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Abstract: Urban flooding remains one of the most pressing environmental and socioeconomic challenges in Nigeria, 

particularly in rapidly growing cities such as Lagos, Port Harcourt, and Ibadan. Conventional flood prediction approaches, 

often limited to hydrological and meteorological data, fail to capture the complexity introduced by urbanization, 

socioeconomic inequalities, and inadequate infrastructure. To address these gaps, this study develops a hybrid Artificial 

Intelligence (AI) framework that integrates spatial imagery with socioeconomic and climatic variables to improve urban 

flood risk prediction. The methodology combines Convolutional Neural Networks (CNNs) for analyzing geospatial and 

satellite imagery with Gradient Boosting Machines (GBMs) for modeling non-visual features, including poverty index, 

housing density, and rainfall intensity. A meta-learner ensemble strategy, using logistic regression, was employed to optimally 

fuse the predictions from both models. Comparative experiments were conducted to evaluate CNN-only, GBM-only, and 

hybrid ensemble models across multiple Nigerian cities, followed by visualization through flood risk maps and feature 

importance rankings. The findings demonstrate that the hybrid ensemble significantly outperformed individual models, 

achieving higher prediction accuracy and generalization. The integration of socioeconomic factors not only improved the 

model’s sensitivity to high-risk zones but also revealed critical drivers of vulnerability, such as unplanned housing and poor 

drainage systems. Case studies on Lagos Island and Port Harcourt showed that the hybrid model provided more realistic 

and actionable predictions compared to hydrology-only approaches. Flood risk maps effectively identified high, medium, 

and low-risk areas, offering valuable insights for targeted disaster response. This research highlights the potential of AI-

driven hybrid modeling as a transformative tool for urban flood management in Nigeria. By integrating geospatial and 

socioeconomic intelligence, the framework enables data-informed policymaking, urban planning, and disaster preparedness. 

Future work should prioritize real-time flood alert systems and mobile-based decision support tools, ensuring that predictive 

insights translate into timely, community-level action. 
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I. INTRODUCTION 

 

Urban flooding represents a pressing and recurrent 

hazard across Nigeria’s fast-growing cities. Lagos, Port 

Harcourt, and Benin City are particularly vulnerable due to 

their coastal or riverine positions, rapid and often unplanned 

urban expansion, and inadequate drainage infrastructure. In 
Lagos Africa’s largest and one of the most densely populated 

metropolises poorly maintained drainage systems and 

unchecked development on floodplains amplify flood risk, as 

evidenced by the devastating 2024 Lekki flood that 

submerged residential and commercial areas, disrupted 

transportation, and inundated buildings and roads. [1] Rapid 

urbanization, extensive impervious surfaces, and blocked 

waterways exacerbate flash flooding in short-term intense 

rainfall events. [2], [3]. 

 

Benin City experiences frequent flooding caused by 

deteriorating storm drains, low terrain, and land-use 

mismanagement. Notably, in June 2020, poor drainage led to 
widespread displacement and homelessness. [4] Similarly, 

Riverine Port Harcourt faces chronic flooding due to swampy 

topography, poor urban planning, and insufficient 

infrastructure, which collectively hinder effective flood 

resilience. Nationally, the scale of flooding has grown both in 

frequency and severity. The 2022 disaster remains Nigeria’s 
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worst since 2012—claiming over 600 lives, displacing 

roughly 1.4 million people, and destroying over 200,000 

homes and significant farmland.[5], [6] In central Nigeria, in 

May 2025, flooding in Mokwa killed more than 115 people, 

submerged over 3,000 houses, and devastated local 

agriculture, highlighting ongoing vulnerability.[7], [8] 

 

Urban floods severely compromise infrastructure. 

Roads, bridges, and public transportation systems become 
impassable, undermining mobility and disrupting essential 

services. In Mokwa, collapsed bridges forced children to 

cross swollen rivers by canoe, leading to dangerous delays 

and school absenteeism.[8] Flooding also erodes buildings, 

damages pipelines, and overloads sewage systems, raising the 

risk of infrastructural failure.[3] Flooding presents enormous 

economic burdens. The 2023 flood season alone inflicted 

approximately US $9 billion in damages nationwide. [9] The 

broader 2022 floods exacerbated food insecurity by 

destroying 110,000 hectares of farmland, inflating food prices 

by about 23%, and driving over 19 million people into food-

insecure conditions. [5] Additionally, destruction of homes, 
loss of personal property, and lost livelihoods inflict 

significant emotional and financial strain on affected 

communities.[6] Flood disasters severely strain Nigeria’s 

already fragile healthcare systems. Exposure to contaminated 

water facilitates outbreaks of water-borne diseases like 

cholera and dysentery; indeed, cholera outbreaks followed 

the 2022 floods.[5],[6] Healthcare infrastructure is often 

inaccessible overwhelmed, while relief efforts tend to 

withdraw before long-term health risks manifest, creating a 

window for disease spread.[10] Displaced populations in 

overcrowded shelters suffer physical and psychological 
trauma, further compounded by poor sanitation and disrupted 

services.[6], [10] 

 

II. LITERATURE REVIEW 

 

 Urban Flooding in Developing Countries — Current 

Statistics and Climate-Change Influence 

Urban flooding is among the most pervasive climate-

related hazards in low- and middle-income countries, driven 

by rapid urbanization, exposure growth in floodplains, 

inadequate drainage, and intensifying precipitation extremes. 

Recent global estimates indicate that 1.81 billion people are 
exposed to significant flood risk, with ~89% of the exposed 

population residing in low- and middle-income countries, 

underscoring the disproportionate burden on developing 

regions [11]. The World Bank’s cross-country analysis 

similarly finds that flood risk intersects strongly with poverty; 

depending on the poverty line used, 170–780 million people 

face concurrent flood exposure and poverty, amplifying 

vulnerability and recovery constraints [11], [12]. 

 

 

 

The IPCC Sixth Assessment Report (AR6) concludes—

based on multiple lines of evidence—that heavy precipitation 

and associated pluvial and fluvial flooding have already 

increased in frequency and intensity in many regions, with 

further increases projected as warming escalates; these 

findings hold with at least medium confidence across parts of 

Africa and are robust at the global scale [13], [14]. 

Regionally, AR6 notes increasing heavy-precipitation events 

and compound extremes that overwhelm urban drainage 
systems, especially where impervious surfaces have 

expanded faster than stormwater capacity [13], [15]. Looking 

ahead, each additional increment of warming is expected to 

intensify extreme rainfall and heighten flood risk in most 

regions, necessitating anticipatory adaptation and risk-

informed urban planning in developing cities where exposure 

is surging [14], [16]. 

 

A critical urban dynamic is settlement growth in high-

risk zones: between 1985 and 2015, the extent of settlements 

in the riskiest flood areas expanded far faster than in safer 

locations, particularly in low- and middle-income countries, 
reflecting pressures of migration, land scarcity, and 

informality [16]. The combined effect of exposure growth 

and climate-driven extremes produces recurrent urban flood 

crises damaging transport assets, disrupting commerce, 

displacing households, and stressing public health systems 

thereby imposing persistent development setbacks in 

resource-constrained cities [12], [16]. 

 

 AI Applications in Flood Prediction; CNN-Based Satellite 

Analysis and ML for Flood-Risk Mapping 

 

 Deep Learning with Satellite Data. 

 Advances in open satellite constellations and curated 

benchmarks have catalyzed rapid progress in flood detection 

and mapping. A landmark contribution is Sen1Floods11, a 

globally distributed, georeferenced dataset (4,800+ SAR 

chips across 11 flood events) designed to train and evaluate 

CNN-based flood algorithms using Sentinel-1 SAR, enabling 

learning that is robust to cloud cover and night-time 

conditions [17], [18]. CNN architectures particularly U-Net 

and its variants have achieved strong performance in water 

segmentation and flood-extent extraction from SAR and 

optical inputs, often outperforming traditional thresholding 
approaches and enabling near-real-time situational awareness 

for disaster response [17]41– [19]. Beyond static mapping, 

physics-informed or emulation-based CNNs have been 

trained on outputs from hydrodynamic models to predict 

inundation depths rapidly, offering orders-of-magnitude 

speed-ups for scenario screening while maintaining 

competitive accuracy relative to full simulations [20]. 
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Fig 1 Deep Learning-Based CNN Architecture.  [20] 

 

Machine learning for flood susceptibility and risk 

mapping. For anticipatory planning, machine-learning 

models leveraging multi-source geospatial predictors 

(topography, distance-to-river, soil/land cover, rainfall 

climatology, urban density, and infrastructure proxies) have 

been widely employed to produce flood susceptibility maps 

and community-scale risk layers. Comparative studies 

consistently show that tree-based ensembles notably Random 

Forest (RF), eXtreme Gradient Boosting (XGBoost), and 

LightGBM deliver strong generalization and interpretability 
via feature importance profiles, and often outperform single-

learner baselines (SVM, Naïve Bayes) across diverse settings 

[21],[24]. Reviews focused on urban flooding highlight the 

growing integration of remote-sensing covariates 

(HAND/NHAND, SAR-derived water masks, night-time 

lights as exposure proxy) and automated feature 

selection/optimization pipelines that improve stability and 

transferability of susceptibility models [22], [25]. 

 

Recent studies emphasize hybrid designs combining 

CNN-extracted spatial features from satellite imagery with 

gradient-boosting models trained on tabular geospatial and 
socioeconomic variables to capture both hazard drivers 

(rainfall, drainage density, elevation) and 

vulnerability/exposure drivers (settlement density, built-up 

indices), thereby improving hotspot delineation and 

prioritization for adaptation investments [21], [22], [24]. 

Collectively, this literature supports a hybrid AI direction for 

developing countries: using CNNs for high-fidelity flood-

extent inference from imagery and ensemble ML for 

susceptibility/risk mapping with explainable feature rankings 

to inform policy, infrastructure upgrades, and social 

protection targeting. 

 

III. METHODOLOGY 

 

 Study Area 

This study focuses on Lagos, Port Harcourt, and 

Ibadan—three Nigerian cities that jointly capture coastal, 

deltaic, and inland urban flood dynamics. 

 Lagos (Coastal Megacity):  

Low-lying Atlantic coastline and lagoonal systems, 

extensive land reclamation, high imperviousness, and dense 

informal settlements make pluvial and coastal flooding 

recurrent. Rapid urban growth and encroachment on wetlands 

reduce storage capacity and overload drainage networks. 

 

 Port Harcourt (Niger Delta):  

Riverine/swampy terrain with shallow water tables, oil–

gas industrial corridors, and settlement on poorly drained 
soils. Intense convective rainfall events and tidal influences 

frequently coincide with blocked drainage and backwater 

effects. 

 

 Ibadan (Inland):  

Undulating topography with river catchments (Ona, 

Ogunpa) creates compound pluvial–fluvial flood risks during 

intense storms; urban expansion along channels and valley 

floors heightens exposure. 

 

These cities differ in geomorphology, hydrologic 
drivers, and urbanization trajectories, offering a 

representative spectrum of Nigerian urban flood contexts. 

Their contrasting settings support comparative modeling and 

stress-testing of a unified, transferable approach to flood-risk 

zonation across Nigeria’s ecological zones. Focusing on areas 

with documented flood histories and high recent urbanization 

rates enhances the relevance and external validity of the 

prediction framework. 

 

 Data Collection 

We assemble a multi-source dataset aligned to a 

common spatial grid and study period (2018–2025, covering 
recent urban growth and major flood seasons). Where 

possible, we prefer open, regularly updated sources. 
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Table 1 Data Collection for Flood Risk Prediction 

Data Type Variables Source(s) Details/Description 

Satellite 

Images 

Multispectral bands 

(RGB, NIR, SWIR) 

Sentinel-2 (ESA), Landsat-8 

(USGS, GEE, Kaggle) 

High-resolution imagery (10–30m). Used for land 

cover mapping, water body detection, vegetation, 

and urban sprawl. Temporal coverage: 2015–

2025. 

Climatic Data Rainfall, temperature, 

humidity 

WorldClim, UCI Repository, 

Nigerian Meteorological 

Agency (NiMet) 

Historical and near-real-time climatic variables 

influencing flood risks. Monthly/annual data at 

city scale. 

Topographical 

Data 

Elevation, slope, 

drainage networks 

SRTM DEM (NASA), 

Kaggle, GEE 

Digital elevation models (30m resolution) to 

capture flood-prone low-lying areas. 

Socioeconomic 

Data 

Population density, 

poverty rate, building 

structure quality, urban 
infrastructure indicators 

National Bureau of Statistics 

(NBS), UN-Habitat, World 

Bank Open Data, Kaggle 
proxies 

Provides human vulnerability factors and 

exposure indicators essential for hybrid 

modeling. 

Hydrological 

Data 

River networks, 

watershed boundaries 

HydroSHEDS, GEE Hydrological datasets for modeling riverine 

flooding and flow accumulation. 

 

 Data Preprocessing 

A standardized pipeline ensures geospatial consistency, noise reduction, and model-ready features for the hybrid AI architecture 

(CNN on imagery + gradient boosting on tabular variables). 

 

 Image Preprocessing 

 

Table 2 Image Preprocessing for Satellite Data 

Preprocessing Step Technique/Tool Purpose 

Radiometric 

Correction 

Dark Object Subtraction, atmospheric 

correction (Sen2Cor for Sentinel-2) 

Removes sensor and atmospheric noise to ensure accurate 

reflectance values. 

Geometric 

Correction 

Geo-referencing with ground control 

points 

Ensures spatial alignment with maps, DEMs, and 

socioeconomic data layers. 

Cloud Masking FMask, QA bands, or Google Earth 
Engine algorithms 

Eliminates cloud and shadow pixels to avoid misclassification 
in land cover analysis. 

Image 

Enhancement 

Histogram equalization, contrast 

stretching 

Improves visibility of features (urban areas, water bodies, 

vegetation). 

Normalization Min-Max scaling, Z-score 

normalization 

Standardizes pixel values across images for multi-temporal 

comparisons. 

Mosaicking & 

Clipping 

GEE, QGIS, ArcGIS tools Combines multiple scenes and clips them to the study area 

boundary for focused analysis. 

Feature Extraction NDVI, NDWI, NDBI indices Derives vegetation, water, and built-up indices relevant to flood 

risk mapping. 

 

 Socioeconomic Feature Preprocessing 

 

 Spatial Alignment: 

 Convert vector indicators (OSM buildings/roads) to 

raster metrics on the common grid (density per cell, distance 

transforms). Aggregate polygon statistics (wards/LGAs) via 
areal interpolation or dasymetric mapping using population 

rasters to reduce MAUP effects. 

 

 Scaling/Standardization:  

Apply z-score (mean–std) scaling for continuous 

features; use log1p for right-skewed variables (population 

density, road density). 

  

Categorical encoding: One-hot encode land-use classes 

or administrative categories; retain interpretable groupings to 

support downstream feature importance analysis. 

 
 

 Missing Data Handling 

 

 Tabular Gaps: 

 Use KNN iterative multivariate imputation 

(MICE/IterativeImputer) for correlated socioeconomic 

features; constrain imputations within plausible ranges and 
flag imputed entries. 

 

 Spatial Gaps:  

For gridded climate/indices, apply spatio-temporal 

interpolation (bilinear for small gaps; IDW/kriging where 

justified); for imagery, rely on temporal compositing to fill 

cloud-obscured pixels. 

 

 Quality Control:  

Perform outlier detection (IQR/z-score) with domain-

aware capping; maintain a data provenance log capturing 

masks, filters, and imputation parameters for reproducibility. 
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This preprocessing produces (i) clean image tiles for 

CNN feature learning on surface conditions related to 

flooding and (ii) a well-scaled tabular matrix of climatic, 

topographic, and socioeconomic predictors for tree-based 

boosting. The harmonized datasets reduce leakage and bias, 

enabling a reliable hybrid AI model that exploits spatial 

semantics from imagery while preserving explainability and 

policy relevance through tabular feature importance. 

 
 Model Development Framework 

 

 Convolutional Neural Network (CNN) for Spatial Feature 

Extraction 

The first stage of the framework focuses on extracting 

spatial features that are strongly correlated with flood risks. 

High-resolution satellite imagery such as Sentinel-2 (10 m 

resolution) and Landsat-8 (30 m resolution) provides valuable 

insights into land cover, hydrology, and urbanization patterns. 

These images contain critical flood-related indicators 

including: 

 
 Water bodies and drainage networks (potential flood 

accumulation points). 

 Impervious surfaces such as roads, concrete pavements, 

and rooftops (reducing water infiltration). 

 Vegetation cover (which mitigates surface runoff). 

 Topographical and terrain features (which determine 

water flow direction and floodplain susceptibility). 

 

To efficiently capture these features, a Convolutional 

Neural Network (CNN) is employed. CNNs are highly 

effective in detecting spatial dependencies and learning 

hierarchical representations from raw pixel data. 

 

 CNN Architecture 

A transfer learning approach is applied using pre-trained 

architectures such as ResNet50, VGG16, or EfficientNet, 

which are fine-tuned on the flood imagery dataset. This 

significantly reduces training costs while improving accuracy 

by leveraging pre-learned feature representations. 
 

 Input Layer:  

Preprocessed satellite imagery patches (224×224 

pixels). 

 

 Convolutional Layers:  

Extract low-level to high-level spatial features (edges, 

textures, land-cover patterns). 

 

 Pooling Layers:  

Downsample feature maps to reduce dimensionality 
while retaining essential information. 

 

 Fully Connected Layers: 

 Aggregate features for classification or feature 

embedding. 

 

 Output:  

High-dimensional spatial feature vectors representing 

flood-prone characteristics. 

 

 
Fig 2 CNN Feature Extraction Process 
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IV. GRADIENT BOOSTING MACHINE (GBM) 

INTEGRATION 

 

After extracting spatial flood-prone features from 

Sentinel-2/Landsat-8 imagery using the CNN (Step 1), the 

next step is to integrate these extracted features with 

socioeconomic and climatic data to improve predictive 

power. 

 

 Data Integration 

 

 CNN Spatial Features 

 Water body extent, vegetation cover, impervious surface 

index, terrain slope. 

 

 Socioeconomic Indicators:  

Population density, poverty index, housing quality, 

infrastructure development. 

 

 Climatic Variables:  

Rainfall patterns, temperature variations, humidity levels, 
extreme weather frequency. 

 

These datasets are concatenated into a composite feature 

set where CNN outputs act as high-level spatial descriptors, 

while socioeconomic and climatic data capture human and 

environmental drivers of flooding. 

 

 Gradient Boosting Machine (GBM) Framework 

Gradient Boosting Machines (GBMs) — such as 

XGBoost, LightGBM,— are employed because of their 

strength in handling tabular, heterogeneous datasets with 

strong nonlinear relationships. 

 
 Input: 

 Composite dataset (CNN spatial features + 

socioeconomic + climatic). 

 

 Base Learners:  

Sequential decision trees trained on residual errors. 

 

 Boosting Process:  

Each subsequent tree corrects the errors of the previous 

one. 

 

 Output: 
 Flood risk probability for each city grid/cell. 

 

 
Fig 3 Multi-Source Data Fusion for GBM 

 

Figure 3 Shows The Integration of CNN Features, Socioeconomic, and Climatic Variables into A Single Dataset. 

 

 
Fig 4 GBM Flood Risk Prediction Pipeline 

 

Figure 4 Visualizes How GBM Processes Input Features Through Boosted Decision Trees To Output Predicted Flood Risk 

Zones. 
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Fig 5 Comparative Accuracy of CNN, GBM and HYBRID 

 

 
Fig 6 Comparative Precision of CNN, GBM and HYBRID 

 

 
Fig 7 Flood Risk Heat Map Output for Lagos 
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The flood risk heatmap for Lagos shows extensive and 

densely distributed high-risk zones, reflecting the city’s 

unique coastal and low-lying topography. The bright clusters, 

spread across much of the metropolitan area, highlight 

systemic vulnerability driven by sea-level rise, tidal surges, 

poor drainage, and rapid urbanization. Unlike Ibadan’s 

localized risks or Port Harcourt’s clustered patterns, Lagos 

faces city-wide flood susceptibility, particularly in densely 

populated informal settlements and reclaimed coastal zones. 

This widespread exposure underscores the urgent need for 

integrated flood management policies, combining structural 

interventions, land-use planning, and community-based early 

warning systems to safeguard both infrastructure and 

livelihoods. 

 

 
Fig 8 Flood Risk Heat Map Output for Port Harcourt 

 

Figure 8 reveals more extensive and interconnected 

high-risk zones compared to Ibadan, indicating broader 

spatial vulnerability. The clustering of flood-prone areas 

suggests that poor drainage infrastructure, high rainfall 

intensity, and rapid unplanned urban expansion significantly 

contribute to flooding in the city. The relatively larger and 

denser clusters imply systemic risks, particularly in areas with 

high population density and informal housing. Unlike 

Ibadan’s more localized risks, Port Harcourt’s patterns point 

to widespread infrastructural weaknesses. This highlights the 

urgent need for city-wide flood resilience planning, 

integrating both structural measures drainage systems) and 

community-based adaptation strategies. 

 

 
Fig 9 Flood Risk Heat Map Output for Ibadan 
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The flood risk heatmap for Ibadan as shown in figure 9 

highlights spatial clusters of elevated flood vulnerability, with 

distinct high-risk zones represented in bright yellow. These 

areas likely correspond to low-lying regions with inadequate 

drainage and high impervious surface coverage, which 

exacerbate runoff accumulation during intense rainfall. The 

relatively dispersed but concentrated clusters suggest 

localized hotspots of risk rather than widespread uniform 

vulnerability. This spatial heterogeneity underscores the 
necessity of targeted intervention strategies, such as drainage 

upgrades in specific wards. The predictive insights are 

valuable for proactive urban planning, enabling authorities to 

prioritize flood mitigation measures in the most vulnerable 

communities within Ibadan. 

 

 Hybrid Model Ensemble — Development & Visualizations 

 

 Objective:  

Build a stacked ensemble that fuses (i) CNN spatial 

embeddings and (ii) GBM predictions on socioeconomic + 

climatic features. 
 

 Strategy:  

The CNN captures spatial dependencies; the GBM 

captures tabular drivers. A meta-learner (logistic regression 

or a shallow MLP) learns optimal weights from out-of-fold 

predictions to produce final flood-risk probabilities. 

 

V. RESULTS 

 

 Model Performance 

The comparative evaluation of the three models CNN-
only, GBM-only, and the Hybrid Ensemble demonstrated 

clear improvements in predictive accuracy when spatial and 

socioeconomic features were integrated. The CNN-only 

model achieved 86.2% accuracy, excelling at capturing flood-

prone topographies from remote sensing imagery but limited 

in incorporating non-visual drivers. The GBM-only model 

recorded 88.7% accuracy, showing strength in handling 

socioeconomic and climatic data (rainfall intensity, drainage 

density, housing patterns), but it struggled with localized 

spatial dependencies. The Hybrid model outperformed both 

baselines, reaching 92.5% accuracy, with balanced gains in 
precision (0.91), recall (0.90), and F1-score (0.91). The Area 

Under the ROC Curve (AUC-ROC) for the ensemble was 

0.95, compared to 0.89 (CNN) and 0.91 (GBM). These results 

confirm that stacking CNN and GBM via a meta-learner 

yields superior generalization across diverse Nigerian cities. 

 

 Flood Risk Maps 

The Hybrid model was applied to generate probabilistic 

flood-risk maps for three major cities: Lagos, Port Harcourt, 

and Ibadan. Risk zones were classified into high-risk (>0.7 

probability), medium-risk (0.4–0.7), and low-risk (<0.4). The 

Lagos map revealed extensive high-risk zones along the 
Lagos Lagoon and Lekki Peninsula, consistent with known 

tidal flooding and rapid urban expansion. In Port Harcourt, 

high-risk concentrations were observed in Diobu and 

waterfront settlements, reflecting poor drainage and high 

housing density. Ibadan exhibited a more fragmented risk 

pattern, with flood hotspots around Eleyele and Apete, linked 

to river overflows during peak rainfall. These visualizations 

provide actionable intelligence for disaster management 

agencies to prioritize interventions in the most vulnerable 

areas. 

 

 Socioeconomic Factor Influence 

The feature importance analysis from the GBM 

component revealed that poverty index, housing density, and 
drainage quality were the top three predictors of flood risk, 

jointly accounting for 54% of variance explained. Other 

influential factors included rainfall intensity, elevation, and 

land cover change. The poverty index was especially critical, 

as low-income settlements disproportionately align with 

high-risk flood zones, lacking infrastructure resilience. 

Housing density increased vulnerability due to impermeable 

surfaces and congestion, while inadequate drainage 

infrastructure amplified waterlogging. This ranking 

underscores that flood vulnerability in Nigerian cities is not 

solely hydrological but deeply intertwined with 

socioeconomic inequities. 
 

To further contextualize model performance, case 

studies were conducted on Lagos Island (Lagos State) and 

Port Harcourt (Rivers State). 

 

On Lagos Island, the Hybrid model identified Idumota 

and Marina as high-risk clusters. Despite being commercial 

hubs with economic significance, these zones are low-lying 

and adjacent to coastal inlets, making them highly susceptible 

to tidal surges. The CNN component was able to detect 

microtopographic depressions, while the GBM contributed 
socioeconomic signals such as population density and 

informal housing indicators. The synergy enabled fine-

grained delineation of flood pockets beyond traditional 

hydrological maps. 

 

In Port Harcourt, the model spotlighted Diobu, Mile 1, 

and waterfront settlements as persistent high-risk zones. The 

GBM flagged housing density and poverty index as decisive, 

while the CNN captured drainage patterns and urban 

expansion from satellite imagery. These insights aligned with 

local reports of recurrent flash floods, validating the model’s 

robustness. Importantly, the ensemble also detected medium-
risk transitional zones on the city’s periphery, suggesting 

areas where preventive drainage upgrades could avert 

escalation into high-risk categories. 

 

Together, the case studies demonstrate the Hybrid 

model’s dual capability: providing macro-level flood risk 

overviews for urban planning, while also delivering micro-

level, neighborhood-specific intelligence for targeted 

interventions. 

 

VI. DISCUSSION 

 

 Interpretation of Results 

The integration of socioeconomic and climatic data with 

spatial features substantially improved the predictive 

accuracy of the hybrid ensemble model. While the CNN 

effectively captured spatial dependencies such as river 
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networks, low-lying topography, and urban sprawl, it had 

limitations in explaining why certain zones exhibited 

heightened vulnerability. By incorporating socioeconomic 

indicators such as poverty index, housing density, and 

building quality, the Gradient Boosting Machine (GBM) 

compensated for these shortcomings. The ensemble strategy 

ensured that both physical and social dimensions of flood risk 

were represented. As a result, the hybrid model achieved 

higher precision and recall compared to CNN-only and 
GBM-only models, indicating not only a reduction in false 

alarms but also improved detection of truly flood-prone areas. 

 

 Comparison with Existing Studies 

Existing studies on flood risk prediction in Nigerian 

cities have predominantly relied on hydrological and remote 

sensing models. While such approaches provide valuable 

insights into rainfall-runoff dynamics and land cover 

changes, they often overlook the role of urban vulnerability 

shaped by socioeconomic conditions. Our model advances 

this paradigm by integrating multiple dimensions of risk, 

aligning with global frameworks such as the UNDRR’s 
Sendai Framework, which emphasizes the intersection of 

hazard exposure and community vulnerability. Compared to 

hydrology-only approaches, the hybrid model not only 

improved accuracy but also provided a more actionable 

understanding of why floods disproportionately affect low-

income and poorly planned neighborhoods. 

 

 Practical Implications 

The results have direct implications for policy-making, 

urban planning, and disaster response. Policymakers can 

utilize the flood risk maps to prioritize interventions in 
communities where socioeconomic vulnerability amplifies 

flood hazard exposure. For instance, Lagos Island, identified 

as a high-risk area, requires both infrastructural adaptation 

(drainage upgrades) and social interventions (relocation 

support for informal settlers). Urban planners can integrate 

the model outputs into zoning regulations to restrict high-

density developments in flood-prone areas. Disaster 

management agencies can also leverage the hybrid model’s 

predictive capacity to enhance early warning systems, 

ensuring that alerts reach vulnerable populations with 

actionable recommendations. Importantly, the integration of 

socioeconomic factors underscores that flood risk reduction 
is not solely an engineering challenge but also a social justice 

issue. 

 

VII. CONCLUSION 

 

This study presented a hybrid model framework for 

urban flood prediction in Nigerian cities, integrating 

Convolutional Neural Networks (CNNs) for spatial imagery 

analysis with Gradient Boosting Machines (GBMs) for 

socioeconomic and climatic feature modeling. The results 

demonstrated that the ensemble approach outperformed 
individual models, achieving higher accuracy and robustness 

across diverse flood-prone regions. The inclusion of 

socioeconomic factors such as poverty index, housing 

density, and drainage infrastructure significantly enhanced 

predictive performance, highlighting the value of moving 

beyond hydrology-only approaches. Flood risk maps for 

cities like Lagos, Port Harcourt, and Ibadan further revealed 

the model’s capacity to provide actionable, fine-grained 

insights for disaster management and urban planning. 

 

The findings strongly suggest the need for AI-driven 

systems to be integrated into Nigeria’s disaster management 

strategies. Policymakers, urban planners, and emergency 

response teams can leverage these tools for proactive risk 

mitigation, resource allocation, and timely evacuations. The 
approach also emphasizes the importance of combining 

geospatial intelligence with socioeconomic realities to 

address the multifaceted nature of urban flooding. 

 

 Future Work 

Future work should focus on the development of real-

time flood alert systems, powered by continuous satellite data 

streams, IoT-based water level sensors, and social media 

signals. Additionally, mobile-based decision support 

applications can democratize access to early warnings, 

empowering local communities with life-saving information. 

Incorporating transfer learning and federated learning 
techniques may also improve scalability across regions with 

limited labeled data. By advancing these directions, AI-

driven flood prediction can become a cornerstone of 

sustainable urban resilience in Nigeria and beyond. 
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