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Abstract: In this study, we investigate the relativistic star model while accounting for pressure anisotropy.
Anisotropic solution to Einstein equation has been pro- posed for strange quark stars using the inner space time geometry
defined by the metric component g« =H(1+ x)", where n is a parameter. Taking into account the equation of

state for strange matter, expressed Przi(p-‘]-Bg), where By is referred to as the Bag constant with in the

framework of the MIT Bag model, we have successfully derived a stellar model. We posit the surface value of
energy density to be ps=4Bgy. By establishing the constraint value of Bg with in the interval of 57.55-
95.11MeV/fm?, which is requisite for the stability of quark matter in comparison to neutron matter at zero external
pressure, we have conducted an assessment of the maximum mass and radius of strange quark star along with other
pertinent characteristics. The investigation reveals that when the bag constant equals Bg= 57.55 MeV/fm?3, the
corresponding maximum stellar mass reaches Mmax=2.38M@ with a maximum radius of bmax=13.21 km.
Conversely, when the bag constant increases to Bg=95.11 MeV/fm?, the maximum achievable mass decreases to
Mmax=1.85 M@ while the maximum radius reduces to bmax=10.27km for the isotropic stellar configuration.
When pressure anisotropy is present, the maximum mass value demonstrates an increase. Based upon our theoretical
frame work, we have predicted the radii of recently detected pulsars and secondary celestial bodies observed in
gravitational wave events GW170817 and GW190814.The current theoretical model satisfies all requisite energy
conditions.
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I INTRODUCTION regions. Within neutron stars, the extreme conditions of
temperature and pressure may facilitate the formation of a

Over the past several decades, researchers in theoretical matter phase termed quark matter. Under

relativistic astrophysics have demonstrated considerable
interest in the investigation of compact objects, establishing
this field as a prominent area of scientific inquiry.
Numerous endeavors have been undertaken to obtain exact
solutions to Einstein’s field equations and subsequently
apply these solutions to characterize the structural
composition of extremely dense compact objects. These
compact objects represent the final evolutionary stage of
stellar systems and are therefore classified as stellar
remnants. Because of their extraordinary density
characteristics, it is postulated that the internal structure of
such stellar objects likely consists of exotic matter
configurations, particularly within the central core
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sufficiently elevated pressure conditions, certain quarks
under got transformation into strange quarks ,and the
subsequent interactions between strange quarks and non
strange quarks result in the formation of strange matter.
Consequently, the presence of strange quark matter,
particularly within the central regions of neutron stars and
other ultra dense stellar objects, may significantly
contribute to our comprehension of the observable
physical properties exhibited by such celestial bodies.
These astronomical objects are designated as strange stars
SS and constitute a distinct classification within the
strange star family. The conventional neutron star models
currently available prove inadequate for elucidating the
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observed characteristics of such celestial bodies, as these
theoretical frameworks fail to provide accurate
predictions regarding the precise evidence of these
objects. The incorporation of strange quark matter theory
presents a potentially valuable approach for investigating
the physical properties of such astronomical entities.
Within this theoretical framework , the MIT Bag
model(1);(2);(3);(4);(5) may serve as an effective
mechanism for deriving pertinent characteristics of quark
matter. This particular model operates under the
assumption that the constituent quark matter comprises
mass less up (u) and down (d) quarks, alongside massive
strange quarks (s) and electrons. Quarks are regarded as
degenerate Fermi gases that can exist exclusively within
spatial regions characterized by a vacuum energy density
denoted as By , termed the Bag constant. Under the
assumption that quarks possess zero mass and exhibit no
mutual interactions, the quark pressure may be expressed
as pg=pq/3, wherein pq represents the energy density of
the quarks. The total energy density and total pressure are
characterized as,

By eliminating the variables pq and py from
egs.(1)and(2) and employing the relationship p, = %pq it
becomes possible to derive the equation of state (hereafter

referred to as EOS) for mass less strange quark matter, as
presented by Kapusta (6), which is expressed as,

Where By is mentioned earlier. Based on Madsen’s
theoretical framework (7), the parameter By exhibits
specific constraints that are fundamental to maintaining
the stability of strange matter configurations. The lower
bound for this parameter has been established at
B#=145MeV, corresponding to By=57.55 MeV/fm?3.
Research (7) indicates that quark matter systems
consisting exclusively of u and d quarks may exhibit
inherent in stabilities. The incorporation of s quarks into
the system serves to diminish the energy per baryon,
consequently enhancing the overall stability of the
configuration. For two flavor quark matter to demonstrate
stability relative to neutrons, the energy per baryon must
remain below the neutron mass threshold of (939.6
MeV), as established by Madsen(7), however, this
condition is not manifested in naturally occurring
systems. The stability of strange quarks, which is
essential for maintaining stable strange matter in relation
to neutrons under zero external pressure conditions, has
been predicted by Madsen (7) and represents the
minimum threshold value of By necessary to ensure
atomic nuclei remain stable against decomposition into
non strange quark matter, a phenomenon that is typically
not observed experimentally. Conversely, the stability
requirements of strange matter relative to iron establish
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an upper limitation on By, specifically B, =162.8MeV,
which corresponds equivalently to Bgmax = 91.54
MeV/fm3. Nevertheless, this maximum threshold
changes to Bg'* =164.4 MeV or its equivalent value of
Bgmax = 95.11 MeV/fm3(7), at which point strange
matter becomes stable compared to neutrons under
conditions of zero external pressure. These threshold
values are all calculated under zero external pressure
conditions while disregarding quark- quark interactions
(6;7). When the coupling constant is nonzero, both of
these limiting values exhibit the anticipated reduction as
theorized by Farhi (8).

During the initial phases of stellar structure modeling,
researchers operated under the assumption that matter
exhibited isotropic distribution properties. Nevertheless, this
theoretical framework has been subsequently dismissed by
numerous scholarly investigations, which demonstrated that
such models failed to adequately account for the mass-
radius relationships observed in compact stellar objects. A
more accurate representation of stellar architecture can be
achieved through the incorporation of anisotropic fluid
distribution within the interior of compact objects.
Numerous factors contribute to the development of
anisotropic pressure within compact stellar objects. The
theoretical prediction of pressure anisotropy existing with in
such compact structures was initially proposed by
Ruderman and Canuto (9)and(10). Research of
Bowers(11) indicates that anisotropic properties may
significantly influence the red-shift characteristics of
anisotropic stellar bodies. The investigation by
Kippenhahn (12) proposes that such anisotropic
phenomena could originate from the existence of type 3A
super fluid with in the central regions of compact
astrophysical objects. Herrera and Santos(13) has
provided a comprehensive examination of the potential
mechanisms underlying pressure anisotropy in dense
stellar remnants. For extremely dense stellar objects, the
anisotropic characteristics can be elucidated through the
influence of superconducting and super fluid phenomena
(11). Additional potential mechanisms that may give rise
to pressure anisotropy include pion condensation
phenomena (14), phase transitions within the stellar
medium (15), or the existence of a crystalline core
structure within dense astrophysical objects. Many
authors [(16); (17); (18)] has developed stellar model
considering pressure anisotropy. Pressure anisotropy may
also influence the stellar structure and physical
characteristics (19),(20). Multiple studies [(21); (22);
(23); (24); (25)] have established that anisotropic
conditions can significantly affect fundamental stellar
parameters, including the maximum allowable mass and
stellar radius.

When electric charge is present, the gravitational
collapse of a spherically symmetric celestial body toward a
point singularity may potentially be prevented through
Coulomb repulsive forces. Rosseland (27) initially
theorized that stellar objects could harbor substantial
guantities of electrons and positively charged ions. The
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hypothesis suggests that electrons, possessing sufficient
kinetic energy, may escape the stellar medium, resulting in
the predominant presence of positive ions within the stellar
structure. Consequently, these positively charged ions may
contribute to the net electrical charge that exists within
compact astrophysical objects. Within this framework, the
theoretical modeling of compact objects in the presence of
electrical charge has attracted considerable interest among
researchers in the field. Therefore, in the domain of
relativistic astrophysics, it becomes critically important to
obtain solutions to Einstein’s field equations when electric
charge is present.

Bonnor (26) demonstrated that a spherically symmetric
body can maintain hydrostatic equilibrium through the
balance between gravitational attractive forces and the
relatively weak Coulomb repulsive forces arising from the
internal  electric  charge  distribution. ~ Whitman
(28)demonstrated that fluid spheres possessing net electrical
charge exhibit enhanced stability compared to uncharged
stellar objects. The electromagnetic repulsive forces
generated by the charge distribution serve to counterbalance
gravitational attraction, thereby potentially preventing the
formation of singularities (29).Several investigators have
proposed that both the charged-dust (CD) theoretical
framework and electromagnetic mass models may provide
valuable insights into the fundamental structural properties
of electrons [(30);(31); (32)].Certain studies indicate that
electrically charged fluid spheres exhibit greater physical
significance compared to their uncharged counterparts
(33). Numerous researchers have investigated charged
anisotropic stellar models and determined their
corresponding physical parameters (34), (35). The
fundamental objective of this investigation is to develop
and forecast an appropriate theoretical framework for
compact celestial bodies in order to elucidate their
empirically observed characteristics and the internal
structural composition of their constituent matter.

This research examines a spherically symmetric
electrically charged anisotropic strange star utilizing MIT
EoS. This manuscript is structured as follows: Sect. 2,
presents our analysis of the Einstein-Maxwell equations
governing anisotropic charged stellar objects. Sect. 3,
establishes  the  various  criteria  for  physical
acceptability.Sect.4, introduces a new class of solutions to
the Einstein field equations in the presence of
electromagnetic charge. Sect. 5, examines the requisite
boundary conditions for our model. Sect.6, derives the mass
function, compactness parameter, and gravitational red shift
function.Sect.7, employs the MIT bag model framework for
our numerical computations. Sect. 8, investigates various
physical parameters and their implications.Sect.9, shows
energy conditions. Sect. 10, demonstrate causality criterion.
Sect. 11, the application of our theoretical framework to two
distinct stellar configurations. Sect.11, shows physical
application of the model. Sect. 12, addresses multiple
stability criteria and their verification. Finally,Sect.13,
provides a comprehensive summary of our findings and
conclusions.
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1. EINSTEIN-MAXWELL”?
SFIELDEQUATIONS

The metric tensor characterizing the internal space
time geometry of a static, spherically symmetric stellar
fluid configuration may be expressed in the following
form:

ds? = —e*Mdt? + e M dr? + r2(dh? + sin?6d¢p?),eq(4)

Here, v(r) and A(r) represent the metric potentials that
exhibit dependence solely on the radial coordinate. In
the context of an anisotropic charged matter configuration,
the energy-momentum tensor Tmn  may be formulated as
follows:

Tmn:diag(_p_Ez, pr_Ez, pt+E2, pt+E2),... ...eq(5)

Where p, prand p: are respectively matter density,
radial pressure and transverse pressure. The anisotropy
in pressure A = (pt —pr). The renowned EFE is
expressed as:

1
Ryn =5 9mnR = e LR 277 1 () |

Where Rmn denotes the Ricci tensor while R
represents the Ricci scalar. The energy-momentum

tensor corresponding to the interior matter distribution

8TG

is designated as Tmn. The coupling constant k ==

incorporates the Newtonian gravitational constant G.
Within astrophysical conventions, it is customary to
employ normalized units where G=1 and c=1.The
fundamental physical parameters namely p, pr and p:
may be derived through the solution of Einstein field
equations as formulated in Eq.(6). By implementing
the relationships established in Eqgs.(4) and (5),the
Einstein field equation presented in Eq.(6) yields the
subsequent system of equations:

A1 1

e"1<?—r—2)+r—2=k2p+E2, eq(7)
v o1 1

e~ <7+r—2)—r—2=k2pr -E% eq(8)

Using the relation A = (pt—pr) and putting the values of
pr and pt from Egs. (8) and (9) respectively, we obtain the
following equation,

n l2 ! ! 1 A
| v Ay @ -v 2
e [ + 7 7 > =k*p, + E-. 9

Sy vty @a+v) 1
2T d " 2 r 72

1 2 2
-= +r_2:k A+ 2E°. eq(10)

Where the term k = 8:—26 and the prime notation

denotes differentiation with respect to the radial
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coordinate r. The total mass enclosed within a
spherical volume of radius r is expressed as follows,

m(r) = 47Tfrr2p (M)A et et e e eq(11)
0

Where p(r) is the matter density and is given in eq.
(7). For maximum mass we have to use r = b, b is the
maximum radius of the strange star.

I11. PHYSICAL ACCEPTABILITY
CONDITIONS

To achieve a well characterized and appropriate
solution for the mathematical model, the following
criteria must be fulfilled:

e The solution must remain free of singularities,
requiring that the central density, central pressure and
metric potentials e and e” maintain finite and positive
values throughout the system.

e The energy density and pressure in presence of
charge and anisotropy pick up positive and
monotonically decreasing values. This indicates that
within the anisotropic charged fluid sphere, the
gradients of both pressure and energy density must
be negative as they vary with the radial coordinate r

i.e.
dp, dpt) (dp)
(dr)<0'<dr < 0and P <0.

o The anisotropy factor A should be zero at the center and
increasing away from the center.

e The electric field E? must be zero at the center of the
star.

e The charge density is maximum at the center and
decreases away from the center and attains minimum
value at the surface.

e All the energy conditions should be satisfied with in the
star.

e The sound speed must be less than 1 i.e.

0< (%) <1land0< (%) < 1 inside the star.

e The compactness should be less than g i.e %<g ,
Buchdahal limit (36).
V. A NEW CLASS OF SOLUTION OF

EINSTEIN-MAXWELL EQUATION IN
PRESENCE OF CHARGE AND
PRESSURE ANISOTROPY

Equations (7)-(9) contain five unknowns: 4, v, p,
pr and p.. A viable stellar model requires determining
p, prand py values. We must select appropriate metric
potentials and from available astrophysical forms that satisfy
all necessary conditions for viable stellar models. Here, we
consider the g« metric component as:
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Where x=hr? and n is a parameter. This particular
metric configuration is employed due to its absence of
singularities and its well regulated behavior across the entire
interior region of the stellar system. This characteristic
facilitates the derivation of well regulated solutions to the
Einstein Field Equations. Through the systematic variation
of the parameter n, one can generate an extensive array of
exact analytical solutions. Numerous such solutions have
previously been established by various researchers in the
field.

e For n=1 the solution obtained by Durgapal which is
identical to the Tolman IV solution (37).

e For n=2 the solution obtained by Durgapal is
identical with the solution obtained by [(38), (39)
and (40)].

e For n=3,4,5 the solutions and its physical features
were studied by Durgapal (41).

Our objective now involves deriving the expression
for the g, metric tensor component for n>5 by
employing Egs. (7) and (8), in conjunction with the
pressure anisotropy relationship A = (p: — pr) and Eq.
(12). Through the implementation of the coordinate
transformations e*=Y(x) and x=hr?, where in h
represent constant whose magnitudes may be established via
various boundary conditions and by utilizing Eq. (12), Eq.
(10) undergoes the following transformation:

dy
T FYYHE =0, it vv e e €4 (13)
Where, ¢ and € are given as,
(n?x%? = 2nx? — (1 +x)?)
Y= XA D Fa g 1) eq(14)
. (1+x) 1 A 2E? I
Sttt Dlx R R e eeq(15)

Where A=(p:—pr) is defined earlier.
» lIsotropic Uncharged Solution for n=6

For anisotropic and uncharged solution, the equation
eq. (13) reduces to

av +yYY+e=0 16
I P PO URVRRRIRY -7/ | @ L) |
Where, y and € are given as,
(24x% — (1 +x)?)
T RO R D 1) e ...eq(17)
e (1+x) 1 18
T L) e ....eq(18)
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The solution of eq. (16) gives the g component of
metric potential as,

. eq(19)

2
a1 [ x4+7x3+24x2+103x] Ax (147x)77
(1+x)* 23 (1+x)*

Where A is a constant determined by boundary
conditions. Now it is possible to find the different
physical quantities relevant to the stellar configuration for
an isotropic uncharged strange star viz density (p),
pressure (p), using the values of e™ and e*. Hence an
isotropic uncharged star may be obtained.

> Anisotropic Solution in Presence of Charge for
n=6

To derive an anisotropic charged stellar model, it is
essential to incorporate pressure anisotropy into our
analysis. For the resolution of the differential equation
presented in Eq. (13), it becomes necessary to select a
mathematically well defined functional form for the
parameters A and E? . Many authors [(17), (42), (43), (44),
(45)] choose the pressure anisotropy and electric field in
polynomial form to predict some viable result of stellar
configuration. With this consideration, pressure anisotropy
has been selected the configuration as follows,

A ax(1l+7x)7H4

This form of ensures that it is regular and well behaved
inside the star. Also, A =0 at the center. The electric field E2
is taken as:

E?  Bx(1+7x)7//*

Such form of electric field is also regular and well
behaved throughout the interior of the star. Also it is evident
that at r=0, the electric field E?=0. The terms o. and B are
model parameters whose values are suitably chosen. Where,
L and J are positive constants. Using Egs. (20) and (21) with
help of Eq. (17) and Eq. (18), the solution of Eq. (16) is
obtained as:

1 x* 4+ 7x3 + 24x% +103x
ert=o-—"|1-— n
(1+x)* 23
_L I
4 4 2
ax(CGERECTD D (e u(22)
R Ereoran IR q

Where A is an arbitrary constant of integration and its
value can be found from the different boundary conditions.
A noteworthy observation is that Eq. (22) implies to the
Durgapal VI ™ isotropic uncharged solution when a=0,3 =0,
as demonstrated in Eq.(19). Subsequently, we can calculate
the physical parameters associated with the compact stellar
object by utilizing the derived expressions for e*and e”
as:

NISRT25SEP1255

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25sep1255

J
hBx(1+7x)"4 h £ £ 4f,
o a2 a ) @

p=

Chpx(1 47078 h hf(1+13%)

—_— ... 24
Pr (1+x)5 x x(1+x)5 ' eq(24)
2 F T TR 217 | 0215}
And the charge density is obtained as:
o= |2 e (5, 300) eq(26)

)% O+ 202 N R q
Where,

A(1+5x) (—4x3 —21x? —48x — 103) Ly
@+ 70°7 23 fatta

L I
dax(1+7x)"2 8Bx(1+7x) 4

L=t g 70 CEH B
a4+ 7x)(‘1‘§)(4 +28x — 7Lx)
f3 - (8 _ 7L) )
Ca+7007 98 + 56x — 147x)
e ®8-7D '
- 14 Ax + —x4—7x3—24x2—103x,
Is (1+7x)7 23

B hBx(1 + 7x)_£)

B (2 —8x) 7]
fr = <x(1 +x) 201+ 7x))'

In Eqg. (12) and in Egs. (23)-(26), the constants h, H
and A can be obtained from the boundary conditions. At this
juncture, we establish correspondence between the internal
space time metric and the external space time metric at the
boundary interface, where upon we, observe the subsequent
conditions:

e We Know that for a Charged Star the Reissner-
Nordstrom (47; 48) Exterior Metric is given by

2 2

2m dr
ds? =—<1——+q—2>dt2+ —_—
r r 2m | q
r r

+r2dQ?, ... ...eq(27)

Where dQ?=(d0?+sin? 0de? ), q is the charge inside
the star of radius r and m being the mass of the star.
Matching condition of metric potentials at the boundary r=b
gives the following:
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2M Q2
=b) _ ,—A(r=b) _
ev(r=b) — p-A(r=b) — <1 _T+ﬁ>“" e e e €9(28)

Using Egs. (12), (22) and (28), we get

L 2M Q% 1 X* 4+ 7X3 + 24X% + 103X
( _T+b_2)_(1+X)4[ - 23 *
_L I
4X(a(1 +7X)7%  2B8(1+ 7X) 4) 2
(8—7L) 8-17)) AX (1+7X)77 29
X7 arxr eq(29)
And
6 2M  Q?
H1+X)° = 1—74—? TN 17 A €10) |

Where X = hb? and Q is the total charge within the
sphere of radius b.

e The Radial Pressure which is a Decreasing Function of
r Must Vanishes at the Surface of the Compact Object.
i.e

Pr(r=b)=0...ccceiiiiii i €Q(30)

From Egs. (29)- (31), we can determine the values of
model constants and hence a viable model can be
constructed.

V. BOUNDARY CONDITIONS OF THE MODEL
This section examines the constraints imposed upon
the model parameters. Through application of the criterion

established in Eq. (31),the parameter A can be determined
and is presented as,

L
A = F,;[63LFs + 4Fy — 12744X + 1196Xa(1 4+ 7x) 7%, .......eq(32)
And the value of H is obtained as:

1 X*+7X3 +24X?% + 103X N

H=aiomw ! 23

L J
a(1+7X) 4, 2B(1+7X) 4

2
XL ™ eorp ), AX(1+7X)77
8 751+X)10 8—7] La)I0 2 oo e e eq(33).
Where,
Fs=(- 9+177X+61X2+23X3+4X%), Fe=(162 -1098X2 - 414X?
- 72X4+23(1+7X) Y4 )
2
(1+7X)7

And F,=—————— . Using Egs. (21) and
23(-8+7L)(1+13X)
(30), we calculate the total mass of the compact object as:
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X2B(1 +7X) "4

Sk v eq(34)

b
M=_|1-HA+X°"+

> Central Density, Central Pressure and Central Charge
Density
At r=0, we notice (€ )r=o = Hand (™ )r=0 =1 and their
first derivatives (e*V)=0 = (e"M)=o = 0. This suggests
that the metric potentials are regular and well behaved inside
the star. The central density and pressure can be evaluated
from Egs. (23) and (24) at r = 0 and are given below:

©) (585 g 120 24P )h -
p(0) = >3 G=70) ®B=m) " ...eq(35)
(0)—(81+A+ o, 86 )h 36
Dy =\33 @7 T eq(36)
And the central charge density is obtained as:
3hB
As, o(0) > 0, this suggests that h>0.
VI. MASS-RADIUS RELATIONSHIP,

COMPACTNESS AND RED SHIFT FUNCTION

In this section, we calculate the mass contained within
the sphere of radius r is given by the equation.

T

m(r) = 411] LT X ;U1 | (1<)
0

Where p is defined in Eqg. (23). The compactness
function is defined as u(r)=m(r)/ r and the corresponding
surface red-shift function is given as,

e e e 2q(39)

1

Fig.1 illustrates the relationship between stellar mass
and radial distance from the center. The graphical
representation demonstrates that the mass function exhibits
regularity across the entire stellar interior. The boundary
condition at the stellar center yields m(r= 0)=0. At the
stellar boundary, a nonzero maximum gravitational red shift
value has been observed. Fig. 2 presents the mass variation
of the stellar object as a function of the parameter Bg for
three distinct radial values: b=9Km, b=10Km and b=11Km.

VILI. MAXIMUM MASS AND MAXIMUM
RADIUS OF THE STAR

In this section, we calculate the probable maximum
mass and maximum radius of the strange star taking MIT
bag EOS. Here we use the numerical method to obtain the
values of Mmax and bmax. The method is following:
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We calculate the maximum radius for a given surface
value of energy density, ( ps = 4Bg) using Eqg. (23),
where By is bag constant.

Initially we assume a radius b and using Egs. (23) and
(31) and for a particular value of o and B, we obtain the
values of A and h.

The choice of o and B are arbitrary but we should keep in
mind that the radial pressure must be positive inside the
star and becomes zero at the surface.

Utilizing the determined values of A and h, the

computation of the derivative (G;—’Z) at the central point is
performed. It is observed that a specific value of
parameter b yields the maximum value of (i—’;r) at the
center. This particular value of b, which corresponds to
the maximum (‘;—p;) at the center, represents the
maximum permissible radius b,,,, for the strange star
configuration given a specified surface energy density
(ps) or By parameter. The maximum mass corresponds

to the mass of the compact stellar object encompassed
within the radius b,,,, according to this theoretical
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frame work and is determined through the expression

Mmax = b";ax (1 - el;rﬂ.lax + E2b12nax)there eb_rlrllax
denotes the value of e? evaluated at the radial
coordinate r = b,y

In Tabs 1 and 3, we have shown the maximum mass

and maximum possible radius of strange star for different
values of a at Bg=57.55 MeV /fim® and Bg= 95.11 MeV

/fm 3

respectively. Tabs 2 and 4 show maximum mass and

maximum possible radius of strange star for different values
of B at Bg=57.55 MeV /fm® and Bg=95.11 MeV /fm 3 .
From these tables, we notice that at Bg = 57.55MeV /fm3
the maximum mass is Mmax=2.67Mpo at radius bmax= 13.54

(km), where as at Bg=95.11MeV/ fm?

there values are

Mmax=2.08Mo and bma=10.53(km) for ¢=2.0 and B =0.
Again, at o =0, we notice that at Bg = 57.55MeV/ fm ® the
maximum mass is Mmax=3.23Mp at radius bmx=13.82 (km),

whereas at Bg

=05.11MeV/ fm®  there values are

Mmaxzz.slMO and bmax:1075(km) fOI' [322.0. Tables 5 and
6 show the values of maximum compactness for different
values of bag parameter Bg.

Table 1 Maximum Radius bmax(Km) and Maximum Mass Mmax (Mo ) for Bg =575.5MeV /fm? taking L=0.1, J=0.3 and B =0.
a A H h(km’z) bmax(km) Mmax(MO)
0.0 1.97826 0.257892 0.000599 13.21 2.38
1.0 1.68032 0.22778 0.000654 13.39 2.53
2.0 1.38237 0.198633 0.000718202 13.54 2.67
Table 2 Maximum Radius bmax(Km) and Maximum Mass Mmax(M) for Bg=57.55MeV/fm? taking
L=0.1,J=0.3 and a=0.
B A H h(km—2) Pmax(km) Mmax(Me)
0.0 1.97826 0.257892 0.000599 13.21 2.38
1.0 1.20566 0.185942 0.000745 13.61 2.79
2.0 0.433065 0.12177 0.000971 13.82 3.23

Table 3 Maximum Radius bmax(Km) and Maximum Mass Mmax(MQ®) forBg=95.11MeV/fm?taking
L=0.1,3J=0.3and g=0.

a A H h(km_z) bmax(km) Mmax(Mo)
0.0 1.97826 0.257895 0.000990 10.27 1.85
1.0 1.68032 0.227791 0.0010803 10.41 1.97
2.0 1.38237 0.198633 0.00118694 10.53 2.08

Table 4 Maximum Radius bmax(Km) and Maximum Mass Mmax(M@®) for Bg=95.11MeV/fm?taking
L=0.1,J=0.3and a = 0.

ﬂ A H h(km_z) bmax(km) Mmax(M@)
0.0 1.97826 0.257895 0.000990 10.27 1.85
1.0 1.20566 0.185945 0.001231 10.58 2.17
2.0 0.433060 0.12177 0.0016051 10.75 2.51

Table5 Maximum Radius bmax(Km)and Maximum Mass Mmax(Mg)for Bg=57.55MeV/fm 3

taking L=0.1,J = 0.3

YA a Pmax(km) Mmax(Mo) Umax
0.5 0.5 13.50 2.66 0.2905
15 15 13.83 3.23 0.3447
2.5 2.5 13.74 3.78 0.4057

NISRT25SEP1255

WWW.ijisrt.com

2817



https://doi.org/10.38124/ijisrt/25sep1255
http://www.ijisrt.com/

Volume 10, Issue 9, September — 2025
ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25sep1255

Table 6 Maximum Radius bmax(Km)and Maximum Mass Mmax(M,) for Bg=95.11MeV/fm 3
taking L=0.1, J = 0.3

ﬂ a bmax(km) Mmax(MO) Umax

0.5 0.5 10.50 2.07 0.2905

15 15 10.76 2.51 0.3447

25 2.5 10.69 2.94 0.4057
VIII. PHYSICAL ANALYSIS OF THE STAR e

This section presents an examination of various ,)
physical parameters including metric potentials, radial - 2.0t
pressure, transverse pressure, and pressure anisotropy. The =
parameter value for a and p were selected arbitrarily. The E 1.5¢
metric potential distributions as functions of radial distance
are illustrated in Fgs.(3)-(5) for the compact stellar objects 1.0¢ ]
PSRJ1903+327, HERX 1, and VELA X 1. Analysis of ‘ A .
these profiles reveals that the boundary condition e” = e_"1 50 60 70 30 90
is satisfied at the stellar surface, while at the central region B (MeV/fin’)

(r=0), the metric component satisfies e* = 1. Conversely,
the metric component eV exhibits distinct values at the
stellar center. Figs.(6)-(11) illustrate the radial distributions
of matter density p, radial pressure pr ,transverse pressure p;
, pressure anisotropy, electric field and charge density for
the compact stellar objects PSRJ1903+327, HERX 1, and
VELAX 1.The density profile presented in fig.6
demonstrates that for any given bag parameter value, the
matter density exhibits its maximum value at the stellar
center and undergoes monotonic decrease with increasing
radial coordinate. Furthermore, it is evident that elevated
bag parameter values correspond to enhanced central density
values. For a specified value of Bg. Consistent with the
density behavior, the central radial pressure demonstrates
positive correlation with increasing Bg values. The
transverse pressure profile displays similar characteristics,
with maximum values occurring at the center and sys
thematic reduction toward the stellar surface. The pressure
anisotropy parameter exhibits distinctly different behavior,
vanishing at the center and progressively increasing with
radial distance, ultimately reaching its maximum magnitude
at the stellar boundary. The radial pressure distribution
exhibits analogous behavior, achieving its peak magnitude
at the center and diminishing to zero at the stellar boundary.

3.0
2.5
= 2.0}
2 15¢
[4v]
= 10
0.5 s
0.0 - PR
0 2 4 6 8 10 12 14
r (km)

Fig 1 The Figure Displays Mass Variation with Distance r
for Two Scenarios: Black Line (Bg =57.55MeV/ fm?,
Radius=13.88km) and Blue Line (Bg=95.11MeV/ fm?,

Radius=10.76km), with o= =1.5

NISRT25SEP1255

Fig 2 The Figure Displays Mass Variation with Bg Using
Black (b=9km), blue (b=10km), and Green (b=11Km)
Lines, with o=p =1.5.

IX. ENERGY CONDITIONS IN
PRESENCE OF CHARGE

For a suitable and well behaved stellar model, all the
energy conditions such as: (i) Null energy condition (NEC),
(ii)Weak energy condition(WEC), (iii)Strong  energy
condition(SEC), (iv) Dominent energy condition (DEC)
(49; 50) should be satisfied throughout interior of the star.
The energy conditions are given below

NEC: p+pr=0, p+p+E2=0

WEC: p+pr=0, p+E2/2=0, p+p+E?=0

SEC: p+pr=0, p+pr+E?=0, p+pr+2p+E?=0
DEC: p+E?/2=0, p-pi+E2=0, p-p:=0.

10

09

Metric potentials
= =2 =
(= | (-]

k=]
Lm

=
.

03

1 (km)

Fig 3 The Figure Displays Metric Potential Variation with
Radial Distance r for Compact Object PSRJ1903+327,
where o =2.5, B =1.5, L=0.1 and J=0.3. Blue Line
Represents e', Black Line Represents e-* .
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0 2 4 6
r (km)

Fig 4 The Figure Displays Metric Potential Variation with

Radial Distance r for Compact Object HER X-1, where a

=2.5, 3 =1.5, L=0.1 and J=0.3. Blue Line Represents ¢" ,
black line represents e-*.

Fig 7 The Figure Displays Radial Pressure Variation Versus
Radial Distance r for Compact Objects PSRJ 1903+327
(Blue), HERX 1(Black), and VELAX 1(Green), with
Parameters a.=2.5, B =1.5, =0.1 and J=0.3.

Metric potentials

1 (km)

0.005—
£0.004}
£0.003} -
£0002) _
0.001} _\ .
0000t oo .o
0 2 4 6 8

1 (ki)

Fig 5 The Figure Displays Metric Potential Variation with

Radial Distance r for Compact Object VELA X-1, where o

=2.5, Bp=1.5, L=0.1 and J=0.3. Blue Line Represents ",
Black Line Represents e-* .

0.024F

0.022} T~
0,020}
£0.018!
0.016f——

0.014}

1 (km)

Fig 6 The Figure Displays Density Variation Versus Radial
Distance r for Compact Objects PSRJ 1903+327 (Blue),
HERX 1(Black), and VELAX 1(Green), with Parameters a.
=2.5, p=L1.5,L=0.1 and J=0.3.
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Fig 8 The Figure Displays Transverse Pressure Variation
Versus Radial Distance r for Compact Objects PSRJ
1903+327 (Blue), HERX 1(Black), and VELAX 1(Green),
with Parameters o =2.5, p=1.5, L=0.1 and J=0.3.

0.00015
i3
éﬂ.m}mo-
<0.00003 /
0.00000l—=—-—"____
0 2 4 6 8
1 (km)

Fig 9 The Figure Displays Pressure Anisotropy Variation
Versus Radial Distance r for Compact Objects PSRJ
1903+327 (Blue), HERX 1(Black), and VELAX 1(Green),
with Parameters o =2.5, p=1.5, L=0.1 and J=0.3.
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Fig 10 The Figure Displays Electric Field Variation Versus
Radial Distance r for Compact Objects PSRJ 1903+327
(Blue), HERX 1(Black), and VELAX 1(Green), with
Parameters a =2.5, p=1.5, L=0.1 and J=0.3.

0.00030 —-m.._\
1000025
Z
£0.00020}
0.00015 \

0 2 1 6 8
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Fig 11 The Figure Displays Charge Density Variation
Versus Radial Distance r for Compact Objects PSRJ
1903+327 (Blue), HERX 1(Black), and VELAX 1(Green),
with Parameters o =2.5, p=1.5, L=0.1 and J=0.3.
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Fig 12 The Figure Displays Energy Condition for Compact
Objects PSRJ 1903+327 (Blue), HERX 1(Black), and
VELAX 1(Green), with Parameters a.=2.5, $=1.5, L=0.1
and J=0.3.
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Fig 13 The Figure Displays Energy Condition for Compact
Objects PSRJ 1903+327 (Blue), HERX 1(Black), and
VELAX 1(Green), with Parameters a =2.5, p=1.5, L=0.1

o0

and J=0.3.
0.024[

T0.022} e
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Q0,018
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Fig 14 The Figure Displays Energy Condition for Compact
Objects PSRJ 1903+327 (Blue), HERX 1(Black), and
VELAX 1(Green), with Parameters o.=2.5, p=1.5, L=0.1

and J=0.3.
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Fig 15 The Figure Displays Energy Condition for Compact
Objects PSRJ 1903+327 (Blue), HERX 1(Black), and
VELAX 1(Green), with Parameters o =2.5, p=1.5, L=0.1
and J=0.3.
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Fig 16 The Figure Displays Energy Condition for Compact
Objects PSRJ 1903+327 (Blue), HERX 1(Black), and
VELAX 1(Green), with Parameters o.=2.5, B=1.5, L=0.1

and J=0.3.
700400
g003sp T
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Fig 17 The Figure Displays Energy Condition for Compact
Objects PSRJ 1903+327 (Blue), HERX 1(Black), and
VELAX 1(Green), with Parameters a.=2.5, f=1.5, L=0.1
and J=0.3.

Figs 12-17 show the different energy conditions. From
these figures, it is evident that our model satisfy all energy
conditions within the parameter space used to construct
model.

X. CAUSALITYCONDITION

The fulfillment of causality condition is another
important criterion which should satisfy to construct a well
behaved stellar model. This condition tells us that the square
of the radial sound speed (V%) and the tangential sound

speed (V%) must obey the condition V2 = ‘Z—p; <land V¢ =
Z—’:f < 1. In Figs. 18 and 19, we have shown the profile of

causality conditions of compact objects PSRJ1903+327,
HERX land VELAX 1. From the figures, it is evident that
the square of the sound speeds throughout the interior of the
star is less than 1 and also notice that both the speeds is
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maximum at the center and monotonically decreasing away
from the center.

0.55| I m--m\
*0.50} N
045}———
0 2 4 6 8
r (km)

Fig 18 The Figure Displays Causality Condition for
Compact Objects PSRJ 1903+327 (blue), HERX 1(Black),
and VELAX 1(Green), with Parameters o.=2.5, B =1.5,

L=0.1 and J=0.3.
0.55 S
H“H.R
“~0.50 N
0.45}
....... T
0 2 4 6 8
1 (km)

Fig 19 The Figure Displays Causality Condition for
Compact Objects PSRJ 1903+327 (Blue), HERX 1(Black),
and VELAX 1(Green), with Parameters o =2.5, p=1.5,
L=0.1 and J=0.3.

XI. PHYSICAL APPLICATION OF THE MODEL

» In Order to Apply Physically , we have taken Three
Compact Objects Namely:

e PSRJ1903+327(51) which has observed mass and radius
M=1.66Mp and b=9.438km respectively.

e The second compact object is HERX 1(52) which has
observed mass and radius M=0.85Me and b=8.1km
respectively.

e The third compact object is VELAX 1(54) which has
observed mass and radius M=1.77Me and b=9.56km
respectively.

Using these three know compact objects, we have
applied our model to study their physical properties. In
Tab8, we have shown the values of central density, surface
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VELAX 1. In Table9, we have predicted the radius of two

compact stars GW170817 and GW190814.

Table 7 Values of Different Parameters of Compact Objects PSRJ1903+327, HERX 1 and VELAX 1 taking L=0.1, J=0.3, a.=2.5

and f=1.5.
Star Bg(MeV/im?) A H h(km?)
PSRJ1903+327 105.38 -2.23788 0.285939 0.001051
HERX 1 95.60 -4.23418 0.552638 0.000583
VELAX 1 106.12 -1.95631 0.254986 0.001146

Table 8 Table Shows the Central Density p(0), Central Pressure p(0) and Surface Density p(s) for Different Star.

Compact Bg (MeV/ fm®) p(0) p(s) p(0)
Star (gm/cm®) (gm/cm®) (dyn/cm?)
PSRJ1903+327 105.38 12.30x10* 7.49x10% 2.37x10%
HERX 1 95.60 8.68x10* 6.80x10% 7.54x10%
VELAX 1 106.12 12.87x10* 7.55x10% 2.74x10%

Table 9 Prediction of Radius of Stars GW170817 (53) and GW190814 (54) Using Our Model. Here we have taken o =1

Compact Observed B Predicted Radius(Km)
Star Mass(M) Bg=57.55(MeV/fm?) Bg=95.11({MeV/fm?)
GW170817 1.4 0 11.32 9.48
0.5 11.30 0.45
1.0 11.27 0.43
1.5 11.25 9.40
2.0 11.22 9.37
2.5 11.20 9.34
GW190814 2.59 0 13.47 11.11
0.5 13.40 11.01
1.0 11.33 10.92
1.5 11.26 10.84
2.0 11.19 10.75
2.5 13.13 10.67
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STABILITY OF THE MODEL: VARIATION OF
LAGRANGIAN PERTURBATION OF
PRESSURE WITH FREQUENCY

Recent studies examine stellar model stability using
Lagrangian perturbation of radial pressure at stellar surfaces.
Our model analyzes how Lagrangian perturbation of radial
pressure varies with frequency ( ®?) by plotting pressure
perturbation versus frequency (®?). In the present model, we
employ the methodology established by Pretel (55), where
in the radial oscillation mode is characterized through the
following system of equations:

dx 1 (3 +Apr) 4 1 (dv)
T X D, o\ar ) CRTTET

And

RPN <o [ € 10))

W i + 425+ petrp+ Lo+ (2
x(Cze (p+pp)r ar (p +pre’rp, 2P pr)(dr))

1d a(4pr
-Ap, G+ 25 (p+p)et) =T

= e e e 0q(41)

Where 22 =5 | 1 =22t

c* dr

function y is connected to the radial part of the Lagrangian

displacement by the relation x = @. G is the Newtonian

gravitational constant and C is velocity of light in free space.
At the center of the star the eigen functions can be
normalized so that y(r = 0) = 1. Again from Eq.(40), itis
evident that this equation has a singularity at the center i.e at
r=0. So, in order to find a realistic solution, the coefficient

of % must vanish as r — 0 which gives the condition

and the eigen

A

Ap, = =3 (E))(pr, e e e e e e ee ee e e een eee e e s €4 (42)

Along with this condition, we have, at the surface of
the star i.e at r = b the pressure is equal to zero and the
Lagrangian perturbation of the pressure also vanishes i.e as
r—b

Ap, = 0...eq(43)

The absolute value of the Lagrangian change in
pressure is plotted against frequency (w?2) of compact
objects PSRJ1903+327, HERX 1 and VELAX 1 and shown
in Fig.20. The minima of these plots corresponds to correct
value of the normal model frequency. It is evident that for
all normal modes (w?) > 0. Thus we can say that our model
is stable under Lagrangian perturbation of radial oscillation.
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Fig 20 Figure Shows the Variation of Perturbation in
Pressure with Frequency ? of Compact Objects
PSRJ1903+ 327, HERX 1 and VELAX 1. Blue Line for
PSRJ1903+327, Black Line for HERX 1 and Green line for
VELAX 1. Here 0=2.5, p=1.5, L=0.1and J=0.3.

XIII. DISCUSSION

In this work, we have found a new solution of
Einstein- Maxwell field equations using the g,, component
of metric potential stated in Eq. (12). In this paper, we have
take n=6 for constructing our model. Using this value of g,
for n = 6 we have obtained the value of g,,, component of
metric potential both for isotropic and anisotropic charged
star model. However solution for value n > 6 can also be
obtained by taking suitable choice of pressure anisotropy as
well as charge E2 Using MIT bag EOS given in Eqg. (3),
we calculate the wvalues of maximum mass and
corresponding maxi mum radius by solving ps= 4By and
p(b) = 0 for charged strange matter distribution. The values
of maximum mass and maximum radius are shown in Tables
1- 5. In these tables, we have shown different cases. In table
1, we have tabulated the values of maximum mass and
maximum radius for different values of o with g =0, J =0.3
and L=0.1 at Bg =57.55 MeV/ fm*® while in table. 2 for
different values of B with a =0, J = 0.3 and L =0.1 at Bg
=57.55MeV/ fm3. Similarly in tables. 3 and 4, we have
shown maximum mass and maximum radius at Bg = 95.11
MeV/ fm3. From the table it is evident that for an isotropic
uncharged star the maximum mass and radius is obtained as
bmax = 13.21 Km and Mpax = 2.38 Me for Bg = 57.55 MeV/
fm3 and bmax = 10.27 Km and Mmax = 1.85 Mo for Bg =
95.11 MeV/ fm3. The maximum mass and radius at two
different bag values with non zero o and B are shown in
Tables 5 and 6. The maximum compactness are shown in
Tables 5 and 6. we have shown the maximum compactness
and surface red shift. Central density, surface density and
central pressure of compact stars PSRJ1903+327, HER X 1
and VELA X 1 are shown in Table 8. Fig. 1 shows the
variation of mass function with radial distance. From this
figure, it is evident that mass function is well behaved and it
vanishes at the center of the star. The profile of mass
variation with bag value for different radius is shown in Fig.
2. In Figs. 3- 5, we have shown the variation of metric
potentials with distance of compact objects PSRJ1903+327,
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HERX 1 and VELAX 1. From these figures, It is evident
that the value of e* =evat r=b. In Fig. 6, we have shown
the variation of density with respect to distance of stars
PSRJ1903+327, HER X 1 and VELAX 1. It is evident that
the density is maximum at the centre and decreases away
from the centre. The variation of radial and transverse
pressure are shown in Figs. 7 and 8. Radial pressure is
maximum at the center and decreases to zero at the surface.
The profile of pressure anisotropy of compact objects
PSRJ1903 + 327, HERX 1 and VELAX 1 are shown in
Fig.9. From the figure it is evident that the pressure
anisotropy vanishes at the center. The variation of electric
field with radial distance of stars PSRJ1903 + 327, HER X 1
and VELA X 1 is shown in Fig. 10. All the energy
conditions are well satisfied in our model and shown in Figs.
12- 17. From the figures, it is evident that the model follows
the energy conditions. In Figs. 18 and 19, we have shown
the profile of square of radial sound speed and transverse
sound speed with distance of compact objects
PSRJ1903+327, HER X 1 and VELAX 1. In this model, we
have studied the stability by showing the variation in the
absolute value of the Lagrangian perturbation of radial
pressure at the surface of the compact stars PSRJ1903+327,
HER X 1 and VELA X 1 with the frequencies of the normal
mode of oscillations and The variation of absolute value of
Lagrangian perturbation in radial pressure at the surface
against ®? is shown in Fig. 20. We note that all cases, the
frequency spectrum is real (w?2) > 0). This immediately
indicates that our model is stable under this criterion.
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