This paper aims to present a comprehensive 

examination of the mathematical structures underlying 

linear and logistic regression. By deriving their objective 

functions, discussing optimization strategies, and 

demonstrating their utility through case studies, we 

emphasize both their theoretical depth and their practical 
relevance. 

 

II. LINEAR REGRESSION 

 

Linear Regression is a simple yet powerful statistical 

and mathematical concept used to model relationships 

between independent and dependent variables. The 

essence of Linear Regression lies in establishing a linear 

relationship between these variables by fitting a straight 

line to the data. This relationship can then be used to 

predict future values of dependent variable based on new 
values of the independent variable. The mathematical  

equation behind a Linear Regression model is: 

 

 
 

Where: 

 

y ̂ is the dependent variable 
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xi is the independent variable 
 

is the slope (or gradient) of the line is y-intercept of the 

line 

 

The above equation has 2 parameters. The goal of a 

Linear Regression model is to find those parameters that 

minimizes the difference between the actual value and the 

predicted value of the dependent variable, a term called 

residual (e = yi − y ̂, where y ̂ is the predicted value). 

 

 Least Squares Method 
Linear Regression models try to find the line of best 

fit such that there is least error. This line of best fit depends 

upon two parameters, and. To find these parameters, 

Linear Regression models can use the Least Squares 

Method, a closed-form solution method. The idea behind 

this method is to determine the value of slope and y-

intercept such that the sum of the squares of the residuals 

is minimized. First, we define a function S(m, b) to depict 

this sum, taking parameters as slope and y-intercept: 

 

 
 

 
 

Then, the minimum of the function can be found by 

using calculus and the concept of derivatives. Applying 

this concept, the minimum of the function S (m, b) is found 

by solving the following system of equations: 

 

 
 

By solving this system of equations, we can estimate 
the values of and for a simple Linear Regression, as shown 

in the next section. 

 

We can think of minimizing the sum of the squares 

of residual as ensuring the distance of each data point from 

the regression line we are fitting is smallest. The squaring 

also helps in emphasizing larger errors. This makes sure 

that the model does not focus on correcting tiny details (a 

process called overfitting) and instead focuses on 

addressing major errors. 

 
 Estimating Parameters of Linear Regression 
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 So this Gives us 2 Equations to Find the Values of the 
Coefficients: 

 

 
 

 
 

In practice, finding the exact values (closed form 

solution) of the parameters using Least Squares method 

gets increasingly more difficult as the datasets become 

larger. In such cases, an optimization algorithm like 

Gradient Descent is used. 

 

III. GRADIENT DESCENT OPTIMIZATION 

 

Gradient Descent Optimization Algorithm is an 

iterative method of finding the minimum of a function. 

It is used in machine learning models to optimize the 
model by minimizing the cost function. The algorithm 

iteratively adjusts the model parameters in the direction 

of the steepest descent of the cost function. A cost 

function is a special function which is used to assess how 

much error the model is making when the output is 

compared to the true results. For Linear Regression 

models, the cost function is the mean of the sum of 

squares of the residual. 

 

 
 

We first begin with arbitrary values, m0 and b0 in 

Linear Regression models, for the parameters. Then, we 

calculate the gradient (rate of change) of the cost function 

(J (θ )) with respect to the parameters.  
 

The gradient can be represented as the partial 

derivative of the cost function with respect to the 

parameters (∂J). For Linear Regression models:  

          ∂θ 

 

 
 

 
 

Now, we update the parameter in the opposite 

direction of the gradient to reduce the cost. For Linear 

Regression models: 

 

 
 

 
 

is the learning rate, a constant factor which controls 

how much is subtracted from the parameters. 

 

mi and bi are adjusted iteratively until the minimum 

value of J (m, b) is achieved. 
 

The process can be understood intuitively as a person 

standing on a mountain (cost function) and trying to reach 

the lowest point (global minimum). The slope of the 

mountain (the gradient) dictates which direction to move 

(if the gradient is positive, then we must reduce the 
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parameter values and vice versa). The size of each step on 
the mountain (learning rate) determines how much the 

person moves in that direction. This ensures that the 

person gradually descends to the lowest point. 

 

Gradient Descent is a fundamental algorithm for 

optimization in machine learning. Because it finds the 

minimum of a function without the need of solving the 

differential equation 
∂J

∂θ
 
= 0, Gradient Descent can be used 

on complex and multidimensional functions. 

 

 The Normal Equation 

So far, we have dealt with Linear Regressions in 

which the dependent variable only depends upon one 

independent variable, giving us 2 parameters to find. But 

what happens when the number of variables increases,  

increasing the number of parameters? For this purpose, The 

Normal Equation is used to get a solution. 

 

The Normal Equation makes use of the same rule as 

The Least Squares Method but extends it to multiple 
variables by using matrix notation and formulas. Without 

going in depth, the formula is: 

 

 
 

Where θ is the matrix of parameters, X is the input 

matrix and is the observed output values. 

 

 Case Study 1: The Idea 
Having established the mathematical foundation behind 

Linear Regression models, we can now explore how these 

concepts can be used in real life situations. Particularly, let 

us understand how these tools can be used to create a 

model that can predict refugee numbers in the future based 

on historical data (prediction model). 

 

To begin with, this ML model will be a simple Linear 

Regression: future refugee numbers depend only on the 

year and not on any other factor. Although this is not the 

case practically, making a simple Linear Regression model 
would simplify the problem significantly and still use the 

same tools. 

 

Next, the historical data for the model will be taken from 

the UNHCR website, ensuring a reliable source. The data 

contains refugee numbers from the year 2010 through 2022 

for every country. The goal is to predict refugee numbers 

from 2023 through 2032. The ML model will first fit a 

line of best fit into the data for refugee numbers from 

2010 till 2022 using past data and Least Squares method 

and then use the line to predict future values. 

 
Finally, we need to assess the model's effectiveness. This 

is done by comparing the model’s predicted values for the 

years 2023 and 2024 with the actual values. We can find 

out the Root Mean Squared Error which will help us in 

establishing a range for the prediction where the actual 

number would likely lie. 

 

With that being said, let us start with the code for the 

model. 

 

 Case Study 1: The Code 
 

 
Fig 1 Importing Modules 
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The model will be built with Python 3.10 language 
on Google Colab. We start off by importing some basic 

data analytics packages. We also import SciKit-Learn 

packages which are used for making the Linear Regression 

model. 

 

After some data processing, we select a specific 
country’s numbers for analyzing (USA for example). All 

analysis will be done on USA’s refugee numbers. 

 

 

 
Fig 2 Data Processing 

 

 
Fig 3 Scikit Learn Code 
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We now get our independent (x) variable and 
dependent (y) variable. Then we create a Linear 

Regression model using SciKit-Learn and predict future 

values Finally, we plot this data in a graph using matplotlib 
library to visualize the historical data and the prediction 

data. 

 

 
Fig 4 Visualization Code 

 

 
Fig 5 Regression Data 
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 Logistic Regression 
Logistic regression is a statistical method which is 

used in binary classification models. Unlike Linear 

Regression, which predicts a range of continuous values, 

Logistic Regressions predict a probability of a particular 

data belonging to a particular class, mapping the 

possibility to outputs of 0 or 1 (binary). Put simply, 

Logistic Regression is used to classify input as either 0 or 

1. For most of this paper, we limit ourselves to only one 

input variable (independent variable xi) which is mapped 

to one output class (binary variable yi). 

 
Logistic regressions work by first converting the 

independent variable (xi) into an adjustable parameter

 through the 

following linear relationships: 

 

 
 

Where: 

 

: weight of the input 

 

: bias attached 
 

Now, the linear relationship above gives a range of 

values from −∞ to + ∞. However the goal of Logistic 

Regression is to get a probability as output so that it can 

be classified as one class or the other. Probability of 0.5 

or more assigns the input to one class chosen from before 

(y = 1) and probability of less than 0.5 assigns the input to 

the other class (y = 0). So we need to pass this linear 

relationship into a function whose domain is ℝ and range 

is [0,1]. This function can then be used for calculating 

probabilities. For this, we have a special function called 
the sigmoid function represented as: 

 

 

 

We can graph this function in Desmos to find the 

behavior of this function. 

 
 

 
Fig 6 The Sigmoid Function in Desmos 

 

We can see that for any value of input x, the function 

lies between 0 and 1. Moreover, the function is also 

monotonic, meaning the value of function increases when 

input x increases. Finally, its asymptotic behavior also 

helps in it being an ideal function as the values between 0 

and 1 don’t repeat. 

 

 Replacing the Value of z into the Sigmoid Function: 

 
 

This function now gives the probability of an input 

data belonging to a specific class. The above function 

needs to now be optimized so that for every xi, h(xi) gives 
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the correct probability of it belonging to a class. 
 

IV. GRADIENT DESCENT OPTIMIZATION 

 

We know that the sigmoid function’s two 

parameters, m and b, need to be optimized. We can do this 

using the same method we used when optimizing Linear 

Regression- Gradient Descent Optimization. 

 

 Let us Begin with Defining the Cost Function for 

Logistic Regression: 

 

 
 

Where: 

 

: total number of data points 
 

 The Cost Function Can be Broken Down into Two 

Parts: 

 

 When yi = 1: The term log(h(xi)) is used. If the sigmoid 

function predicts a value close to 1, the log term is less 

which means a less cost function value. However, if the 

sigmoid function predicts a value close to 0, the log 

term will become more negative which means a large 

cost function value (due to a minus sign outside the 

summation). 

 When yi = 0: The term log (1 − h(xi)) is used. If the 
sigmoid function predicts a value close to 0, the log 

term is less which means a less cost function value. 

However, if the sigmoid function predicts a value close 

to 1, the log term will become more negative which 

means a large cost function value (due to a minus sign 

outside the summation). 

 

To show this in an example, suppose the value of h(xi) 

is 0.9 and yi is 1. Then, the log term becomes log (0.9), 

which is approximately -0.105, a relatively small cost. 

However, if the value of h(xi) is 0.1 and yi is 1, then the log 
term becomes log (0.1), which is approximately -2.302, a 

much larger cost. 

 

Similarly, if yi is 0 and h(xi) is 0.9, then the log term 

becomes log (1 − 0.9) = log (0.1) which is a much higher 

cost than if h(xi) = 0.1, in which case the log term becomes 

log (1 − 0.1) = log (0.9). 

 

Now that we understand the cost function, let us 

understand why logarithmic cost is used. Put simply, the 

cost function is designed to punish the model more when 

it is confidently wrong (probability is high but the model 
is wrong). This makes it so that the model learns faster. 

Moreover, the logarithmic nature of the cost function 

makes it differentiable which allows us to use gradient 

descent. 

 

We can now minimize J (m, b) using partial 
differentiation and updating initial parameters of m and b: 

 

 
 

 
 

 Decision Boundary 

After optimizing the sigmoid function, the model can 

then classify based on the following rule: 

 

 y = 1 if h(x) ≥ 0.5 

 y = 0 if h(x) < 0.5 

 

We can then attach y value 1 and 0 to two classes. 

 

However, the above rule also gives the definition of 

another important concept in Logistic Regression- 

Decision Boundary. 

 

Decision Boundary is a hyper-surface which acts as 

the border between the two classes. Mathematically, it is 

all values for which the sigmoid function in a Logistic 
Regression model gives value 0.5. 

 

 

 
 

 
 

 
 

So, for a Logistic Regression with 1 independent 

variable, the Decision Boundary is a point on the x axis 

numerically equal to the negative of the bias by weight. 
 

 Trigonometric Functions and Logistic Regression 

While discussing the sigmoid function, we 

understood the purpose behind using the sigmoid 

function in Logistic Regression models as a means to 

convert an input of real numbers to an output in the range 

of 0 to 1. However, could other functions be used in place 

of the sigmoid function? 
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The first possible replacement to the sigmoid 
function that comes to mind can be the trigonometric 

functions of sine and cosine. Both these functions have 

domain as all real numbers but their range is from -1 to 1. 

However, if we want to use these functions, their ranges 

need to be from 0 to 1. This can be rectified by squaring 

the trigonometric functions. So can sin
2 

x or cos
2 

x be 

used in place of sigmoid function? 

 

The answer remains no. Although sin
2 

x and cos
2 

x 

are similar to the sigmoid function in many ways, a major 

concern is that both the functions are periodic and 

oscillatory in nature. This means for different inputs, the 

output probability can still be the same. This leads to 

ambiguity in deciding Decision Boundary. 

 

 

 
Fig 7 Sine Squared Function in Desmos 

 

Another possible replacement could be hyperbolic 

trigonometric functions, the hyperbolic analogue for the 

circular trigonometric function. While the hyperbolic 

sine and hyperbolic cosine functions cannot be used due 

to their range being out of the needed limit, hyperbolic 

tan and hyperbolic sec functions could be considered. 
However, they both have their own set of problems. 

 

The hyperbolic tan function behaves very similarly 

to the sigmoid function, being our closest candidate so far, 

except that its range is from -1 to 1. 

 

Squaring the function wud then remove its 

asymptotic nature and would give the same problem as 
squaring the sine or cosine functions: multiple inputs can 

give the same output. 

 

 
Fig 8 Hyperbolic Tan Function in Desmos 
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The hyperbolic sec function satisfies the range 
criteria and even has an asymptote at y = 0. However, the 

function lacks an asymptote at y = 1, instead having a hill 

type shape and thereby again leading to multiple inputs for 
the same output. 

 

 
Fig 9 Hyperbolic Sec Function in Desmos 

 

So even hyperbolic trigonometric functions cannot 

be used in place of the sigmoid function. However, the 

tanh(x) function can still be used in neural networks as 

activation functions. 

 

 Bivariate and Multivariate Logistic Regressions 
We know how logistic regressions work for one 

independent variable. The same concepts can be extended 

to two or more variables by just modifying the adjustable 

parameter to be a combination of the bias, the variables 

and their weights: 

 

 
 

This can now be inputted into the same sigmoid 

function and the same cost function with the only 
difference being that multiple partial derivatives need to 

be found with respect to each parameter. 

 

Differences occur in the Decision Boundary for 

bivariate and multivariate Logistic Regression. The 

Decision Boundary for bivariate Logistic Regression is a 

straight line in the planes of x1 and x2. 

 

b + m1x1 + m2x2 = 0 

 

Similarly, the Decision Boundary for multivariate Logistic 
Regression is a hyperplane and is given by the equation: 

 

b + m1x1 + m2x2 + . . . mnxn = 0 

 

 Case Study 2: The Idea 

Breast cancer is one of the most common forms of 

cancer affecting women worldwide. It develops when 

cells in the breast tissue grow uncontrollably, forming a 
tumor that can invade surrounding cells. Breast cancer 

tumors are very complicated at the cellular level, and this 

makes determining whether a patient’s tumor is malignant 

(dangerous) or benign (not dangerous) a challenge. Now, 

using Logistic Regression, we can try to create a ML 

model that can classify a tumor cell as benign or 

malignant. 

 

Let us first make a Logistic Regression model that 

can classify cells based on one variable, radius of cell. 

This decision is based on the graph of the data which 

looks like after radius of 15 micrometer, the cells become 
malignant. 

 

So it is clear that radius could be a good metric for 

the classification. Also, let us assign the number 1 to 

malignant and the number 0 to benign. The goal is to find 

the radius (Decision Boundary) after which the cells 

become more like to be malignant. This Decision 

Boundary can then be used in classifying new cells. 
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Fig 10 Final Model Predictions 

 

 Case Study 2: The Code 

We begin with downloading the dataset used to train the 
model: Breast Cancer Wisconsin (Diagnostic). It consists of 

569 biopsy samples, each included with the radius, perimeter, 

area, smoothness and a few other parameters along with the 
diagnosis. 

 

 
Fig 11 Importing Data 
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Fig 12 Importing Modules 

 

Next, we import some essential modules to use such 

as pandas, numpy and Sci-Kit Learn. We then extract only 

the essential parts of the database and save it in a pandas 

data frame. We also import some handy data visualization 

tools like Seaborn and Matplotlib After that, we split the 

dataset into training and testing dataset with training 

being a larger part of the dataset and testing being a 

smaller part of the dataset. 
 

 
Fig 13 Training and Testing Datasets 
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We then train our logistic regression model with the training dataset X and Y values and then use the testing dataset X values 
to then predict new values of Y which is then plotted along with information of its actual value. 

 

 
Fig 14 Scikit Learn Code 

 

 
Fig 15 Prediction Data 

 

The graph shows the actual values in y-axis, radius in x-axis and the color represents the prediction. 

 

 Additionally, We Can Also Find the Accuracy of the Model: 

 

 
Fig 16 Accuracy of the Model 

 

Moreover, we can also access the actual soft predictions given by the sigmoid function in which Y-axis is the 

probability of being malignant. 
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Fig 17 Sigmoid Function of the Model 

 

Furthermore, we can then extend the same project to use multiple features instead of one feature in the following manner:  

 

 
Fig 18 Scikit Learn Code 
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Fig 19 Multivariate Prediction Data 

 

V. CONCLUSION 

 

This research highlights the integral role of 

mathematics in developing machine learning models. By 

using various techniques such as Linear and Logistic 

Regression, ML models can form relationships between 

variables effectively and predict, as well as classify, new 

data. These techniques can be used to address various real-

world issues, underscoring the importance of mathematics 

in our lives. 
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