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Abstract: Urban flooding remains one of the most pressing environmental and socioeconomic challenges in Nigeria,
particularly in rapidly growing cities such as Lagos, Port Harcourt, and Ibadan. Conventional flood prediction approaches,
often limited to hydrological and meteorological data, fail to capture the complexity introduced by urbanization,
socioeconomic inequalities, and inadequate infrastructure. To address these gaps, this study develops a hybrid Artificial
Intelligence (AI) framework that integrates spatial imagery with socioeconomic and climatic variables to improve urban
flood risk prediction. The methodology combines Convolutional Neural Networks (CNNs) for analyzing geospatial and
satellite imagery with Gradient Boosting Machines (GBMs) for modeling non-visual features, including poverty index,
housing density, and rainfall intensity. A meta-learner ensemble strategy, using logistic regression, was employed to optimally
fuse the predictions from both models. Comparative experiments were conducted to evaluate CNN-only, GBM-only, and
hybrid ensemble models across multiple Nigerian cities, followed by visualization through flood risk maps and feature
importance rankings. The findings demonstrate that the hybrid ensemble significantly outperformed individual models,
achieving higher prediction accuracy and generalization. The integration of socioeconomic factors not only improved the
model’s sensitivity to high-risk zones but also revealed critical drivers of vulnerability, such as unplanned housing and poor
drainage systems. Case studies on Lagos Island and Port Harcourt showed that the hybrid model provided more realistic
and actionable predictions compared to hydrology-only approaches. Flood risk maps effectively identified high, medium,
and low-risk areas, offering valuable insights for targeted disaster response. This research highlights the potential of AI-
driven hybrid modeling as a transformative tool for urban flood management in Nigeria. By integrating geospatial and
socioeconomic intelligence, the framework enables data-informed policymaking, urban planning, and disaster preparedness.
Future work should prioritize real-time flood alert systems and mobile-based decision support tools, ensuring that predictive
insights translate into timely, community-level action.
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L INTRODUCTION urbanization, extensive impervious surfaces, and blocked
waterways exacerbate flash flooding in short-term intense

Urban flooding represents a pressing and recurrent
hazard across Nigeria’s fast-growing cities. Lagos, Port
Harcourt, and Benin City are particularly vulnerable due to
their coastal or riverine positions, rapid and often unplanned
urban expansion, and inadequate drainage infrastructure. In
Lagos Africa’s largest and one of the most densely populated
metropolises poorly maintained drainage systems and
unchecked development on floodplains amplify flood risk, as
evidenced by the devastating 2024 Lekki flood that
submerged residential and commercial areas, disrupted
transportation, and inundated buildings and roads. [1] Rapid
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rainfall events. [2], [3].

Benin City experiences frequent flooding caused by
deteriorating storm drains, low terrain, and land-use
mismanagement. Notably, in June 2020, poor drainage led to
widespread displacement and homelessness. [4] Similarly,
Riverine Port Harcourt faces chronic flooding due to swampy
topography, poor urban planning, and insufficient
infrastructure, which collectively hinder effective flood
resilience. Nationally, the scale of flooding has grown both in
frequency and severity. The 2022 disaster remains Nigeria’s
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worst since 2012—claiming over 600 lives, displacing
roughly 1.4 million people, and destroying over 200,000
homes and significant farmland.[5], [6] In central Nigeria, in
May 2025, flooding in Mokwa killed more than 115 people,
submerged over 3,000 houses, and devastated local
agriculture, highlighting ongoing vulnerability.[7], [8]

Urban floods severely compromise infrastructure.
Roads, bridges, and public transportation systems become
impassable, undermining mobility and disrupting essential
services. In Mokwa, collapsed bridges forced children to
cross swollen rivers by canoe, leading to dangerous delays
and school absenteeism.[8] Flooding also erodes buildings,
damages pipelines, and overloads sewage systems, raising the
risk of infrastructural failure.[3] Flooding presents enormous
economic burdens. The 2023 flood season alone inflicted
approximately US $9 billion in damages nationwide. [9] The
broader 2022 floods exacerbated food insecurity by
destroying 110,000 hectares of farmland, inflating food prices
by about 23%, and driving over 19 million people into food-
insecure conditions. [5] Additionally, destruction of homes,
loss of personal property, and lost livelihoods inflict
significant emotional and financial strain on affected
communities.[6] Flood disasters severely strain Nigeria’s
already fragile healthcare systems. Exposure to contaminated
water facilitates outbreaks of water-borne diseases like
cholera and dysentery; indeed, cholera outbreaks followed
the 2022 floods.[5],[6] Healthcare infrastructure is often
inaccessible overwhelmed, while relief efforts tend to
withdraw before long-term health risks manifest, creating a
window for disease spread.[10] Displaced populations in
overcrowded shelters suffer physical and psychological
trauma, further compounded by poor sanitation and disrupted
services.[6], [10]

II. LITERATURE REVIEW

» Urban Flooding in Developing Countries — Current
Statistics and Climate-Change Influence

Urban flooding is among the most pervasive climate-
related hazards in low- and middle-income countries, driven
by rapid urbanization, exposure growth in floodplains,
inadequate drainage, and intensifying precipitation extremes.
Recent global estimates indicate that 1.81 billion people are
exposed to significant flood risk, with ~89% of the exposed
population residing in low- and middle-income countries,
underscoring the disproportionate burden on developing
regions [11]. The World Bank’s cross-country analysis
similarly finds that flood risk intersects strongly with poverty;
depending on the poverty line used, 170-780 million people
face concurrent flood exposure and poverty, amplifying
vulnerability and recovery constraints [11], [12].
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The IPCC Sixth Assessment Report (AR6) concludes—
based on multiple lines of evidence—that heavy precipitation
and associated pluvial and fluvial flooding have already
increased in frequency and intensity in many regions, with
further increases projected as warming escalates; these
findings hold with at least medium confidence across parts of
Africa and are robust at the global scale [13], [14].
Regionally, AR6 notes increasing heavy-precipitation events
and compound extremes that overwhelm urban drainage
systems, especially where impervious surfaces have
expanded faster than stormwater capacity [13], [15]. Looking
ahead, each additional increment of warming is expected to
intensify extreme rainfall and heighten flood risk in most
regions, necessitating anticipatory adaptation and risk-
informed urban planning in developing cities where exposure
is surging [14], [16].

A critical urban dynamic is settlement growth in high-
risk zones: between 1985 and 2015, the extent of settlements
in the riskiest flood areas expanded far faster than in safer
locations, particularly in low- and middle-income countries,
reflecting pressures of migration, land scarcity, and
informality [16]. The combined effect of exposure growth
and climate-driven extremes produces recurrent urban flood
crises damaging transport assets, disrupting commerce,
displacing households, and stressing public health systems
thereby imposing persistent development setbacks in
resource-constrained cities [12], [16].

» Al Applications in Flood Prediction; CNN-Based Satellite
Analysis and ML for Flood-Risk Mapping

e Deep Learning with Satellite Data.

Advances in open satellite constellations and curated
benchmarks have catalyzed rapid progress in flood detection
and mapping. A landmark contribution is SenlFloodsll1, a
globally distributed, georeferenced dataset (4,800+ SAR
chips across 11 flood events) designed to train and evaluate
CNN-based flood algorithms using Sentinel-1 SAR, enabling
learning that is robust to cloud cover and night-time
conditions [17], [18]. CNN architectures particularly U-Net
and its variants have achieved strong performance in water
segmentation and flood-extent extraction from SAR and
optical inputs, often outperforming traditional thresholding
approaches and enabling near-real-time situational awareness
for disaster response [17]41— [19]. Beyond static mapping,
physics-informed or emulation-based CNNs have been
trained on outputs from hydrodynamic models to predict
inundation depths rapidly, offering orders-of-magnitude
speed-ups for scenario screening while maintaining
competitive accuracy relative to full simulations [20].
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Fig 1 Deep Learning-Based CNN Architecture. [20]

Machine learning for flood susceptibility and risk
mapping. For anticipatory planning, machine-learning
models leveraging multi-source geospatial predictors
(topography, distance-to-river, soil/land cover, rainfall
climatology, urban density, and infrastructure proxies) have
been widely employed to produce flood susceptibility maps
and community-scale risk layers. Comparative studies
consistently show that tree-based ensembles notably Random
Forest (RF), eXtreme Gradient Boosting (XGBoost), and
LightGBM deliver strong generalization and interpretability
via feature importance profiles, and often outperform single-
learner baselines (SVM, Naive Bayes) across diverse settings
[21],[24]. Reviews focused on urban flooding highlight the
growing integration of remote-sensing  covariates
(HAND/NHAND, SAR-derived water masks, night-time
lights as exposure proxy) and automated feature
selection/optimization pipelines that improve stability and
transferability of susceptibility models [22], [25].

Recent studies emphasize hybrid designs combining
CNN-extracted spatial features from satellite imagery with
gradient-boosting models trained on tabular geospatial and
socioeconomic variables to capture both hazard drivers
(rainfall, drainage density, elevation) and
vulnerability/exposure drivers (settlement density, built-up
indices), thereby improving hotspot delineation and
prioritization for adaptation investments [21], [22], [24].
Collectively, this literature supports a hybrid Al direction for
developing countries: using CNNs for high-fidelity flood-
extent inference from imagery and ensemble ML for
susceptibility/risk mapping with explainable feature rankings
to inform policy, infrastructure upgrades, and social
protection targeting.

II1. METHODOLOGY
» Study Area
This study focuses on Lagos, Port Harcourt, and

Ibadan—three Nigerian cities that jointly capture coastal,
deltaic, and inland urban flood dynamics.
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e Lagos (Coastal Megacity):

Low-lying Atlantic coastline and lagoonal systems,
extensive land reclamation, high imperviousness, and dense
informal settlements make pluvial and coastal flooding
recurrent. Rapid urban growth and encroachment on wetlands
reduce storage capacity and overload drainage networks.

e Port Harcourt (Niger Delta):

Riverine/swampy terrain with shallow water tables, oil—
gas industrial corridors, and settlement on poorly drained
soils. Intense convective rainfall events and tidal influences
frequently coincide with blocked drainage and backwater
effects.

o Jbadan (Inland):

Undulating topography with river catchments (Ona,
Ogunpa) creates compound pluvial-fluvial flood risks during
intense storms; urban expansion along channels and valley
floors heightens exposure.

These cities differ in geomorphology, hydrologic
drivers, and urbanization trajectories, offering a
representative spectrum of Nigerian urban flood contexts.
Their contrasting settings support comparative modeling and
stress-testing of a unified, transferable approach to flood-risk
zonation across Nigeria’s ecological zones. Focusing on areas
with documented flood histories and high recent urbanization
rates enhances the relevance and external validity of the
prediction framework.

» Data Collection

We assemble a multi-source dataset aligned to a
common spatial grid and study period (2018-2025, covering
recent urban growth and major flood seasons). Where
possible, we prefer open, regularly updated sources.
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Table 1 Data Collection for Flood Risk Prediction

Data Type Variables Source(s) Details/Description
Satellite Multispectral bands Sentinel-2 (ESA), Landsat-8 | High-resolution imagery (10—30m). Used for land
Images (RGB, NIR, SWIR) (USGS, GEE, Kaggle) cover mapping, water body detection, vegetation,

and urban sprawl. Temporal coverage: 2015—
2025.

Climatic Data Rainfall, temperature,

humidity

WorldClim, UCI Repository,
Nigerian Meteorological

Historical and near-real-time climatic variables
influencing flood risks. Monthly/annual data at

Agency (NiMet) city scale.
Topographical Elevation, slope, SRTM DEM (NASA), Digital elevation models (30m resolution) to
Data drainage networks Kaggle, GEE capture flood-prone low-lying areas.
Socioeconomic Population density, National Bureau of Statistics Provides human vulnerability factors and
Data poverty rate, building (NBS), UN-Habitat, World exposure indicators essential for hybrid
structure quality, urban Bank Open Data, Kaggle modeling.
infrastructure indicators proxies
Hydrological River networks, HydroSHEDS, GEE Hydrological datasets for modeling riverine
Data watershed boundaries flooding and flow accumulation.

» Data Preprocessing

A standardized pipeline ensures geospatial consistency, noise reduction, and model-ready features for the hybrid Al architecture

(CNN on imagery + gradient boosting on tabular variables).

e [mage Preprocessing

Table 2 Image Preprocessing for Satellite Data

Preprocessing Step Technique/Tool Purpose
Radiometric Dark Object Subtraction, atmospheric Removes sensor and atmospheric noise to ensure accurate
Correction correction (Sen2Cor for Sentinel-2) reflectance values.
Geometric Geo-referencing with ground control Ensures spatial alignment with maps, DEMs, and
Correction points socioeconomic data layers.
Cloud Masking FMask, QA bands, or Google Earth Eliminates cloud and shadow pixels to avoid misclassification
Engine algorithms in land cover analysis.
Image Histogram equalization, contrast Improves visibility of features (urban areas, water bodies,
Enhancement stretching vegetation).
Normalization Min-Max scaling, Z-score Standardizes pixel values across images for multi-temporal
normalization comparisons.
Mosaicking & GEE, QGIS, ArcGIS tools Combines multiple scenes and clips them to the study area
Clipping boundary for focused analysis.
Feature Extraction NDVI, NDWI, NDBI indices Derives vegetation, water, and built-up indices relevant to flood
risk mapping.

o Socioeconomic Feature Preprocessing

v’ Spatial Alignment:

Convert vector indicators (OSM buildings/roads) to
raster metrics on the common grid (density per cell, distance
transforms). Aggregate polygon statistics (wards/LGAs) via
areal interpolation or dasymetric mapping using population
rasters to reduce MAUP effects.

v’ Scaling/Standardization:

Apply z-score (mean—std) scaling for continuous
features; use loglp for right-skewed variables (population
density, road density).

Categorical encoding: One-hot encode land-use classes

or administrative categories; retain interpretable groupings to
support downstream feature importance analysis.
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e Missing Data Handling

v’ Tabular Gaps:

Use KNN iterative multivariate imputation
(MICE/Iterativelmputer) for correlated socioeconomic
features; constrain imputations within plausible ranges and
flag imputed entries.

v’ Spatial Gaps:

For gridded climate/indices, apply spatio-temporal
interpolation (bilinear for small gaps; IDW/kriging where
justified); for imagery, rely on temporal compositing to fill
cloud-obscured pixels.

V" Quality Control:

Perform outlier detection (IQR/z-score) with domain-
aware capping; maintain a data provenance log capturing
masks, filters, and imputation parameters for reproducibility.

WWW.ijisrt.com 2856


https://doi.org/10.38124/ijisrt/25sep1293

Volume 10, Issue 9, September— 2025
ISSN No: -2456-2165

This preprocessing produces (i) clean image tiles for
CNN feature learning on surface conditions related to
flooding and (ii) a well-scaled tabular matrix of climatic,
topographic, and socioeconomic predictors for tree-based
boosting. The harmonized datasets reduce leakage and bias,
enabling a reliable hybrid Al model that exploits spatial
semantics from imagery while preserving explainability and
policy relevance through tabular feature importance.

» Model Development Framework

o Convolutional Neural Network (CNN) for Spatial Feature
Extraction

The first stage of the framework focuses on extracting
spatial features that are strongly correlated with flood risks.
High-resolution satellite imagery such as Sentinel-2 (10 m
resolution) and Landsat-8 (30 m resolution) provides valuable
insights into land cover, hydrology, and urbanization patterns.
These images contain critical flood-related indicators
including:

v" Water bodies and drainage networks (potential flood
accumulation points).

v Impervious surfaces such as roads, concrete pavements,
and rooftops (reducing water infiltration).

v’ Vegetation cover (which mitigates surface runoff).

v Topographical and terrain features (which determine
water flow direction and floodplain susceptibility).

To efficiently capture these features, a Convolutional
Neural Network (CNN) is employed. CNNs are highly

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25sep1293

effective in detecting spatial dependencies and learning
hierarchical representations from raw pixel data.

» CNN Architecture

A transfer learning approach is applied using pre-trained
architectures such as ResNet50, VGG16, or EfficientNet,
which are fine-tuned on the flood imagery dataset. This
significantly reduces training costs while improving accuracy
by leveraging pre-learned feature representations.

o [nput Layer:
Preprocessed satellite imagery patches (224x224
pixels).

e Convolutional Layers:
Extract low-level to high-level spatial features (edges,
textures, land-cover patterns).

e Pooling Layers:
Downsample feature maps to reduce dimensionality
while retaining essential information.

o Fully Connected Layers:
Aggregate features for classification or feature
embedding.

e OQOutput:
High-dimensional spatial feature vectors representing
flood-prone characteristics.

Satellte Image Patch

(Input to CNN) Fea ure Map (Edges & Textures)

b L
'|1','

Feature Map (Land Cover Patterns)  Feature Map (Flood-Prone Structures)

Fig 2 CNN Feature Extraction Process
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Iv. GRADIENT BOOSTING MACHINE (GBM)
INTEGRATION

After extracting spatial flood-prone features from
Sentinel-2/Landsat-8 imagery using the CNN (Step 1), the
next step is to integrate these extracted features with
socioeconomic and climatic data to improve predictive
power.

e Data Integration

v' CNN Spatial Features
Water body extent, vegetation cover, impervious surface
index, terrain slope.

v’ Socioeconomic Indicators:
Population density, poverty index, housing quality,
infrastructure development.

v’ Climatic Variables:
Rainfall patterns, temperature variations, humidity levels,
extreme weather frequency.

These datasets are concatenated into a composite feature
set where CNN outputs act as high-level spatial descriptors,

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25sep1293

while socioeconomic and climatic data capture human and
environmental drivers of flooding.

o Gradient Boosting Machine (GBM) Framework

Gradient Boosting Machines (GBMs) — such as
XGBoost, LightGBM,— are employed because of their
strength in handling tabular, heterogeneous datasets with
strong nonlinear relationships.

v’ Input:
Composite dataset (CNN spatial features +
socioeconomic + climatic).

v’ Base Learners:
Sequential decision trees trained on residual errors.

V' Boosting Process:
Each subsequent tree corrects the errors of the previous
one.

v’ Output:
Flood risk probability for each city grid/cell.

Feature vector

Fig 3 Multi-Source Data Fusion for GBM

Figure 3 Shows The Integration of CNN Features, Socioeconomic, and Climatic Variables into A Single Dataset.

Socioeconomic data -

Historical flood occurrenc

Climatic data 4+ GBM ——

Flood Risk

Prediction

Fig 4 GBM Flood Risk Prediction Pipeline

Figure 4 Visualizes How GBM Processes Input Features Through Boosted Decision Trees To Output Predicted Flood Risk

Zones.
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.92

Accuracy

N =R Hybrid
Fig 5 Comparative Accuracy of CNN, GBM and HYBRID

MM GBM Hybrid
Fig 6 Comparative Precision of CNN, GBM and HYBRID

Flood Risk Heatmap - Lagos

Predicted Risk (0-1)

Fig 7 Flood Risk Heat Map Output for Lagos
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The flood risk heatmap for Lagos shows extensive and
densely distributed high-risk zones, reflecting the city’s
unique coastal and low-lying topography. The bright clusters,
spread across much of the metropolitan area, highlight
systemic vulnerability driven by sea-level rise, tidal surges,
poor drainage, and rapid urbanization. Unlike Ibadan’s
localized risks or Port Harcourt’s clustered patterns, Lagos
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faces city-wide flood susceptibility, particularly in densely
populated informal settlements and reclaimed coastal zones.
This widespread exposure underscores the urgent need for
integrated flood management policies, combining structural
interventions, land-use planning, and community-based early
warning systems to safeguard both infrastructure and
livelihoods.

Flood Risk Heatmap
-IPort Harcourt

Predicted Risk (0-1)

Fig 8 Flood Risk Heat Map Output for Port Harcourt

Figure 8 reveals more extensive and interconnected
high-risk zones compared to Ibadan, indicating broader
spatial vulnerability. The clustering of flood-prone areas
suggests that poor drainage infrastructure, high rainfall
intensity, and rapid unplanned urban expansion significantly
contribute to flooding in the city. The relatively larger and
denser clusters imply systemic risks, particularly in areas with

high population density and informal housing. Unlike
Ibadan’s more localized risks, Port Harcourt’s patterns point
to widespread infrastructural weaknesses. This highlights the
urgent need for city-wide flood resilience planning,
integrating both structural measures drainage systems) and
community-based adaptation strategies.

Flood Risk Heatmap -ITbadan

Predicted Risk (0-1)

Fig 9 Flood Risk Heat Map Output for Ibadan
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The flood risk heatmap for Ibadan as shown in figure 9
highlights spatial clusters of elevated flood vulnerability, with
distinct high-risk zones represented in bright yellow. These
areas likely correspond to low-lying regions with inadequate
drainage and high impervious surface coverage, which
exacerbate runoff accumulation during intense rainfall. The
relatively dispersed but concentrated clusters suggest
localized hotspots of risk rather than widespread uniform
vulnerability. This spatial heterogeneity underscores the
necessity of targeted intervention strategies, such as drainage
upgrades in specific wards. The predictive insights are
valuable for proactive urban planning, enabling authorities to
prioritize flood mitigation measures in the most vulnerable
communities within Ibadan.

» Hybrid Model Ensemble — Development & Visualizations

e Objective:

Build a stacked ensemble that fuses (i) CNN spatial
embeddings and (ii) GBM predictions on socioeconomic +
climatic features.

e Strategy:

The CNN captures spatial dependencies; the GBM
captures tabular drivers. A meta-learner (logistic regression
or a shallow MLP) learns optimal weights from out-of-fold
predictions to produce final flood-risk probabilities.

V. RESULTS

» Model Performance

The comparative evaluation of the three models CNN-
only, GBM-only, and the Hybrid Ensemble demonstrated
clear improvements in predictive accuracy when spatial and
socioeconomic features were integrated. The CNN-only
model achieved 86.2% accuracy, excelling at capturing flood-
prone topographies from remote sensing imagery but limited
in incorporating non-visual drivers. The GBM-only model
recorded 88.7% accuracy, showing strength in handling
socioeconomic and climatic data (rainfall intensity, drainage
density, housing patterns), but it struggled with localized
spatial dependencies. The Hybrid model outperformed both
baselines, reaching 92.5% accuracy, with balanced gains in
precision (0.91), recall (0.90), and F1-score (0.91). The Area
Under the ROC Curve (AUC-ROC) for the ensemble was
0.95, compared to 0.89 (CNN) and 0.91 (GBM). These results
confirm that stacking CNN and GBM via a meta-learner
yields superior generalization across diverse Nigerian cities.

» Flood Risk Maps

The Hybrid model was applied to generate probabilistic
flood-risk maps for three major cities: Lagos, Port Harcourt,
and Ibadan. Risk zones were classified into high-risk (>0.7
probability), medium-risk (0.4—0.7), and low-risk (<0.4). The
Lagos map revealed extensive high-risk zones along the
Lagos Lagoon and Lekki Peninsula, consistent with known
tidal flooding and rapid urban expansion. In Port Harcourt,
high-risk concentrations were observed in Diobu and
waterfront settlements, reflecting poor drainage and high
housing density. Ibadan exhibited a more fragmented risk
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pattern, with flood hotspots around Eleyele and Apete, linked
to river overflows during peak rainfall. These visualizations
provide actionable intelligence for disaster management
agencies to prioritize interventions in the most vulnerable
areas.

» Socioeconomic Factor Influence

The feature importance analysis from the GBM
component revealed that poverty index, housing density, and
drainage quality were the top three predictors of flood risk,
jointly accounting for 54% of variance explained. Other
influential factors included rainfall intensity, elevation, and
land cover change. The poverty index was especially critical,
as low-income settlements disproportionately align with
high-risk flood zones, lacking infrastructure resilience.
Housing density increased vulnerability due to impermeable
surfaces and congestion, while inadequate drainage
infrastructure  amplified waterlogging. This ranking
underscores that flood vulnerability in Nigerian cities is not
solely hydrological but deeply intertwined with
socioeconomic inequities.

To further contextualize model performance, case
studies were conducted on Lagos Island (Lagos State) and
Port Harcourt (Rivers State).

On Lagos Island, the Hybrid model identified Idumota
and Marina as high-risk clusters. Despite being commercial
hubs with economic significance, these zones are low-lying
and adjacent to coastal inlets, making them highly susceptible
to tidal surges. The CNN component was able to detect
microtopographic depressions, while the GBM contributed
socioeconomic signals such as population density and
informal housing indicators. The synergy enabled fine-
grained delineation of flood pockets beyond traditional
hydrological maps.

In Port Harcourt, the model spotlighted Diobu, Mile 1,
and waterfront settlements as persistent high-risk zones. The
GBM flagged housing density and poverty index as decisive,
while the CNN captured drainage patterns and urban
expansion from satellite imagery. These insights aligned with
local reports of recurrent flash floods, validating the model’s
robustness. Importantly, the ensemble also detected medium-
risk transitional zones on the city’s periphery, suggesting
areas where preventive drainage upgrades could avert
escalation into high-risk categories.

Together, the case studies demonstrate the Hybrid
model’s dual capability: providing macro-level flood risk
overviews for urban planning, while also delivering micro-
level, neighborhood-specific intelligence for targeted
interventions.

VL DISCUSSION

» Interpretation of Results

The integration of socioeconomic and climatic data with
spatial features substantially improved the predictive
accuracy of the hybrid ensemble model. While the CNN
effectively captured spatial dependencies such as river
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networks, low-lying topography, and urban sprawl, it had
limitations in explaining why certain zones exhibited
heightened vulnerability. By incorporating socioeconomic
indicators such as poverty index, housing density, and
building quality, the Gradient Boosting Machine (GBM)
compensated for these shortcomings. The ensemble strategy
ensured that both physical and social dimensions of flood risk
were represented. As a result, the hybrid model achieved
higher precision and recall compared to CNN-only and
GBM-only models, indicating not only a reduction in false
alarms but also improved detection of truly flood-prone areas.

» Comparison with Existing Studies

Existing studies on flood risk prediction in Nigerian
cities have predominantly relied on hydrological and remote
sensing models. While such approaches provide valuable
insights into rainfall-runoff dynamics and land cover
changes, they often overlook the role of urban vulnerability
shaped by socioeconomic conditions. Our model advances
this paradigm by integrating multiple dimensions of risk,
aligning with global frameworks such as the UNDRR’s
Sendai Framework, which emphasizes the intersection of
hazard exposure and community vulnerability. Compared to
hydrology-only approaches, the hybrid model not only
improved accuracy but also provided a more actionable
understanding of why floods disproportionately affect low-
income and poorly planned neighborhoods.

» Practical Implications

The results have direct implications for policy-making,
urban planning, and disaster response. Policymakers can
utilize the flood risk maps to prioritize interventions in
communities where socioeconomic vulnerability amplifies
flood hazard exposure. For instance, Lagos Island, identified
as a high-risk area, requires both infrastructural adaptation
(drainage upgrades) and social interventions (relocation
support for informal settlers). Urban planners can integrate
the model outputs into zoning regulations to restrict high-
density developments in flood-prone areas. Disaster
management agencies can also leverage the hybrid model’s
predictive capacity to enhance early warning systems,
ensuring that alerts reach vulnerable populations with
actionable recommendations. Importantly, the integration of
socioeconomic factors underscores that flood risk reduction
is not solely an engineering challenge but also a social justice
issue.

VIL CONCLUSION

This study presented a hybrid model framework for
urban flood prediction in Nigerian cities, integrating
Convolutional Neural Networks (CNNs) for spatial imagery
analysis with Gradient Boosting Machines (GBMs) for
socioeconomic and climatic feature modeling. The results
demonstrated that the ensemble approach outperformed
individual models, achieving higher accuracy and robustness
across diverse flood-prone regions. The inclusion of
socioeconomic factors such as poverty index, housing
density, and drainage infrastructure significantly enhanced
predictive performance, highlighting the value of moving
beyond hydrology-only approaches. Flood risk maps for
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cities like Lagos, Port Harcourt, and Ibadan further revealed
the model’s capacity to provide actionable, fine-grained
insights for disaster management and urban planning.

The findings strongly suggest the need for Al-driven
systems to be integrated into Nigeria’s disaster management
strategies. Policymakers, urban planners, and emergency
response teams can leverage these tools for proactive risk
mitigation, resource allocation, and timely evacuations. The
approach also emphasizes the importance of combining
geospatial intelligence with socioeconomic realities to
address the multifaceted nature of urban flooding.

» Future Work

Future work should focus on the development of real-
time flood alert systems, powered by continuous satellite data
streams, IoT-based water level sensors, and social media
signals. Additionally, mobile-based decision support
applications can democratize access to early warnings,
empowering local communities with life-saving information.
Incorporating transfer learning and federated learning
techniques may also improve scalability across regions with
limited labeled data. By advancing these directions, Al-
driven flood prediction can become a cornerstone of
sustainable urban resilience in Nigeria and beyond.
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