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Abstract: This paper presents a comparative study of two control strategies: fuzzy logic and adaptive neuro-fuzzy 

inference system (ANFIS) for autonomous guidance of a differential-drive mobile robot. The robot executes goal-seeking 

and reactive obstacle-avoidance tasks in a MATLAB Simulink environment using the Mobile Robotics Simulation 

Toolbox. Initially, a fuzzy logic controller with expert-defined IF–THEN rules generates linear and angular velocity 

commands while logging state and control data into a training matrix. These data are then used to train an ANFIS model, 

which is redeployed under identical simulation conditions. Both controllers are compared based on path-tracking 

accuracy, obstacle-avoidance robustness, and control-loop execution time. Simulation results indicate that the ANFIS 

controller reproduces the fuzzy logic decision boundaries with reduced computational latency, demonstrating the 

effectiveness of data-driven neuro-fuzzy models for real-time mobile robot control. 
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I. INTRODUCTION 

 

The domain of mobile robotics encompasses the 

development of autonomous systems designed to operate 

independently in unstructured and dynamic settings. These 

platforms must navigate through environments filled with 

uncertainties without requiring direct human oversight. These 

systems integrate perception, localization [3][7][8][12], 

planning, and control algorithms to achieve tasks such as path 

following, obstacle avoidance, and target localization. In 

practice, mobile robots must cope with imperfect sensors, 

unmodeled dynamics, and changing terrain, which demand 

flexible and robust control strategies. In this study, we 

concentrate on a differential-drive robot architecture, a widely 

adopted configuration in which two independently actuated 

wheels provide both linear and angular motion. The following 

sections detail our modeling framework and parameter 

identification for this differential drive robot. 

 

 

 

II. ROBOT MODELING 

 

In this section, we present the kinematic description of 

our differential-drive platform. We first identify the key 

geometric and dynamic parameters (wheel velocities, track 

width), then derive the continuous-time kinematic model, and 

finally discuss our implementation in MATLAB. 

 

 Identification of Robot Parameters 

For kinematic modeling, essential parameters of the 

differential-drive robot are identified. These include the left 

and right wheel linear velocities (vL and vR), the robot’s 

forward velocity (V), its angular velocity (ω), and the 

instantaneous center of curvature (ICC) position. Figure 1 

illustrates the robot geometry and the ICC location relative to 

the wheel axis. From the wheel velocities and the track width 

b, the robot’s linear and angular velocities are computed as 

[3][8]: 

 

                             (1) 
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These relations form the basis for the continuous-time 

motion model. 

 

 
Fig 1 Geometry of the Differential-Drive Robot 

 

 Continuous-Time Kinematic Model 

Rather than a discrete rigid-body update, the robot’s 

pose evolves according to the differential equations[7][12]: 

 

                                         (2) 

 

                                          (3) 

                                                                 (4) 

 

Integrating these expressions over time yields the robot’s 

trajectory (x(t), y(t), θ(t)). 

 

                                (5) 

 

                                (6) 

 

                                                              (7) 

 

 MATLAB and the Mobile Robotics Simulation Toolbox 

The modeling and simulation framework is implemented 

in MATLAB using the Mobile Robotics Simulation Toolbox. 

This toolbox provides preconfigured robot models, 

environment definitions, and Simulink blocks for rapid 

prototyping. Figure 2 shows the differential-drive robot model 

loaded in the toolbox, along with the virtual environment and 

the corresponding Simulink diagram used for closed-loop 

simulation. The toolbox’s built-in functions facilitate sensor 

emulation, path planning, and control loop integration. 

 

 
Fig 2 Mobile Robotics Simulation Toolbox: All the Necessary Blocks 
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III. FUZZY LOGIC 

 

First proposed by Lotfi Zadeh in 1965, fuzzy logic 

extends binary logic by permitting gradual transitions between 

truth values, thereby handling concepts like 'partially true' or 

'moderately high' that are inherent in human reasoning[13]. It 

is particularly effective in managing uncertainty and 

imprecision, making it a valuable tool in control systems, 

decision-making, and artificial intelligence[6][13]. 

 

 Fuzzy Set Theory 

Basic Principle A fuzzy set is characterized by a 

membership function that assigns to each element a grade of 

membership ranging between 0 and 1. This allows elements to 

partially belong to a set, unlike classical (crisp) sets5. 

Membership Function Membership functions define how each 

point in the input space is mapped to a membership value. The 

most commonly used shapes include triangular, trapezoidal, 

and Gaussian. Defining Membership Functions Membership 

functions can be defined empirically or based on expert 

knowledge, often represented by linguistic variables such as 

“small,” “medium,” and “large”[6]. 

 

 Fuzzy Set Operations 

Fuzzy Logic Operators Operations like AND, OR, and 

NOT are generalized using T-norms and S-norms: 

 

 Fuzzy AND (T-norm): min(μA(x), μB(x)) 

 Fuzzy OR (S-norm): max(μA(x), μB(x)) 

 Fuzzy NOT: 1 − μA(x) 

 

Triangular Norms and Co-norms Triangular norms (T-

norms) generalize logical conjunctions, and co-norms 

generalize disjunctions. Examples include minimum, product, 

and bounded difference4. 

 

 
Fig 3 Fuzzy Set Showing Core, Boundary and Support 

 

 
Fig 4 Comparison Between Boolean and Fuzzy Membership Functions for a Person's Height 
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Fuzzy Relations Fuzzy relations extend binary relations 

using fuzzy sets and can be used in composition and 

implication rules[5]. 

 

Fuzzy Rules (If–Then) Fuzzy rules use linguistic terms 

to model reasoning processes: 

 

IF temperature is high THEN fan speed is fast. 

 

The generalized Modus Ponens is used to apply these 

rules even with partial matches[14]. 

 

 Fuzzy Inference Systems (FIS) 

Fuzzification This step converts crisp input values into 

degrees of membership for fuzzy sets[6]. 

Fuzzy Inference Inference applies fuzzy logic rules to 

determine the output fuzzy sets. 

 

Implication and Activation Degree The implication step 

modifies the output set based on the rule’s antecedent 

matching strength[4]. 

 

Condition Aggregation Multiple conditions in a rule are 

combined using fuzzy logic operators. 

 

Defuzzification The final step converts the resulting 

fuzzy output into a single crisp value. Common methods 

include the centroid method and mean of maxima[5][6]. 

 

 
Fig 5 Comparison of AND, OR and NOT Operations in Boolean and Fuzzy Logic 

 

 MATLAB Fuzzy Logic Toolbox 

The MATLAB Fuzzy Logic Toolbox provides a 

graphical and programmatic environment for designing, 

simulating, and analyzing fuzzy inference systems. It includes 

a FIS Editor for defining membership functions and rule 

bases, visualization tools for performance evaluation, and 

integration with Simulink for closed-loop control[11]. 

 

 
Fig 6 FIS Editor Workspace Showing Membership Functions and Rule View 
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Figure 6 shows the Toolbox welcome interface, where 

users can access the FIS Editor for defining membership 

functions and fuzzy rules. In this work, we focus specifically 

on triangular membership functions due to their intuitive 

interpretation and low computational complexity. 

 

 
Fig 7 Membership Function Editor with Triangular and Trapezoidal Shapes 

 

Figure 7 illustrates the membership function editor, 

which supports defining both input and output functions. For 

example, obstacle sensor readings are categorized into 

linguistic terms such as near, quite near, and far, each 

modeled by a triangular function. 

 

 
Fig 8 Rule Viewer and Surface Plot for Two input FIS Demonstrating Rule Response 
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Figure 8 presents the fuzzy rule interface, where control 

logic is encoded as IF–THEN statements. In our controller 

design, rules follow patterns like “IF distance is near AND 

bearing error is large THEN rotate in place,” enabling human-

like decision making. 

 

IV. ANFIS MODELING AND TRAINING 

 

ANFIS architectures combine the transparent, rule-based 

reasoning of fuzzy systems with the learning capabilities of 

neural networks, enabling the model to adapt and refine its 

parameters from data[2]. Two common initialization 

strategies are detailed below. 

 

 Grid Partition vs. Subtractive Clustering 

 

 Grid Partition: Uniformly divides each input domain into 

fuzzy sets, producing a full rule base by Cartesian 

product. Suitable for few inputs but scales poorly as rule 

count grows exponentially[2]. 

 Subtractive Clustering: Detects data clusters based on 

density in the input space, creating rules where data are 

dense. This yields a compact, data-driven rule set[1]. 

 

 
Fig 9 ANFIS Model Initialized via Grid Partition 

 

 
Fig 10 ANFIS Model Initialized via Substractive Clustering 

 

 Neuro-Fuzzy Designer in MATLAB 

The MATLAB Neuro-Fuzzy Designer app streamlines 

ANFIS model creation. After importing the collected data, 

users select Grid or scatter initialization, define membership 

functions, and configure training parameters while monitoring 

training error and epoch convergence[10]. 

 

 Training Data Collection 

We deployed the fuzzy logic controller in Simulink to 

gather a dataset comprising: 

 

 Wheel velocities (vL, vR) and resulting linear velocity (V 

). 

 Robot pose (x, y, θ) from odometry. 

 Proximity sensor measurements (three sensors) for 

obstacle distance. 

 

This input–output matrix serves as the ANFIS training 

set. Once trained, ANFIS and fuzzy controllers are compared 

on target acquisition time and obstacle-avoidance 

robustness[9]
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Fig 11 Neuro-Fuzzy Designer Interface Displaying initial FIS Structure and Training Settings 

 

V. ANFIS MODELING AND TRAINING 

 

To evaluate the fuzzy logic controller’s performance, 

the complete control architecture was implemented in 

Simulink. The robot’s dynamic model, sensor subsystems, 

and fuzzy inference engine were interconnected to form a 

closed-loop simulation. Data acquisition blocks logged wheel 

velocities, robot pose, and proximity sensor readings at each 

simulation step. 

 

 
Fig 12 Complete Simulink Model Depicting Robot Kinematics, Sensors and Fuzzy Controller 
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 During Navigation, the Fuzzy Controller was Tested in 

Various Scenarios: 

 

 Obstacle avoidance in cluttered environments 

 Dynamic target tracking 

 

 The Following Signals were Recorded for the ANFIS 

Training Dataset: 

 

 Inputs: wheel velocities (vL, vR), linear velocity (V ), 

robot pose (x, y, θ), and three proximity sensor readings. 

 Outputs: fuzzy controller commands adjusting left and 

right wheel speeds. 

 

Fuzzy Controller Implementation Steps. 

 

 The Fuzzy Controller Design is Divided into Four Steps 

(Figures 13–16): 

 

 Input Membership Functions (Figure 13): The inputs are 

categorized into two variables: the angle between the 

target and the robot’s orientation, and the change in that 

angle over two time instants. The angle variable is 

divided into seven fuzzy subsets: Negative Very Large 

Angle (NVLA), Negative Large Angle (NLA), Negative 

Medium Angle (NMA), Positive Small Angle (PSA), 

Positive Medium Angle (PMA), Positive Large Angle 

(PLA), and Positive Very Large Angle (PVLA). The 

variation variable is divided into three fuzzy subsets: 

Negative, Zero, and Positive. 

 Output Membership Functions (Figure 14): The outputs 

(wheel speeds) are divided into five fuzzy subsets: 

Negative Large (NL), Negative (N), Zero (Z), Positive 

(P), and Positive Large (PL). 

 Rule Viewer and Inference (Figure 15): Visualization of 

the fuzzy rule base matrix and activation levels during 

inference. 

 Surface Plots of Wheel Speeds (Figure 16): 3D surface 

curves showing how input variables map to right and left 

wheel speeds. 

 

 

 
Fig 13 Input Membership Functions 

 

 Comment:  

Shows the seven fuzzy subsets for the angle variable and three subsets for its variation, defining the linguistic terms for both 

inputs. 
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Fig 14 Output Membership Functions (Wheel Speeds) 

 

 Comment:  

Depicts the five fuzzy subsets for wheel speed outputs used to translate fuzzy control signals into actuator commands. 

 

 
Fig 15 Rule Viewer Showing Fuzzy Base and Inference Activations 

 

 Comment:  

Visualizes the full set of fuzzy if–then rules and their activation levels for given input cases. 
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Fig 16 3D Surface Plots of Wheel Speeds as Functions of input Variables 

 

 Comment:  

Illustrates how combinations of input angles and 

variations produce specific left and right wheel speeds 

through 3D surface mappings. 

 

VI. FUZZIFICATION, INFERENCE AND 

DEFUZZIFICATION FOR OBSTACLE 

AVOIDANCE 

 

To detail the obstacle avoidance module, the 

fuzzification, Sugeno inference, and defuzzification 

processes are presented in four figures (Figures 17–19). 

 

 Fuzzification:  

The obstacle distance and relative bearing inputs are 

fuzzified into linguistic terms to handle sensor noise and 

nonlinearity. A typical Sugeno model uses crisp outputs 

computed from linear functions of the inputs. 

 

 

 

 

 

 

 

 

 
Fig 17 Input Membership Functions for Obstacle Avoidance 
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 Comment:  

Defines fuzzy subsets for obstacle distance (Near, Far) 

and relative bearing (Left, Center, Right). 

 

Inference (Sugeno Model) Each fuzzy rule produces a 

crisp output as a linear function of the inputs. The weighted 

average of all rule outputs yields the final control action. 

Rule Base A set of if–then rules maps fuzzified sensor inputs 

to control outputs, enabling reactive obstacle avoidance. 

 

 
Fig 18 Fuzzy Rule Base for Obstacle Avoidance 

 

 Comment:  

Lists the obstacle avoidance rules, e.g., ”If distance is 

Near and bearing is Left, then turn right fast.” 

 

 Defuzzification:  

The Sugeno output is computed via a weighted average 

of rule consequents, providing a crisp wheel velocity 

command. 

 

 
Fig 19 Surface Plot of Obstacle Avoidance Control Output 

 

 Comment:  

Visualizes how combinations of obstacle distance and bearing map to left/right wheel speed commands via the Sugeno 

model. 

https://doi.org/10.38124/ijisrt/25sep1549
http://www.ijisrt.com/


Volume 10, Issue 9, September – 2025                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                             https://doi.org/10.38124/ijisrt/25sep1549 

 

 

IJISRT25SEP1549                                                              www.ijisrt.com                                                                                    2875  

VII. FUZZY CONTROLLER SIMULATION 

 

We evaluated the standalone performance of the fuzzy logic controller on three scenarios: pure target-reaching, pure 

obstacle-avoidance, and the combined task of navigating from (2, 2) to (8, 8) while avoiding obstacles. 

 

 
Fig 20 Simulation of the Fuzzy Controller Driving the Robot from its Start to Target (8,8) without Obstacles 

 

Figure 20 demonstrates that the controller reliably guides the robot to the specified goal (8, 8) along a smooth trajectory, 

achieving the target as expected. 

 

 
Fig 21 Simulation of the Fuzzy Obstacle Avoidance Controller with Multiple Static Obstacles 
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Fig 22 Combined Simulation from (2, 2) to (8,8) 

 

Figure 22 illustrates the first combined-task scenario. The fuzzy controller merges goal seeking and obstacle-avoidance, 

yielding an optimal, collision-free trajectory from the start point (2, 2) to the goal (8, 8), with a traveling time of 10.95 seconds. 

 

These are some more additional navigation scenarios. 

 

 
Fig 23 Scenario 2 from (12, 12) to (6, 11) 

 

Figure 23 shows the robot navigating from (12, 12) to (6, 11). The fuzzy controller completes the journey in 15.95 s while 

avoiding all obstacles. 
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Fig 24 Scenario 3 from (2, 2) to (12, 2) 

 

Figure 24 illustrates the path from (2, 2) to (12, 2). The controller achieves the target in 20.02s, demonstrating efficient 

straight-line travel with obstacle avoidance where needed. 

 

 
Fig 25 Scenario 4 from (12, 2) to (6, 11) 

 

Figure 25 depicts the route from (12, 2) to (6,11). Due 

to the more complex obstacle layout, the controller requires 

19.45 s to negotiate obstacles and arrive at the goal. 

 

VIII. ANFIS TRAINING AND PARAMETERIZATION 

 

Upon completion of the robot deployments with the 

fuzzy controllers, all data from each scenario including left 

and right wheel velocities, sensor readings, and heading 

angle was recorded into a training matrix. This dataset was 

then used to train ANFIS models, yielding neuro-fuzzy 

controllers for each wheel and each task (target reaching and 

obstacle avoidance). Subsequently, the robot was redeployed 

to compare the performance of these controllers. 

 

In this first part of the section, Figures 26a–26d 

illustrate the step by step parameterization and training of the 

ANFIS models: 
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 Obstacle avoidance controller training for the left wheel 

(Figure 26a), 

 Obstacle avoidance controller training for the right wheel 

(Figure 26b), 

 Target reaching controller training for the left wheel 

(Figure 26c), 

 Target reaching controller training for the right wheel 

(Figure 26d). 
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Fig 26 ANFIS Training and Parameterization 

 

IX. NEURO-FUZZY CONTROLLER 

DEPLOYMENT 

 

To evaluate the performance of the trained neuro-fuzzy 

controllers, the robot was redeployed under five different 

conditions. In the first experiment, only the obstacle-

avoidance neuro-fuzzy controller was active, and the robot 

drove until battery exhaustion, avoiding every obstacle in its 

path. The following five figures correspond to the same 

navigation scenarios previously simulated with the fuzzy 

logic controller, now executed with the neuro-fuzzy models. 

Observation. In all four scenarios, the ANFIS neuro-fuzzy 

controller consistently reduces the time to reach the target 

compared to the pure fuzzy controller. The greatest 

improvement occurs in scenario 4 (approximately 2.25s less), 

demonstrating better adaptation to complex avoidance 

trajectories. 
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Fig 27 Deployment with Obstacle Avoidance Neuro-Fuzzy Controller Only 

 

 
Fig 28 Scenario 1 (Combined Navigation) from (2, 2) to (8, 8) 

 

 
Fig 29 Scenario 2 (Anfis Controller) from (12, 12) to (6, 11) 
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Fig 30 Scenario 3 (Anfis Controller) (2, 2) to (12, 2) 

 

 
Fig 31 Scenario 4 (Anfis Controller) from (12, 12) to (6, 11) 

 

Table 1 Time to Target for Fuzzy and ANFIS Controller 

Scenario Start Goal Fuzzy ANFIS 

1 (2, 2) (8, 8) 10.95 10.80 

2 (12, 12) (6, 11) 15.95 16.8 

3 (2, 2) (12, 2) 20.2 19.95 

4 (12, 2) (6, 11) 19.45 19.4 

 

X. GENERAL CONCLUSION AND 

PERSPECTIVES 

 

Our investigation demonstrates that conventional fuzzy 

control offers notable advantages, including resilience to 

uncertainties and straightforward deployment on differential-

drive mobile platforms. By preprocessing trajectory data 

from the four scenarios and training an ANFIS model, we 

achieved significant reductions in target-reaching time while 

preserving the flexibility of fuzzy logic. The successful 

deployment on the robot confirms the suitability of ANFIS 

for navigation and obstacle avoidance tasks. Future work 

could explore different fuzzy controller variants (Mamdani 

vs. Sugeno), alternative ANFIS architectures, and training 

parameter tuning (number of rules, membership functions, 

optimization algorithms). A comparison with traditional PID 

controllers would quantify relative benefits in performance 

and computational cost. Moreover, integrating machine 
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learning and deep learning models such as transformers for 

trajectory planning opens avenues for hybrid controllers 

capable of online strategy adaptation. These findings pave the 

way for high-impact applications, including robotic surgery, 

assistive devices for individuals with reduced mobility, and 

autonomous vehicles, where decision-making precision and 

responsiveness are critical. 
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