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I INTRODUCTION

Mathematics has always played a central role in the
development of statistical methods, and regression
analysis stands as one of its most influential contributions.
Regression models provide a systematic framework to
describe, interpret, and predict relationships between
variables. In the modern era of data-driven decision
making, these models form the backbone of fields ranging
from economics and social sciences to biology,
engineering, and artificial intelligence. By allowing
researchers and practitioners to quantify associations
between independent and dependent variables, regression
not only aids in understanding existing phenomena but
also in forecasting future outcomes with measurable
accuracy.

Two of the most widely used approaches in
regression analysis are linear regression and logistic
regression. Linear regression focuses on modeling
relationships where the dependent variable is continuous,
relying on the principle of minimizing error through the
least squares method. In contrast, logistic regression
addresses classification problems, where the outcome is
categorical, often binary. Both models, while conceptually
distinct, share deep mathematical foundations that rely on
optimization, calculus, and probability theory. Their
underlying formulations—closed-form solutions in the
case of linear regression—highlight the essential role of
mathematical rigor in  ensuring reliability and
interpretability.

The significance of regression extends far beyond
theoretical mathematics. In practical applications,
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regression models allow us to analyze real-world datasets,
detect patterns, and guide policy or strategy. For instance,
linear regression can be used to project refugee population
growth using historical data, while logistic regression can
support healthcare decision-making by classifying
medical outcomes such as tumor malignancy.

This paper aims to present a comprehensive
examination of the mathematical structures underlying
linear and logistic regression. By deriving their objective
functions, discussing optimization strategies, and
demonstrating their utility through case studies, we
emphasize both their theoretical depth and their practical
relevance.

1. LINEAR REGRESSION

Linear Regression is a simple yet powerful statistical
and mathematical concept used to model relationships
between independent and dependent variables. The
essence of Linear Regression lies in establishing a linear
relationship between these variables by fitting a straight
line to the data. This relationship can then be used to
predict future values of dependent variable based on new
values of the independent variable. The mathematical
equation behind a Linear Regression model is:

—~

Vv = mx; + b

Where:

Vis the dependent variable
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Xi is the independent variable

is the slope (or gradient) of the line is y-intercept of the
line

The above equation has 2 parameters. The goal of a
Linear Regression model is to find those parameters that
minimizes the difference between the actual value and the
predicted value of the dependent variable, a term called
residual (e =vyi — ¥, where y'is the predicted value).

> Least Squares Method

Linear Regression models try to find the line of best
fit such that there is least error. This line of best fit depends
upon two parameters, and. To find these parameters,
Linear Regression models can use the Least Squares
Method, a closed-form solution method. The idea behind
this method is to determine the value of slope and y-
intercept such that the sum of the squares of the residuals
is minimized. First, we define a function S(m, b) to depict
this sum, taking parameters as slope and y-intercept:

Fi

S(r72, b)) = = O — )7
i—1

¥

S(m, b) = > (yi — mx; — b)?
=1

Then, the minimum of the function can be found by
using calculus and the concept of derivatives. Applying
this concept, the minimum of the function S (m, b) is found
by solving the following system of equations:

TSAY SN

— = 0O — = 0O
O FF7 S

By solving this system of equations, we can estimate
the values of and for a simple Linear Regression, as shown
in the next section.

We can think of minimizing the sum of the squares
of residual as ensuring the distance of each data point from
the regression line we are fitting is smallest. The squaring
also helps in emphasizing larger errors. This makes sure
that the model does not focus on correcting tiny details (a
process called overfitting) and instead focuses on
addressing major errors.

» Estimating Parameters of Linear Regression

oS AX" (vi—mxi—b))

=1

0 ob
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e So this Gives us 2 Equations to Find the Values of the
Coefficients:

> G )0 — )
zle (x: — x)?

1t —

=

b=y — mx

In practice, finding the exact values (closed form
solution) of the parameters using Least Squares method
gets increasingly more difficult as the datasets become
larger. In such cases, an optimization algorithm like
Gradient Descent is used.

HI. GRADIENT DESCENT OPTIMIZATION

Gradient Descent Optimization Algorithm is an
iterative method of finding the minimum of a function.

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/25sep997

It is used in machine learning models to optimize the
model by minimizing the cost function. The algorithm
iteratively adjusts the model parameters in the direction
of the steepest descent of the cost function. A cost
function is a special function which is used to assess how
much error the model is making when the output is
compared to the true results. For Linear Regression
models, the cost function is the mean of the sum of
squares of the residual.

> i —i)?
J(m, b) = =1

F1
We first begin with arbitrary values, mg and bo in
Linear Regression models, for the parameters. Then, we
calculate the gradient (rate of change) of the cost function
(J (0)) with respect to the parameters.
The gradient can be represented as the partial
derivative of the cost function with respect to the

parameters (2J). For Linear Regression models:
00

oJ _ X, —2(vi— mxi—b)
ob n

o) _ 2% (i mxi—b) % (x)
om n

Now, we update the parameter in the opposite
direction of the gradient to reduce the cost. For Linear
Regression models:

oS
;= — o
771 710 S

e
H; — P — cx
S H

is the learning rate, a constant factor which controls
how much is subtracted from the parameters.

m; and b; are adjusted iteratively until the minimum
value of J (m, b) is achieved.

The process can be understood intuitively as a person
standing on a mountain (cost function) and trying to reach
the lowest point (global minimum). The slope of the
mountain (the gradient) dictates which direction to move
(if the gradient is positive, then we must reduce the
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parameter values and vice versa). The size of each step on
the mountain (learning rate) determines how much the
person moves in that direction. This ensures that the
person gradually descends to the lowest point.

Gradient Descent is a fundamental algorithm for

optimization in machine learning. Because it finds the

minimum of a function without the need of solving the
A

differential equation 00=0, Gradient Descent can be used

on complex and multidimensional functions.

» TheNormal Equation

So far, we have dealt with Linear Regressions in
which the dependent variable only depends upon one
independent variable, giving us 2 parameters to find. But
what happens when the number of variables increases,
increasing the number of parameters? For this purpose, The
Normal Equation is used to get a solution.

The Normal Equation makes use of the same rule as
The Least Squares Method but extends it to multiple

variables by using matrix notation and formulas. Without
going in depth, the formula is:

6 =X"X)"'X"y

Where 0 is the matrix of parameters, X is the input
matrix and isthe observed output values.

o Case Study 1: The Code
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» Case Study 1: The Idea

Having established the mathematical foundation behind
Linear Regression models, we can now explore how these
concepts can be used in real life situations. Particularly, let
us understand how these tools can be used to create a
model that can predict refugee numbers in the future based
on historical data (prediction model).

To begin with, this ML model will be a simple Linear
Regression: future refugee numbers depend only on the
year and not on any other factor. Although this is not the
case practically, making a simple Linear Regression model
would simplify the problem significantly and still use the
same tools.

Next, the historical data for the model will be taken from
the UNHCR website, ensuring a reliable source. The data
contains refugee numbers from the year 2010 through 2022
for every country. The goal is to predict refugee numbers
from 2023 through 2032. The ML model will first fit a
line of best fit into the data for refugee numbers from
2010till 2022 using past data and Least Squares method
and then use the line to predict future values.

Finally, we need to assess the model's effectiveness. This
is done by comparing the model’s predicted values for the
years 2023 and 2024 with the actual values. We can find
out the Root Mean Squared Error which will help us in
establishing a range for the prediction where the actual
number would likely lie.

With that being said, let us start with the code for the
model.

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

import math

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import matplotlib.colors as mcolors
palette=mcolors. TABLEAU_COLORS
palettev=list(palette.values())

Fig 1 Importing Modules
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The model will be built with Python 3.10 language After some data processing, we select a specific
on Google Colab. We start off by importing some basic country’s numbers for analyzing (USA for example). All
data analytics packages. We also import SciKit-Learn analysis will be done on USA’s refugee numbers.
packages which are used for making the Linear Regression
model.

# Prepare the data: Filter relevant columns
data = df[['year', 'coa_name', 'refugees']]

# Group by year and country, summing up refugee numbers
data = data.qroupby(['year', 'coa_name'], as_index=False).sum()

# Focus on one specific country for prediction (e.q., "United States of
America")

country_name = “United States of America" # Change as needed
country_data = data[data['coa_name'] == country_name]

Fig 2 Data Processing

X_train = country_data[['year']].values
y_train = country_data['refugees'].values

# Traln a linear regression model
Imodel = LinearRegression()
model.fit(X_train, y_train)

# Predict refugee numbers for future years (2023-2032)
future_years = np.array(range(2023, 2033)).reshape(-1, 1)
future_predictions = model.predict(future_years)

||
Fig 3 Scikit Learn Code
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We now get our independent (x) variable and

dependent (y) variable. Then we create a Linear
Regression model using SciKit-Learn and predict future
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values Finally, we plot this data in a graph using matplotlib
library to visualize the historical data and the prediction
data.

# Visualize the predictions

plt.figure(figsize=(10, 6))

plt.scatter(X, y, color="blue', label='Actual Data')
plt.plot(future_years, future_predictions, color='red', label='Predictions
(2023-2032)')

plt.xlabel('Year')

plt.ylabel('Number of Refugees')

plt.title(f'Refugee Prediction for {country_name} (2010-2032)')
plt. legend()

plt.qrid()

plt. show{ )

Fig 4 Visualization Code
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Fig 5 Regression Data
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» Logistic Regression

Logistic regression is a statistical method which is
used in binary classification models. Unlike Linear
Regression, which predicts a range of continuous values,
Logistic Regressions predict a probability of a particular
data belonging to a particular class, mapping the
possibility to outputs of 0 or 1 (binary). Put simply,
Logistic Regression is used to classify input as either 0 or
1. For most of this paper, we limit ourselves to only one
input variable (independent variable x;) which is mapped
to one output class (binary variable y;).

Logistic regressions work by first converting the
independent variable (xi) into an adjustable parameter

through the
following linear relationships:

=z = mx; + b

Where:

: weight of the input
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: bias attached

Now, the linear relationship above gives a range of
values from —oo to + 0. However the goal of Logistic
Regression is to get a probability as output so that it can
be classified as one class or the other. Probability of 0.5
or more assigns the input to one class chosen from before
(y = 1) and probability of less than 0.5 assigns the input to
the other class (y = 0). So we need to pass this linear
relationship into a function whose domain is R and range
is [0,1]. This function can then be used for calculating
probabilities. For this, we have a special function called
the sigmoid function represented as:

1
ha(z) =

! 1 + e =

We can graph this function in Desmos to find the
behavior of this function.

N

[REY

1

Fig 6 The Sigmoid Function in Desmos

We can see that for any value of input x, the function
lies between 0 and 1. Moreover, the function is also
monotonic, meaning the value of function increases when
input x increases. Finally, its asymptotic behavior also
helps in it being an ideal function as the values between 0
and 1 don’t repeat.

o Replacing the Value of z into the Sigmoid Function:

UISRT25SEP997

h(x) =
d 1 + e mxi—b
This function now gives the probability of an input

data belonging to a specific class. The above function
needs to now be optimized so that for every x;, h(xi) gives
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the correct probability of it belonging to a class.
V. GRADIENT DESCENT OPTIMIZATION

We know that the sigmoid function’s two
parameters, m and b, need to be optimized. We can do this
using the same method we used when optimizing Linear
Regression- Gradient Descent Optimization.

» Let us Begin with Defining the Cost Function for
Logistic Regression:

n

I

Jim,b) = - 3P log(h(x))) * (1 = yi)log(1 -~ h(x))]
=l

Where:

: total number of data points

» The Cost Function Can be Broken Down into Two
Parts:

o Wheny; = 1: The term log(h(xi)) is used. If the sigmoid
function predicts a value close to 1, the log term is less
which means a less cost function value. However, if the
sigmoid function predicts a value close to 0, the log
term will become more negative which means a large
cost function value (due to a minus sign outside the
summation).

e When yi = 0: The term log (1 — h(x)) is used. If the
sigmoid function predicts a value close to 0, the log
term is less which means a less cost function value.
However, if the sigmoid function predicts a value close
to 1, the log term will become more negative which
means a large cost function value (due to a minus sign
outside the summation).

Toshow thisin an example, suppose the value of h(x;)
is 0.9 and y; is 1. Then, the log term becomes log (0.9),
which is approximately -0.105, a relatively small cost.
However, if the value of h(xi) is 0.1 and y; is 1, then the log
term becomes log (0.1), which is approximately -2.302, a
much larger cost.

Similarly, if y; is 0 and h(xi) is 0.9, then the log term
becomes log (1 — 0.9) = log (0.1) which is a much higher
cost than if h(xi) = 0.1, in which case the log term becomes
log (1 —0.1)=1log (0.9).

Now that we understand the cost function, let us
understand why logarithmic cost is used. Put simply, the
cost function is designed to punish the model more when
it is confidently wrong (probability is high but the model
is wrong). This makes it so that the model learns faster.
Moreover, the logarithmic nature of the cost function
makes it differentiable which allows us to use gradient
descent.

UISRT25SEP997
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We can now minimize J (m, b) using partial
differentiation and updating initial parameters of m and b:

oS
i = L
Yoy 10 S

oS
bHi — bHbo — ox
b

» Decision Boundary
After optimizing the sigmoid function, the model can
then classify based on the following rule:

e y=1ifh(x)>05
e y=0ifh(x) <05
We can then attach y value 1 and 0 to two classes.
However, the above rule also gives the definition of
another important concept in Logistic Regression-
Decision Boundary.
Decision Boundary is a hyper-surface which acts as
the border between the two classes. Mathematically, it is

all values for which the sigmoid function in a Logistic
Regression model gives value 0.5.

h(x) = = __
1 + e—rnx—b 2

e mx b =1

— b

Fre

e —

So, for a Logistic Regression with 1 independent
variable, the Decision Boundary is a point on the x axis
numerically equal to the negative of the bias by weight.

» Trigonometric Functions and Logistic Regression

While discussing the sigmoid function, we
understood the purpose behind using the sigmoid
function in Logistic Regression models as a means to
convert an input of real numbers to an output in the range
of 0 to 1. However, could other functions be used in place
of the sigmoid function?
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The first possible replacement to the sigmoid
function that comes to mind can be the trigonometric
functions of sine and cosine. Both these functions have
domain as all real numbers but their range is from -1 to 1.
However, if we want to use these functions, their ranges
need to be from 0 to 1. This can be rectified by squaring

the trigonometric functions. So can sin2 X or coszx be
used in place of sigmoid function?
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The answer remains no. Although sin2x and coszx

are similar to the sigmoid function in many ways, a major
concern is that both the functions are periodic and
oscillatory in nature. This means for different inputs, the
output probability can still be the same. This leads to
ambiguity in deciding Decision Boundary.

—

)
w
N

1

Fig 7 Sine Squared Function in Desmos

Another possible replacement could be hyperbolic
trigonometric functions, the hyperbolic analogue for the
circular trigonometric function. While the hyperbolic
sine and hyperbolic cosine functions cannot be used due
to their range being out of the needed limit, hyperbolic
tan and hyperbolic sec functions could be considered.
However, they both have their own set of problems.

The hyperbolic tan function behaves very similarly
to the sigmoid function, being our closest candidate so far,
except that its range is from -1 to 1.

Squaring the function wud then remove its
asymptotic nature and would give the same problem as
squaring the sine or cosine functions: multiple inputs can
give the same output.

=
- 2 <1
=2
il'
-6

Fig 8 Hyperbolic Tan Function in Desmos
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The hyperbolic sec function satisfies the range

criteria and even has an asymptote at y = 0. However, the
function lacks an asymptote at y = 1, instead having a hill
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type shape and thereby again leading to multiple inputs for
the same output.

Fig 9 Hyperbolic Sec Function in Desmos

So even hyperbolic trigonometric functions cannot
be used in place of the sigmoid function. However, the
tanh(x) function can still be used in neural networks as
activation functions.

> Bivariate and Multivariate Logistic Regressions

We know how logistic regressions work for one
independent variable. The same concepts can be extended
to two or more variables by just modifying the adjustable
parameter to be a combination of the bias, the variables
and their weights:

= == H + FPT i 5

—1

This can now be inputted into the same sigmoid
function and the same cost function with the only
difference being that multiple partial derivatives need to
be found with respect to each parameter.

Differences occur in the Decision Boundary for
bivariate and multivariate Logistic Regression. The
Decision Boundary for bivariate Logistic Regression is a
straight line in the planes of x; and x..

b+mixi+mox, =0

Similarly, the Decision Boundary for multivariate Logistic
Regression is a hyperplane and is given by the equation:

UISRT25SEP997

b+ mixs+maxz2+..mxn=0

> Case Study 2: The ldea

Breast cancer is one of the most common forms of
cancer affecting women worldwide. It develops when
cells in the breast tissue grow uncontrollably, forming a
tumor that can invade surrounding cells. Breast cancer
tumors are very complicated at the cellular level, and this
makes determining whether a patient’s tumor is malignant
(dangerous) or benign (not dangerous) a challenge. Now,
using Logistic Regression, we can try to create a ML
model that can classify a tumor cell as benign or
malignant.

Let us first make a Logistic Regression model that
can classify cells based on one variable, radius of cell.
This decision is based on the graph of the data which
looks like after radius of 15 micrometer, the cells become
malignant.

So it is clear that radius could be a good metric for
the classification. Also, let us assign the number 1 to
malignant and the number O to benign. The goal isto find
the radius (Decision Boundary) after which the cells
become more like to be malignant. This Decision
Boundary can then be used in classifying new cells.
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Fig 10 Final Model Predictions
e Case Study 2: The Code 569 biopsy samples, each included with the radius, perimeter,
We begin with downloading the dataset used to train the area, smoothness and a few other parameters along with the
model: Breast Cancer Wisconsin (Diagnostic). It consists of diagnosis.

import gdown
import pandas as pd
from sklearn import metrics

from google.cloud import storage
def download_public_file(bucket_name, source_blob_name, destination_file_name):
storage_client = storage.Client.create_anonymous_client()

bucket = storage_client.bucket(bucket_name)
blob = bucket.blob(source_blob_name)
blob.download_to_filename(destination_file_name)

print(
"Downloaded public blob {} from bucket {} to {}.".format(
source_blob_name, bucket.name, destination_file_name
)
)

download_public_file('inspirit—ai-data—-bucket-1', 'Data/AI Scholars/Sessions 1 —
5/Session 2b — Logistic Regression/cancer.csv', 'cancer_data.csv')

data = pd.read_csv('cancer_data.csv')
datal['diagnosis'].replace({'M':1, 'B':0}, inplace = True)
data.to_csv('cancer_data.csv')

Fig 11 Importing Data
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import seaborn as sns
import matplotlib.pyplot as plt

| & » 18
import os
import numpy as np :
import pandas as pd (

from sklearn.metrics import accuracy_score

‘*cancer_data.csv'

:

ad csv(''file'
dataframe pd. read_csv(data_path)

dataframe = dataframell['diagnosis', 'perimeter_mean', 'radius_mean',

'texture_mean', 'area_mean', smoothness_mean', 'concavity_mean',
'symmetr mean']]

Fig 12 Importing Modules

Next, we import some essential modules to use such tools like Seaborn and Matplotlib After that, we split the
as pandas, numpy and Sci-Kit Learn. We then extract only dataset into training and testing dataset with training
the essential parts of the database and save it in a pandas being a larger part of the dataset and testing being a
data frame. We also import some handy data visualization smaller part of the dataset.

1 print('Number of rows in training dataframe:', train_df.shapel0])
p. train_df.head()

Number of rows in training dataframe: 455

diagnosis perimeter mean radius_mean texture_mean area_ mean smoothness_ mean
1 117.80 17.99 20.66 991.7 0.10360

1 135.10 20.29 14.34 1297.0 0.10030

56.36 9.00 14.40 246.3 0.07005

78.78 12.21 14.09 462.0 0.08108

78.29 12.34 14.95 469.1 0.08682

1 print('Number of rows in test dataframe:', test_df.shapel@])
P test_df.head()

Number of rows in test dataframe: 114

diagnosis perimeter mean radius_mean texture_mean area_ mean smoothness_mean
(o) 98.22 14.69 13.98 656.1 0.10310

1 85.98 13.17 18.66 534.6 0.11580

83.14 12.95 16.02 513.7 0.10050

118.60 18.31 18.58 1041.0 0.08588

96.71 15.13 29.81 719.5 0.08320

Fig 13 Training and Testing Datasets
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We then train our logistic regression model with the training dataset X and Y values and then use the testing dataset X values
to then predict new values of Y which is then plotted along with information of its actual value.

logreg_model = linear_model.LogisticRegression()
logreg_model.fit(X_train, y_train)

X_test = test_df[X]

y_test = test_df[y]

y_pred = logreg_model.predict(X_test)

test_df['predicted'] = y_pred.squeeze()
sns.catplotfx = X[0], y = 'diagnosis_cat', hue = 'predicted', data=test_df,
order=['1 (malignant)', '@ (benign)']))

Fig 14 ScikiLearn Code

1 {(malignant) - "N

predicted
= O
1

dagnosis cat

. g
O (benign) ‘:'-_ﬁ. <
=
e

10 is 20 25
radius_mean

Fig 15 Prediction Data

The graph shows the actual values in y-axis, radius in x-axis and the color represents the prediction.

e Additionally, We Can Also Find the Accuracy of the Model:

1 accuracy = accuracy_score(y_test, y_pred)
2 print(accuracy)

0.868421052631579

Fig 16 Accuracy of the Model

Moreover, we can also access the actual soft predictions given by the sigmoid function in which Y-axis is the
probability of being malignant.
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y_prob = logreg_model.predict_proba(X_test)

X_test_view = X_test[X].values.squeeze()

plt.xlabel('radius_mean')

plt.ylabel('Predicted Probability"')

sns.scatterplot(x = X_test_view, y = y_prob[:,1], hue = y_test, palette=
['purple', ‘green'])

‘matplotlib.axes. subplots.AxesSubplot at 0x7f8ac5c4c910>
diagnosis

e O
o

Predicted Probability

10.0 125 15.0 17.5 20.0 225
radius_mean

Fig 17 Sigmoid Function of the Model
Furthermore, we can then extend the same project to use multiple features instead of one feature in the following manner:

X = [*'radius
y = '‘diagnosis’

multi_train_df, multi_test_df = train_test_split(dataframe, test_size = 0.2,
random_state = 1)

multi_train_df[X]

multi_train_dfly]
= multi_test_df[X]

multi_test_df(yl

logreg_model = linear_model.lLogisticRegression()

logreg_model. fit(X_train, y_train)

y_guess = logreg_model.predict(X_test)

multi_test_df(['predicted'] = y_guess.squeeze()
sns.catplot(x = X[Q@], y = 'diagnosis_cat', hue = 'predicted’,
data=multi_test_df, order=['1 (malignant)' '®? (benign)'l)

’

accuracy = accuracy_score(y_test, y_guess)
print(accuracy)

Fig 18 Scikit Learn Code
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Fig 19 Multivariate Prediction Data
V. CONCLUSION [7]. Scikit-learn. (n.d.). Ordinary least squares. Retrieved
January 16, 2025, from https:/scikit-
This research highlights the integral role of learn.org/stable/modules/linear_model.html#ordinary-
mathematics in developing machine learning models. By least-squares
using various techniques such as Linear and Logistic [8]. Kaggle. (n.d.). Refugee dataset. Retrieved January 16,
Regression, ML models can form relationships between 2025, from https:// www.kaggle.com

variables effectively and predict, as well as classify, new
data. These techniques can be used to address various real-
world issues, underscoring the importance of mathematics
in our lives.

[1].

2.

3].

[4].
[5].
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