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Abstract: This paper presents a comparative study of two control strategies: fuzzy logic and adaptive neuro-fuzzy
inference system (ANFIS) for autonomous guidance of a differential-drive mobile robot. The robot executes goal-seeking
and reactive obstacle-avoidance tasks in a MATLAB Simulink environment using the Mobile Robotics Simulation
Toolbox. Initially, a fuzzy logic controller with expert-defined IF-THEN rules generates linear and angular velocity
commands while logging state and control data into a training matrix. These data are then used to train an ANFIS model,
which is redeployed under identical simulation conditions. Both controllers are compared based on path-tracking
accuracy, obstacle-avoidance robustness, and control-loop execution time. Simulation results indicate that the ANFIS
controller reproduces the fuzzy logic decision boundaries with reduced computational latency, demonstrating the

effectiveness of data-driven neuro-fuzzy models for real-time mobile robot control.
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. INTRODUCTION

The domain of mobile robotics encompasses the
development of autonomous systems designed to operate
independently in unstructured and dynamic settings. These
platforms must navigate through environments filled with
uncertainties without requiring direct human oversight. These
systems integrate perception, localization [3][7][8][12],
planning, and control algorithms to achieve tasks such as path
following, obstacle avoidance, and target localization. In
practice, mobile robots must cope with imperfect sensors,
unmodeled dynamics, and changing terrain, which demand
flexible and robust control strategies. In this study, we
concentrate on a differential-drive robot architecture, a widely
adopted configuration in which two independently actuated
wheels provide both linear and angular motion. The following
sections detail our modeling framework and parameter
identification for this differential drive robot.
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1. ROBOT MODELING

In this section, we present the kinematic description of
our differential-drive platform. We first identify the key
geometric and dynamic parameters (wheel velocities, track
width), then derive the continuous-time kinematic model, and
finally discuss our implementation in MATLAB.

» Identification of Robot Parameters

For kinematic modeling, essential parameters of the
differential-drive robot are identified. These include the left
and right wheel linear velocities (vL and vR), the robot’s
forward velocity (V), its angular velocity (®), and the
instantaneous center of curvature (ICC) position. Figure 1
illustrates the robot geometry and the ICC location relative to
the wheel axis. From the wheel velocities and the track width
b, the robot’s linear and angular velocities are computed as

[3]L8]:

VR + UL
V= — w=

vRr — U,
b (1)
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These relations form the basis for the continuous-time
motion model.

Fig 1 Geometry of the Differential-Drive Robot

» Continuous-Time Kinematic Model
Rather than a discrete rigid-body update, the robot’s
pose evolves according to the differential equations[7][12]:

a(t) = V(L) cos (L) @)

y(t) = V(i) sinO(t) 3
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0(t) = w(t) "

Integrating these expressions over time yields the robot’s
trajectory (x(t), y(t), 6(1)).

P:(t) = z(t) = [‘r" sin f dt,
()
Py(t) = y(t) = /‘V cos f dt
; (6)
A(t) = /mdr.
' ©)

» MATLAB and the Mobile Robotics Simulation Toolbox
The modeling and simulation framework is implemented
in MATLAB using the Mobile Robotics Simulation Toolbox.
This toolbox provides preconfigured robot models,
environment definitions, and Simulink blocks for rapid
prototyping. Figure 2 shows the differential-drive robot model
loaded in the toolbox, along with the virtual environment and
the corresponding Simulink diagram used for closed-loop
simulation. The toolbox’s built-in functions facilitate sensor
emulation, path planning, and control loop integration.

Mobile Robotics Simulation Toolbax

S
*  Maobile Robotics Simulation Toolbox
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1} o 1
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Lidar Sensar

Fig 2 Mobile Robotics Simulation Toolbox: All the Necessary Blocks
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1. FUZZY LOGIC

First proposed by Lotfi Zadeh in 1965, fuzzy logic
extends binary logic by permitting gradual transitions between
truth values, thereby handling concepts like 'partially true' or
'moderately high' that are inherent in human reasoning[13]. It
is particularly effective in managing uncertainty and
imprecision, making it a valuable tool in control systems,
decision-making, and artificial intelligence[6][13].

» Fuzzy Set Theory

Basic Principle A fuzzy set is characterized by a
membership function that assigns to each element a grade of
membership ranging between 0 and 1. This allows elements to
partially belong to a set, unlike classical (crisp) setsb.
Membership Function Membership functions define how each
point in the input space is mapped to a membership value. The
most commonly used shapes include triangular, trapezoidal,
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and Gaussian. Defining Membership Functions Membership
functions can be defined empirically or based on expert
knowledge, often represented by linguistic variables such as
“small,” “medium,” and “large”[6].

e Fuzzy Set Operations
Fuzzy Logic Operators Operations like AND, OR, and
NOT are generalized using T-norms and S-norms:

v Fuzzy AND (T-norm): min(pA(x), uB(x))
v Fuzzy OR (S-norm): max(pA(x), uB(x))
v Fuzzy NOT: 1 — pA(x)

Triangular Norms and Co-norms Triangular norms (T-
norms) generalize logical conjunctions, and co-norms
generalize disjunctions. Examples include minimum, product,
and bounded difference4.

pix) A e

Seed = S(A)

Boundary

N

Support = supp(A)

Boundary

Fig 3 Fuzzy Set Showing Core, Boundary and Support
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Fig 4 Comparison Between Boolean and Fuzzy Membership Functions for a Person's Height
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Fuzzy Relations Fuzzy relations extend binary relations

using fuzzy sets and can be used in composition and
implication rules[5].

Fuzzy Rules (If-=Then) Fuzzy rules use linguistic terms
to model reasoning processes:

IF temperature is high THEN fan speed is fast.

The generalized Modus Ponens is used to apply these
rules even with partial matches[14].

» Fuzzy Inference Systems (FIS)
Fuzzification This step converts crisp input values into
degrees of membership for fuzzy sets[6].
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Fuzzy Inference Inference applies fuzzy logic rules to
determine the output fuzzy sets.

Implication and Activation Degree The implication step
modifies the output set based on the rule’s antecedent
matching strength[4].

Condition Aggregation Multiple conditions in a rule are
combined using fuzzy logic operators.

Defuzzification The final step converts the resulting
fuzzy output into a single crisp value. Common methods
include the centroid method and mean of maxima[5][6].
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Fig 5 Comparison of AND, OR and NOT Operations in Boolean and Fuzzy Logic

» MATLAB Fuzzy Logic Toolbox

The MATLAB Fuzzy Logic Toolbox provides a
graphical and programmatic environment for designing,
simulating, and analyzing fuzzy inference systems. It includes

a FIS Editor for defining membership functions and rule
bases, visualization tools for performance evaluation, and
integration with Simulink for closed-loop control[11].

Command Windosw
> Fuzzy -
S == %  Fuzzy Logic Designer: Untitled
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Fig 6 FIS Editor Workspace Showing Membership Functions and Rule View
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Figure 6 shows the Toolbox welcome interface, where on triangular membership functions due to their intuitive
users can access the FIS Editor for defining membership interpretation and low computational complexity.

functions and fuzzy rules. In this work, we focus specifically

4. Membership Function Editor: Untitled — ] >
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Ready

Fig 7 Membership Function Editor with Triangular and Trapezoidal Shapes

Figure 7 illustrates the membership function editor, linguistic terms such as near, quite near, and far, each
which supports defining both input and output functions. For modeled by a triangular function.
example, obstacle sensor readings are categorized into

4| Rule Editor: Untitled — (| e
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Fig 8 Rule Viewer and Surface Plot for Two input FIS Demonstrating Rule Response
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Figure 8 presents the fuzzy rule interface, where control
logic is encoded as IF-THEN statements. In our controller
design, rules follow patterns like “IF distance is near AND
bearing error is large THEN rotate in place,” enabling human-
like decision making.

V. ANFIS MODELING AND TRAINING
ANFIS architectures combine the transparent, rule-based

reasoning of fuzzy systems with the learning capabilities of
neural networks, enabling the model to adapt and refine its
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parameters from data[2]. Two common initialization

strategies are detailed below.
» Grid Partition vs. Subtractive Clustering

Grid Partition: Uniformly divides each input domain into
fuzzy sets, producing a full rule base by Cartesian
product. Suitable for few inputs but scales poorly as rule
count grows exponentially[2].

Subtractive Clustering: Detects data clusters based on

density in the input space, creating rules where data are
dense. This yields a compact, data-driven rule set[1].
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Fig 9 ANFIS Model Initialized via Grid Partition
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Fig 10 ANFIS Model Initialized via Substractive Clustering

» Neuro-Fuzzy Designer in MATLAB

The MATLAB Neuro-Fuzzy Designer app streamlines
ANFIS model creation. After importing the collected data,
users select Grid or scatter initialization, define membership
functions, and configure training parameters while monitoring
training error and epoch convergence[10].

» Training Data Collection

We deployed the fuzzy logic controller in Simulink to
gather a dataset comprising:

1JISRT25SEP1549
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o Wheel velocities (vL, VR) and resulting linear velocity (V

).

Robot pose (x, y, 0) from odometry.

Proximity sensor measurements (three sensors) for
obstacle distance.

This input—output matrix serves as the ANFIS training
set. Once trained, ANFIS and fuzzy controllers are compared
on target acquisition time and obstacle-avoidance
robustness[9]
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Fig 11 Neuro-Fuzzy Designer Interface Displaying initial FIS Structure and Training Settings
V. ANFIS MODELING AND TRAINING

To evaluate the fuzzy logic controller’s performance,
the complete control architecture was implemented in
Simulink. The robot’s dynamic model, sensor subsystems,

and fuzzy inference engine were interconnected to form a
closed-loop simulation. Data acquisition blocks logged wheel

velocities, robot pose, and proximity sensor readings at each
simulation step.
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Fig 12 Complete Simulink Model Depicting Robot Kinematics, Sensors and Fuzzy Controller
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During Navigation, the Fuzzy Controller was Tested in
Various Scenarios:

Obstacle avoidance in cluttered environments
Dynamic target tracking

The Following Signals were Recorded for the ANFIS
Training Dataset:

Inputs: wheel velocities (vL, VR), linear velocity (V ),
robot pose (X, y, 0), and three proximity sensor readings.
Outputs: fuzzy controller commands adjusting left and
right wheel speeds.

Fuzzy Controller Implementation Steps.
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angle over two time instants. The angle variable is
divided into seven fuzzy subsets: Negative Very Large
Angle (NVLA), Negative Large Angle (NLA), Negative
Medium Angle (NMA), Positive Small Angle (PSA),
Positive Medium Angle (PMA), Positive Large Angle
(PLA), and Positive Very Large Angle (PVLA). The
variation variable is divided into three fuzzy subsets:
Negative, Zero, and Positive.

Output Membership Functions (Figure 14): The outputs
(wheel speeds) are divided into five fuzzy subsets:
Negative Large (NL), Negative (N), Zero (Z), Positive
(P), and Positive Large (PL).

Rule Viewer and Inference (Figure 15): Visualization of
the fuzzy rule base matrix and activation levels during
inference.

Surface Plots of Wheel Speeds (Figure 16): 3D surface

» The Fuzzy Controller Design is Divided into Four Steps curves showing how input variables map to right and left
(Figures 13-16): wheel speeds.
e Input Membership Functions (Figure 13): The inputs are
categorized into two variables: the angle between the
target and the robot’s orientation, and the change in that
4. Membership Function Editor: Angle_FIS Droite - O 4. Membership Function Editor: Angle_FIS Droite - O X
File Edit View File Edit View
FIS Variables Membership function plote %t "= 181 FIS Variables Membarship function plote %t "= 181
NTGA NGA NMA  PPA PMA PGA PTGA N z P
D OO0
Angle  Vitesse Anfle Vitesse
Variation Vaniation
input variable "Angle”™ input variable "Variation .
Current Variable Current Membership Function (click on MF to select) Current Variable Current Memberzhip Function (click on MF to select)
Name Angle Name NTGA Name Variation Name N
Type input e trimf v || Type nput Type trimf v
Params 180 120 20 Params 100500
Range [-180 130] [ ] Range [-5050] [ ]
Display Range [-180 180] Help | Close | Display Range [-5050] Help Close
Ready Selected variable "Variation®
Fig 13 Input Membership Functions
e Comment:

Shows the seven fuzzy subsets for the angle variable and three subsets for its variation, defining the linguistic terms for both

inputs.
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e Comment:

Fig 14 Output Membership Functions (Wheel Speeds)

Depicts the five fuzzy subsets for wheel speed outputs used to translate fuzzy control signals into actuator commands.
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Fig 15 Rule Viewer Showing Fuzzy Base and Inference Activations
e Comment:
Visualizes the full set of fuzzy if-then rules and their activation levels for given input cases.
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fuzzification,

Illustrates how combinations of input angles and
variations produce specific left and right wheel speeds
through 3D surface mappings.

FUZZIFICATION, INFERENCE AND

VI.
DEFUZZIFICATION FOR OBSTACLE
AVOIDANCE
To detail the obstacle avoidance module, the

Sugeno inference, and defuzzification
processes are presented in four figures (Figures 17-19).

4| Surface Viewer: Angle_FIS_Gauche — [m} * 4| Surface Viewer: Angle_FIS_Droite — O
File Edit View Options File Edit View Options
&2 =
Variation 2l Angle Variation 2 -0 Angle
X (input): Angle w Y (input): LT . Z (output): Vitesse o X (input): Angle . ¥ (input) B ! v  Z (output): iz
X grids: 15 Y grids: 15 X grids: 15 ' grids: 15 Evaluate
Ref. Input Hpm points: |19 H Help | Close |‘ Ref. Input: HPlut points: |10 H Help Close |‘
Ready ‘ Ready ‘
Fig 16 3D Surface Plots of Wheel Speeds as Functions of input Variables
Comment: > Fuzzification:
The obstacle distance and relative bearing inputs are

fuzzified into linguistic terms to handle sensor noise and
nonlinearity. A typical Sugeno model uses crisp outputs
computed from linear functions of the inputs.
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Fig 17 Input Membership Functions for Obstacle Avoidance
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e Comment: Inference (Sugeno Model) Each fuzzy rule produces a

Defines fuzzy subsets for obstacle distance (Near, Far) crisp output as a linear function of the inputs. The weighted
and relative bearing (Left, Center, Right). average of all rule outputs yields the final control action.

Rule Base A set of if—then rules maps fuzzified sensor inputs
to control outputs, enabling reactive obstacle avoidance.
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Fig 18 Fuzzy Rule Base for Obstacle Avoidance
e Comment: » Defuzzification:
Lists the obstacle avoidance rules, e.g., ”If distance is The Sugeno output is computed via a weighted average
Near and bearing is Left, then turn right fast.” of rule consequents, providing a crisp wheel velocity
command.
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Fig 19 Surface Plot of Obstacle Avoidance Control Output
e Comment:

Visualizes how combinations of obstacle distance and bearing map to left/right wheel speed commands via the Sugeno
model.
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VIL. FUZZY CONTROLLER SIMULATION

We evaluated the standalone performance of the fuzzy logic controller on three scenarios: pure target-reaching, pure
obstacle-avoidance, and the combined task of navigating from (2, 2) to (8, 8) while avoiding obstacles.

o=t Wisual lzatien

T [mikers

i
M [l |

Fig 20 Simulation of the Fuzzy Controller Driving the Robot from its Start to Target (8,8) without Obstacles

Figure 20 demonstrates that the controller reliably guides the robot to the specified goal (8, 8) along a smooth trajectory,
achieving the target as expected.

Robot Visualization

12

Y [meters]

o 2 4 1= 8 10 12 14

X [meters]

Fig 21 Simulation of the Fuzzy Obstacle Avoidance Controller with Multiple Static Obstacles
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Fig 22 Combined Simulation from (2, 2) to (8,8)

Figure 22 illustrates the first combined-task scenario. The fuzzy controller merges goal seeking and obstacle-avoidance,
yielding an optimal, collision-free trajectory from the start point (2, 2) to the goal (8, 8), with a traveling time of 10.95 seconds.

These are some more additional navigation scenarios.
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Fig 23 Scenario 2 from (12, 12) to (6, 11)

Figure 23 shows the robot navigating from (12, 12) to (6, 11). The fuzzy controller completes the journey in 15.95 s while
avoiding all obstacles.
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Fig 24 Scenario 3 from (2, 2) to (12, 2)

Figure 24 illustrates the path from (2, 2) to (12, 2). The controller achieves the target in 20.02s, demonstrating efficient
straight-line travel with obstacle avoidance where needed.
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Fig 25 Scenario 4 from (12, 2) to (6, 11)

Figure 25 depicts the route from (12, 2) to (6,11). Due angle was recorded into a training matrix. This dataset was
to the more complex obstacle layout, the controller requires then used to train ANFIS models, yielding neuro-fuzzy
19.45 s to negotiate obstacles and arrive at the goal. controllers for each wheel and each task (target reaching and

obstacle avoidance). Subsequently, the robot was redeployed
VIII. ANFIS TRAINING AND PARAMETERIZATION to compare the performance of these controllers.

Upon completion of the robot deployments with the In this first part of the section, Figures 26a—26d
fuzzy controllers, all data from each scenario including left illustrate the step by step parameterization and training of the
and right wheel velocities, sensor readings, and heading ANFIS models:
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e Obstacle avoidance controller training for the left wheel e Target reaching controller training for the left wheel
(Figure 26a), (Figure 26¢),
e Obstacle avoidance controller training for the right wheel e Target reaching controller training for the right wheel
(Figure 26b), (Figure 26d).
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Fig 26 ANFIS Training and Parameterization
IX. NEURO-FUZZY CONTROLLER navigation scenarios previously simulated with the fuzzy

To evaluate the performance of the trained neuro-fuzzy
controllers, the robot was redeployed under five different
conditions. In the first experiment, only the obstacle-
avoidance neuro-fuzzy controller was active, and the robot
drove until battery exhaustion, avoiding every obstacle in its

DEPLOYMENT

logic controller, now executed with the neuro-fuzzy models.
Observation. In all four scenarios, the ANFIS neuro-fuzzy

trajectories.

path. The following five figures correspond to the same

IJISRT25SEP1549

www.ijisrt.com

controller consistently reduces the time to reach the target
compared to the pure fuzzy -controller. The greatest
improvement occurs in scenario 4 (approximately 2.25s less),
demonstrating better adaptation to complex avoidance
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Fig 27 Deployment with Obstacle Avoidance Neuro-Fuzzy Controller Only

4 Figure 1: Robot Visualization

1 0 8 File Edit Wiew Insert Tools Desktop Window Help ~
O ds (& 0B kOE

Robot Visualization

time 12 1

Y [meters]

o 2 4 & 8 10 12 14
X [meters]

Fig 28 Scenario 1 (Cbmbined Navigation) from (2, 2) to (8, 8)
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PERSPECTIVES

Our investigation demonstrates that conventional fuzzy
control offers notable advantages, including resilience to
uncertainties and straightforward deployment on differential-
drive mobile platforms. By preprocessing trajectory data
from the four scenarios and training an ANFIS model, we
achieved significant reductions in target-reaching time while

IJISRT25SEP1549
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Fig 31 Scenario 4 (Anfis Controller) from (12, 12) to (6, 11)
Table 1 Time to Target for Fuzzy and ANFIS Controller
Scenario Start Goal Fuzzy ANFIS
1 (2,2 (8,8) 10.95 10.80
2 (12,12) (6, 11) 15.95 16.8
3 (2,2 (12,2) 20.2 19.95
4 (12,2) (6, 11) 19.45 19.4
X. GENERAL CONCLUSION AND preserving the flexibility of fuzzy logic. The successful

deployment on the robot confirms the suitability of ANFIS
for navigation and obstacle avoidance tasks. Future work
could explore different fuzzy controller variants (Mamdani
vs. Sugeno), alternative ANFIS architectures, and training
parameter tuning (number of rules, membership functions,
optimization algorithms). A comparison with traditional PID
controllers would quantify relative benefits in performance
and computational cost. Moreover, integrating machine
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learning and deep learning models such as transformers for
trajectory planning opens avenues for hybrid controllers
capable of online strategy adaptation. These findings pave the
way for high-impact applications, including robotic surgery,
assistive devices for individuals with reduced mobility, and
autonomous vehicles, where decision-making precision and
responsiveness are critical.
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