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Abstract: In this study, we investigate the relativistic star model while accounting for pressure anisotropy. 

Anisotropic solution to Einstein equation has been pro- posed for strange quark stars using the inner space time geometry 

defined by the metric component gtt =H(1+ x)n, where n is a parameter. Taking into account the equation of 

state for strange matter, expressed Pr=
𝟏

𝟑
(ρ-4Bg), where Bg  is referred to as the Bag constant with in the 

framework of the MIT Bag model, we have successfully derived a stellar model. We posit the surface value of 

energy density to be ρs=4Bg. By establishing the constraint value of Bg with in the interval of 57.55-

95.11MeV/fm3, which is requisite for the stability of quark matter in comparison to neutron matter at zero external 

pressure, we have conducted an assessment of the maximum mass and radius of strange quark star along with other 

pertinent characteristics. The investigation reveals that when the bag constant equals Bg= 57.55 MeV/fm3, the 

corresponding maximum stellar mass reaches Mmax=2.38M⊙  with a maximum radius of bmax=13.21 km. 

Conversely, when the bag constant increases to Bg=95.11 MeV/fm3 , the maximum achievable mass decreases to 

Mmax=1.85 M⊙  while the maximum radius reduces to bmax=10.27km for the isotropic stellar configuration. 

When pressure anisotropy is present, the maximum mass value demonstrates an increase. Based upon our theoretical 

frame work, we have predicted the radii of recently detected pulsars and secondary celestial bodies observed in 

gravitational wave events GW170817 and GW190814.The current theoretical model satisfies all requisite energy 

conditions. 
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I. INTRODUCTION 

 

Over the past several decades, researchers in 

relativistic astrophysics have demonstrated considerable 

interest in the investigation of compact objects, establishing 

this field as a prominent area of scientific inquiry. 

Numerous endeavors have been undertaken to obtain exact 

solutions to Einstein’s field equations and subsequently 

apply these solutions to characterize the structural 
composition of extremely dense compact objects. These 

compact objects represent the final evolutionary stage of 

stellar systems and are therefore classified as stellar 

remnants. Because of their extraordinary density 

characteristics, it is postulated that the internal structure of 

such stellar objects likely consists of exotic matter 

configurations, particularly within the central core 

regions. Within neutron stars, the extreme conditions of 

temperature and pressure may facilitate the formation of a 

theoretical matter phase termed quark matter. Under 

sufficiently elevated pressure conditions, certain quarks 

under got transformation into strange quarks ,and the 

subsequent interactions between strange quarks and non 

strange quarks result in the formation of strange matter.  

Consequently, the presence of strange quark matter, 

particularly within the central regions of neutron stars and 
other ultra dense stellar objects, may significantly 

contribute to our comprehension of the observable 

physical properties exhibited by such celestial bodies. 

These astronomical objects are designated as strange stars 

SS and constitute a distinct classification within the 

strange star family. The conventional neutron star models 

currently available prove inadequate for elucidating the 

https://doi.org/10.38124/ijisrt/25sep1255
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25sep1255


Volume 10, Issue 9, September – 2025                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                             https://doi.org/10.38124/ijisrt/25sep1255 

 

 

IJISRT25SEP1255                                                              www.ijisrt.com                                                                                    2812  

observed characteristics of such celestial bodies, as these 

theoretical frameworks fail to provide accurate 

predictions regarding the precise evidence of these 

objects. The incorporation of strange quark matter theory 

presents a potentially valuable approach for investigating 

the physical properties of such astronomical entities. 

Within this theoretical  framework , the MIT Bag 

model(1);(2);(3);(4);(5) may serve as an effective 
mechanism for deriving pertinent characteristics of quark 

matter. This particular model operates under the 

assumption that the constituent quark matter comprises 

mass less up (u) and down (d) quarks, alongside massive 

strange quarks (s) and electrons. Quarks are regarded as 

degenerate Fermi gases that can exist exclusively within 

spatial regions characterized by a vacuum energy density 

denoted as Bg , termed the Bag constant. Under the 

assumption that quarks possess zero mass and exhibit no 

mutual interactions, the quark pressure may be expressed 

as pq=ρq/3, wherein ρq represents the energy density of 
the quarks. The total energy density and total pressure are 

characterized as, 

 

𝜌 = 𝜌𝑞 + 𝐵𝑔 ,…………………………………………..eq(1) 

 

𝑝 = 𝑝𝑞 − 𝐵𝑔  .…………………………………………eq(2) 

 

By eliminating the variables ρq and pq  from 

eqs.(1)and(2) and employing the relationship 𝑝𝑞 =
1

3
𝜌𝑞 it 

becomes possible to derive the equation of state (hereafter 

referred to as EOS) for mass less strange quark matter, as 
presented by Kapusta (6), which is expressed as, 

 

𝑝 =
1

3
(𝜌 − 4𝐵𝑔),……………………………………….eq(3) 

 

Where Bg  is mentioned earlier. Based on Madsen’s 

theoretical framework (7), the parameter Bg exhibits 

specific constraints that are fundamental to maintaining 

the stability of strange matter configurations. The lower 

bound for this parameter has been established at 

B1/4=145MeV, corresponding to Bg=57.55 MeV/fm3.   

Research (7) indicates that quark matter systems 

consisting exclusively of u and d quarks may exhibit 

inherent in stabilities. The incorporation of s quarks into 
the system serves to diminish the energy per baryon, 

consequently enhancing the overall stability of the 

configuration. For two flavor quark matter to demonstrate 

stability relative to neutrons, the energy per baryon must 

remain below the neutron mass threshold of  (939.6  

MeV),  as established by Madsen(7), however, this 

condition is not manifested in naturally occurring 

systems. The stability of strange quarks, which is 

essential for maintaining stable strange matter in relation 

to neutrons under zero external pressure conditions, has 

been predicted by Madsen (7) and represents the 

minimum threshold value of Bg  necessary to ensure 
atomic nuclei remain stable against decomposition into 

non strange quark matter, a phenomenon that is typically 

not observed experimentally. Conversely, the stability 

requirements of strange matter relative to iron establish 

an upper limitation on Bg, specifically 𝐵𝑔𝑚𝑎𝑥
1/4

=162.8MeV, 

which corresponds equivalently to Bgmax = 91.54 

MeV/fm3. Nevertheless, this maximum threshold 

changes to Bg1/4 =164.4 MeV or its equivalent value of 

Bgmax = 95.11 MeV/fm3(7), at which point strange 

matter becomes stable compared to neutrons under 

conditions of zero external pressure. These threshold 

values are all calculated under zero external pressure 
conditions while disregarding quark- quark interactions 

(6;7). When the coupling constant is nonzero, both of 

these limiting values exhibit the anticipated reduction as 

theorized by Farhi (8). 

 

During the initial phases of stellar structure modeling, 

researchers operated under the assumption that matter 

exhibited isotropic distribution properties. Nevertheless, this 

theoretical framework has been subsequently dismissed by 

numerous scholarly investigations, which demonstrated that 

such models failed  to adequately account for the mass-
radius relationships observed in compact stellar objects. A 

more accurate representation of stellar architecture can be 

achieved through the incorporation of anisotropic fluid 

distribution within the interior of compact objects. 

Numerous factors contribute to the development of 

anisotropic pressure within compact stellar objects. The 

theoretical prediction of pressure anisotropy existing with in 

such compact structures was initially proposed by 

Ruderman and Canuto (9)and(10). Research of 

Bowers(11) indicates that anisotropic properties may 

significantly influence the red-shift characteristics of 

anisotropic stellar bodies. The investigation by 
Kippenhahn (12) proposes that such anisotropic 

phenomena could originate from the existence of type 3A 

super fluid with in the central regions of compact 

astrophysical objects. Herrera and Santos(13) has 

provided a comprehensive examination of the potential  

mechanisms underlying pressure anisotropy in dense 

stellar remnants. For extremely dense stellar objects, the 

anisotropic characteristics can be elucidated through the 

influence of superconducting and super fluid phenomena 

(11). Additional potential mechanisms that may give rise 

to pressure anisotropy include pion condensation 
phenomena (14), phase transitions within the stellar 

medium (15), or the existence of a crystalline core 

structure within dense astrophysical objects. Many 

authors [(16); (17); (18)] has developed stellar model 

considering pressure anisotropy. Pressure anisotropy may 

also influence the stellar structure and physical 

characteristics (19),(20). Multiple studies [(21); (22); 

(23); (24); (25)] have established that anisotropic 

conditions can significantly affect fundamental stellar 

parameters, including the maximum allowable mass and 

stellar radius. 

 
When electric charge is present, the gravitational 

collapse of a spherically symmetric celestial body toward a 

point singularity may potentially be prevented through 

Coulomb repulsive forces.  Rosseland (27) initially 

theorized that stellar objects could harbor substantial 

quantities of electrons and positively charged ions. The 
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hypothesis suggests that electrons, possessing sufficient 

kinetic energy, may escape the stellar medium, resulting in 

the predominant presence of positive ions within the stellar 

structure. Consequently, these positively charged ions may 

contribute to the net electrical charge that exists within 

compact astrophysical objects. Within this framework, the 

theoretical modeling of compact objects in the presence of 

electrical charge has attracted considerable interest among 
researchers in the field. Therefore, in the domain of 

relativistic astrophysics, it becomes critically important to 

obtain solutions to Einstein’s field equations when electric 

charge is present.  

 

Bonnor (26) demonstrated that a spherically symmetric 

body can maintain hydrostatic equilibrium through the 

balance between gravitational attractive forces and the 

relatively weak Coulomb repulsive forces arising from the 

internal electric charge distribution. Whitman 

(28)demonstrated that fluid spheres possessing net electrical 
charge exhibit enhanced stability compared to uncharged 

stellar objects. The electromagnetic repulsive forces 

generated by the charge distribution serve to counterbalance 

gravitational attraction, thereby potentially preventing the 

formation of singularities (29).Several investigators have 

proposed that both the charged-dust (CD) theoretical 

framework and electromagnetic mass models may provide 

valuable insights into the fundamental structural properties 

of electrons [(30);(31); (32)].Certain studies indicate that 

electrically charged fluid spheres exhibit greater physical 

significance compared to their uncharged counterparts 

(33). Numerous researchers have investigated charged 
anisotropic stellar models and determined their 

corresponding physical parameters (34), (35). The 

fundamental objective of this investigation is to develop 

and forecast an appropriate theoretical framework for 

compact celestial bodies in order to elucidate their 

empirically observed characteristics and the internal 

structural composition of their constituent matter.  

 

This research examines a spherically symmetric 

electrically charged anisotropic strange star utilizing MIT 

EoS. This manuscript is structured as follows: Sect. 2, 
presents our analysis of the Einstein-Maxwell equations 

governing anisotropic charged stellar objects. Sect. 3, 

establishes the various criteria for physical 

acceptability.Sect.4, introduces a new class of solutions to 

the Einstein field equations in the presence of 

electromagnetic charge. Sect. 5, examines the requisite 

boundary conditions for our model. Sect.6, derives the mass 

function, compactness parameter, and gravitational red shift 

function.Sect.7, employs the MIT bag model framework for 

our numerical computations. Sect. 8, investigates various 

physical parameters and their implications.Sect.9, shows 

energy conditions. Sect. 10, demonstrate causality criterion. 
Sect. 11, the application of our theoretical framework to two 

distinct stellar configurations. Sect.11, shows physical 

application of the model. Sect. 12, addresses multiple 

stability criteria and their verification. Finally,Sect.13, 

provides a comprehensive summary of our findings and 

conclusions. 

 

II. EINSTEIN-MAXWELL’ 

SFIELDEQUATIONS 

 

The metric tensor characterizing the internal space 

time geometry of a static, spherically symmetric stellar 

fluid configuration may be expressed in the following 

form: 

 

 𝑑𝑠2 = −𝑒𝑣(𝑟)𝑑𝑡2 + 𝑒𝜆(𝑟)𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2𝜃𝑑𝜙2),eq(4) 

 

Here, ν(r) and λ(r) represent the metric potentials that 

exhibit dependence solely on the radial coordinate. In 

the context of an anisotropic charged matter configuration, 

the energy-momentum tensor Tmn   may be formulated as 
follows: 

 

Tmn=diag(−ρ−E2, pr−E2, pt+E2, pt+E2),……eq(5) 

 

Where ρ, pr and pt  are respectively matter density, 

radial pressure and transverse pressure. The anisotropy 

in pressure ∆ = (pt −pr). The renowned EFE is 

expressed as: 

 

𝑅𝑚𝑛 −
1

2
𝑔𝑚𝑛𝑅 = 𝑘2𝑇𝑚𝑛  ………………………….eq(6) 

 

Where Rmn denotes the Ricci tensor while R 

represents the Ricci scalar. The energy-momentum 

tensor corresponding to the interior matter distribution 

is designated as Tmn. The coupling constant 𝑘 =
8𝜋𝐺

𝑐2  

incorporates the Newtonian gravitational constant G. 

Within astrophysical conventions, it is customary to 
employ normalized units where G=1 and c=1.The 

fundamental physical parameters namely ρ, pr and pt  

may be derived through the solution of Einstein field 

equations as formulated in Eq.(6). By implementing 

the relationships established in Eqs.(4) and (5),the 

Einstein field equation presented in Eq.(6) yields the 

subsequent system of equations: 

 

𝑒−𝜆 (
𝜆′

𝑟
−

1

𝑟2
) +

1

𝑟2
= 𝑘2𝜌 + 𝐸2 ,                                     𝑒𝑞(7) 

 

𝑒−𝜆 (
𝑣′

𝑟
+

1

𝑟2
) −

1

𝑟2
= 𝑘2𝑝𝑟 − 𝐸2   ,                                𝑒𝑞(8) 

 

Using the relation ∆ = (pt−pr) and putting the values of  

pr and pt from Eqs. (8) and (9) respectively, we obtain the 

following equation, 

 

𝑒−𝜆 [ 
𝜈′′

2
+  

𝜈′2

4
−  

𝜆′𝜈′

4
 −

(𝜆′ − 𝑣′)

2𝑟
] = 𝑘2𝑝𝑡 + 𝐸2.            (9) 

 

𝑒−𝜆 [ 
𝜈′′

2
+ 

𝜈′2

4
− 

𝜆′𝜈′

4
 −

(𝜆′ + 𝑣′)

2𝑟
−

1

𝑟2
] +

1

𝑟2
= 𝑘2∆ + 2𝐸2 .           𝑒𝑞(10) 

 

Where the term 𝑘 =
8𝜋𝐺

𝑐2  and the prime notation 

denotes differentiation with respect to the radial 
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coordinate r. The total mass enclosed within a 

spherical volume of radius r is expressed as follows, 

 

𝑚(𝑟) = 4𝜋 ∫ 𝑟2𝜌
𝑟

0

(𝑟)𝑑𝑟. … … … … … … … … … … … 𝑒𝑞(11) 

 

Where ρ(r) is the matter density and is given in  eq. 
(7).  For maximum mass we have to use r = b, b is the 

maximum radius of the strange star. 

 

III. PHYSICAL ACCEPTABILITY 

CONDITIONS 

 

To achieve a well characterized and appropriate 

solution for the mathematical model, the following 

criteria must be fulfilled: 

 

 The solution must remain free of singularities, 
requiring that the central density, central pressure and 

metric potentials e−λ and eν maintain finite and positive 

values throughout the system. 

 The energy density and pressure in presence of 

charge and anisotropy pick up positive and 

monotonically decreasing values. This indicates that 

within the anisotropic charged fluid sphere, the 

gradients of both pressure and energy density must 

be negative as they vary with the radial coordinate r 

i.e. 

 

(
𝑑𝑝𝑟

𝑑𝑟
) < 0, (

𝑑𝑝𝑡

𝑑𝑟
) < 0 𝑎𝑛𝑑 (

𝑑𝜌

𝑑𝑟
) < 0. 

 

 The anisotropy factor ∆ should be zero at the center and 

increasing away from the center. 

 The electric field E2 must be zero at the center of the 

star. 

 The charge density is maximum at the center and 

decreases away from the center and attains minimum 

value at the surface. 

 All the energy conditions should be satisfied with in the 

star. 

 The sound speed must be less than 1 i.e. 
 

0 ≤ (
𝑑𝑝𝑟

𝑑𝑝
) ≤ 1  𝑎𝑛𝑑 0 ≤ (

𝑑𝑝𝑡

𝑑𝜌
) ≤ 1 inside the star. 

 

 The compactness should be less than 
4

9
  i.e  

𝑀

𝑏
<

4

9
 , 

Buchdahal limit (36). 

 

IV. A NEW CLASS OF SOLUTION OF 

EINSTEIN-MAXWELL EQUATION IN 

PRESENCE OF CHARGE AND 

PRESSURE ANISOTROPY 

 

Equations (7)-(9) contain five unknowns: λ, ν, ρ, 

pr and pt.  A viable stellar model requires determining 

ρ, pr and pt  values. We must select appropriate metric 

potentials and from available astrophysical forms that satisfy 

all necessary conditions for viable stellar models. Here, we 

consider the gtt   metric component as: 

eν = H(1 + x)n, ………………………………….eq(12) 

 

Where x=hr2 and n is a parameter. This particular 

metric configuration is employed due to its absence of 

singularities and its well regulated behavior across the entire 

interior region of the stellar system. This characteristic 

facilitates the derivation of well regulated solutions to the 

Einstein Field Equations. Through the systematic variation 
of the parameter n, one can generate an extensive array of 

exact analytical solutions. Numerous such solutions have 

previously been established by various researchers in the 

field. 

 

 For n=1 the solution obtained by Durgapal which is 

identical to the Tolman IV solution (37). 

 For n=2 the solution obtained by Durgapal is 

identical with the solution obtained by [(38), (39) 

and (40)]. 

 For n=3,4,5 the solutions and its physical features 
were studied by Durgapal (41). 

 

Our objective now involves deriving the expression 

for the grr metric tensor component for n>5 by 

employing Eqs. (7) and (8), in conjunction with the 

pressure anisotropy relationship ∆ = (pt − pr) and Eq. 

(12). Through the implementation of the coordinate 

transformations e−λ=Y(x) and x=hr2, where in h 

represent constant whose magnitudes may be established via 

various boundary conditions and by utilizing  Eq. (12), Eq. 

(10) undergoes the following transformation: 
 
𝑑𝑌

𝑑𝑥
+ 𝜓𝑌+∈ = 0, … … … … … … … … … … … … … … … 𝑒𝑞(13) 

 

Where, 𝜓 and  ∈  are given as, 

 

𝜓 =
(𝑛2𝑥2 − 2𝑛𝑥2 −  (1 + 𝑥)2 )

𝑥(𝑥 + 1)(𝑛𝑥 + 𝑥 + 1)
, … … … … … … … … 𝑒𝑞(14) 

 

∈=
(1 + 𝑥)

(𝑛𝑥 + 𝑥 + 1)
 [ 

1

𝑥
− 

∆

ℎ
−

2𝐸2

ℎ
] , … … … … … … … 𝑒𝑞(15) 

 
Where ∆=(pt−pr) is defined earlier. 

 

 Isotropic Uncharged Solution for n=6 

 

For anisotropic and uncharged solution, the equation 

eq. (13) reduces to 

 
𝑑𝑌

𝑑𝑥
+ 𝜓𝑌+∈ = 0, … … … … … … … … … … … … … … … 𝑒𝑞(16) 

 

Where, 𝜓 and  ∈  are given as, 

 

𝜓 =
(24𝑥2 −  (1 + 𝑥)2 )

𝑥(𝑥 + 1)(7𝑥 + 1)
, … … … … … … … … … … … . 𝑒𝑞(17) 

 

∈=
(1 + 𝑥)

(7𝑥 + 1)
 
1

𝑥
. … … … … … … … … … … … … … … … . . 𝑒𝑞(18) 
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The solution of eq. (16) gives the grr component of 

metric potential as, 

 

𝑒−𝜆 =
1

(1+𝑥)4  [ 1 −
𝑥4+7𝑥3+24𝑥2+103𝑥

23
] +

𝐴𝑥 (1+7𝑥)−
2
7

(1+𝑥)4 . eq(19) 

 

Where A is a constant determined by boundary 
conditions. Now it is possible to find the different 

physical quantities relevant to the stellar configuration for 

an isotropic uncharged strange star viz density (ρ), 

pressure (p), using the values of  e−λ and eν. Hence an 

isotropic uncharged star may be obtained. 

 

 Anisotropic Solution in Presence of Charge for 

n=6 

To derive an anisotropic charged stellar model, it is 

essential to incorporate pressure anisotropy into our 

analysis. For the resolution of the differential equation 
presented in Eq. (13), it becomes necessary to select a 

mathematically well defined functional form for the 

parameters Δ and E2 . Many authors [(17), (42), (43), (44), 

(45)] choose the pressure anisotropy and electric field in 

polynomial form to predict some viable result of stellar 

configuration. With this consideration, pressure anisotropy 

has been selected the configuration as follows, 

 

∆

ℎ
=  

𝛼𝑥(1 + 7𝑥)−𝐿/4

(1 + 𝑥)5
  , … … … … … … … … … … … … . 𝑒𝑞(20) 

 

This form of ensures that it is regular and well behaved 

inside the star. Also , ∆ =0 at the center. The electric field E2  

is taken as: 

 

𝐸2

ℎ
=  

𝛽𝑥(1 + 7𝑥)−𝐽/4

(1 + 𝑥)5
  , … … … … … … … … … … … … 𝑒𝑞(21) 

 

Such form of electric field is also regular and well 

behaved throughout the interior of the star. Also it is evident 

that at r=0, the electric field E2=0.  The terms α  and β  are 

model parameters whose values are suitably chosen. Where, 

L and J are positive constants. Using Eqs. (20) and (21) with 
help of Eq. (17) and Eq. (18),  the solution of Eq. (16) is 

obtained as: 

 

𝑒−𝜆 =
1

(1 + 𝑥)4
 [ 1 −

𝑥4 + 7𝑥3 + 24𝑥2 + 103𝑥

23
] + 

 

4𝑥(
𝛼(1+7𝑥)

−
𝐿
4

(8−7𝐿)
+

2𝛽(1+7𝑥)
−

𝐽
4

(8−7𝐽)
)

(1+𝑥)4 +
𝐴𝑥 (1+7𝑥)−

2
7

(1+𝑥)4 . ……………….. eq(22) 

 

Where A is an arbitrary constant of  integration and its 

value can be found from the different boundary conditions. 

A noteworthy observation is that Eq. (22) implies to the 
Durgapal VI th  isotropic uncharged solution when α=0,β =0, 

as demonstrated in Eq.(19). Subsequently, we can calculate 

the physical parameters associated with the compact stellar 

object by utilizing the derived expressions for  e−λ and  eν  

as: 

 

𝜌 = −
ℎ𝛽𝑥(1 + 7𝑥)−

𝐽
4

(1 + 𝑥)5
+

ℎ

𝑥
(1 −

𝑓2

(1 + 𝑥)4
) − 2ℎ (

𝑓1

(1 + 𝑥)4
−

4𝑓2

(1 + 𝑥)5
) , … . 𝑒𝑞(23) 

 

𝑝𝑟 =
ℎ𝛽𝑥(1 + 7𝑥)−

𝐽
4)

(1 + 𝑥)5
−

ℎ

𝑥
−

ℎ𝑓2(1 + 13𝑥)

𝑥(1 + 𝑥)5
, … … … . 𝑒𝑞(24) 

 

𝑝𝑡= 𝛥+𝑝𝑟 , … … … … … … … … … … … … … … … … … … . 𝑒𝑞(25) 

 

And the charge density is obtained as: 

 

𝜎 =
1

4𝜋
√

ℎ

𝑥
 

√𝑓2𝑓6

(1 + 𝑥)2
(2 +

𝑥𝑓7

2
) , … … … … … … … … . 𝑒𝑞(26) 

 

Where, 

 

𝑓1=

𝐴(1 + 5𝑥)

(1 + 7𝑥)9/7
+

(−4𝑥3 − 21𝑥2 − 48𝑥 − 103)

23
+ 𝑓3 + 𝑓4 , 

 

𝑓2 = 𝑓5 +
4𝛼𝑥(1 + 7𝑥)−

𝐿
4

(8 − 7𝐿)
+

8𝛽𝑥(1 + 7𝑥)−
𝐽
4

(8 − 7𝐽)
, 

 

𝑓3 =
(1 + 7𝑥)(−1−

𝐿
4

)
(4 + 28𝑥 − 7𝐿𝑥)

(8 − 7𝐿)
, 

 

𝑓4 =
(1 + 7𝑥)(−1−

𝐽
4

)
(8 + 56𝑥 − 14𝐽𝑥)

(8 − 7𝐽)
, 

 

𝑓5 =  1 +
𝐴𝑥

(1+7𝑥)
2
7

+
−𝑥4−7𝑥3−24𝑥2−103𝑥

23
, 

 

𝑓6 =
ℎ𝛽𝑥(1 + 7𝑥)−

𝐽
4)

(1 + 𝑥)5
, 

 

𝑓7 = (
(2 − 8𝑥)

𝑥(1 + 𝑥)
−

7𝐽

2(1 + 7𝑥)
). 

 

In Eq. (12) and in Eqs. (23)-(26), the constants h, H 

and A can be obtained from the boundary conditions. At this 

juncture, we establish correspondence between the internal 

space time metric and the external space time metric at the 
boundary interface, where upon we, observe the subsequent 

conditions: 

 

 We Know that for a Charged Star the Reissner-

Nordstrom (47; 48) Exterior Metric is given by 

 

ds2 = − (1 −
2m

r
+

q2

r2
) dt2 +  

dr2

(1 −
2m

r
+

q2

r2 )
+ r2dΩ2, … … 𝑒𝑞(27) 

 

Where dΩ2=(dθ2+sin2 θdφ2 ),  q  is the charge inside 

the star of radius r and m being the mass of the star. 
Matching condition of metric potentials at the boundary r=b 

gives the following: 
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𝑒𝑣(𝑟=𝑏) =  𝑒−𝜆(𝑟=𝑏) = (1 −
2𝑀

𝑏
+

𝑄2

𝑏2
) . … … … … … 𝑒𝑞(28) 

 

Using  Eqs. (12), (22) and (28), we get 

 

(1 −
2𝑀

𝑏
+

𝑄2

𝑏2
) =

1

(1 + 𝑋)4
 [ 1 −

𝑋4 + 7𝑋3 + 24𝑋2 + 103𝑋

23
] + 

 

4𝑋(
𝛼(1 + 7𝑋)−

𝐿
4

(8 − 7𝐿)
+

2𝛽(1 + 7𝑋)−
𝐽
4

(8 − 7𝐽)
)

(1 + 𝑋)4
+

𝐴𝑋 (1 + 7𝑋)−
2
7

(1 + 𝑋)4
, … … … 𝑒𝑞(29) 

 

And 

 

𝐻(1 + 𝑋)6 = (1 −
2𝑀

𝑏
+

𝑄2

𝑏2
) , … … … … … … … … … 𝑒𝑞(30) 

 

Where X = hb2 and Q is the total charge within the 
sphere of radius b. 

 

 The Radial Pressure which is a Decreasing Function of  

r Must Vanishes at the Surface of the Compact Object. 

i.e 

 

pr (r = b) = 0…………………………………….eq(31) 

 

From Eqs. (29)- (31), we can determine the values of 

model constants and hence a viable model can be 

constructed. 

 

V. BOUNDARY CONDITIONS OF THE MODEL 

 

This section examines the constraints imposed upon 

the model parameters. Through application of the criterion 

established in Eq. (31),the parameter A can be determined 

and is presented as, 

 

𝐴 = 𝐹7[63𝐿𝐹5 + 4𝐹6 − 12744𝑋 + 1196𝑋𝛼(1 + 7𝑥)−
𝐿
4 , … … . 𝑒𝑞(32) 

 

And the value of H is obtained as: 

 

𝐻 =
1

(1 + 𝑋)10
 [ 1 −

𝑋4 + 7𝑋3 + 24𝑋2 + 103𝑋

23
] + 

 

4𝑋(
𝛼(1+7𝑋)

−
𝐿
4

(8−7𝐿)
+

2𝛽(1+7𝑋)
−

𝐽
4

(8−7𝐽)
)

(1+𝑋)10 +
𝐴𝑋 (1+7𝑋)−

2
7

(1+𝑋)10 , … … … … … … 𝑒𝑞(33). 

 

Where, 

 

F5=(- 9+177X+61X2+23X3+4X4), F6=(162 -1098X2 - 414X3 

- 72X4 +23(1+7X)-L/4α ) 

 

And   𝐹7 =
(1+7𝑋)

2
7

23(−8+7𝐿)(1+13𝑋)
    . Using  Eqs. (21) and 

(30), we calculate the total mass of the compact object as: 

 

𝑀 =  
𝑏

2
(1 − 𝐻 (1 + 𝑋)6 +

𝑋2𝛽(1 + 7𝑋)−
𝐽
4

(1 + 𝑋)5
) … … . 𝑒𝑞(34) 

 

 Central Density, Central Pressure and Central Charge 

Density 

At r=0, we notice   (eν )r=0
  = H and (e-λ )r=0

 =1 and their  

first derivatives  (eλ(r))′
r=0 = (eν(r))′

r=0 = 0. This suggests 

that the metric potentials are regular and well behaved inside 

the star. The central density and pressure can be evaluated 

from Eqs. (23) and (24) at  r = 0 and are given below: 
 

𝜌(0) = (
585

23
− 3A −

12α

(8 − 7L)
−

24β

(8 − 7J)
) ℎ, … … . 𝑒𝑞(35) 

 

𝑝𝑟(0) = (
81

23
+ A +

4α

(8 − 7L)
+

8β

(8 − 7J)
) ℎ, … … … 𝑒𝑞(36) 

 

And the central charge density is obtained as: 

 

𝜎(0) =
3ℎ√𝛽

4𝜋
. … … … … … … … … … … … … … … … … 𝑒𝑞(37) 

 

As, 𝜎(0) > 0, this suggests that  h>0. 

 

VI. MASS-RADIUS RELATIONSHIP, 

COMPACTNESS AND RED SHIFT FUNCTION 

 

In this section, we calculate the mass contained within 
the sphere of radius r is given by the equation. 

 

𝑚(𝑟) = 4𝜋 ∫ 𝑟2𝜌
𝑟

0

𝑑𝑟. … … … … … … … … … … … … … 𝑒𝑞(38) 

 

Where 𝜌  is defined in Eq. (23). The compactness 

function is defined as u(r)=m(r)/ r and the corresponding  

surface red-shift function is given as, 

 

𝑧(𝑟) = (
1

√1 − 2𝑢(𝑟)
− 1) … … … … … … … … … … … 𝑒𝑞(39) 

 

Fig.1 illustrates the relationship between stellar mass 

and radial distance from the center. The graphical 

representation demonstrates that the mass function exhibits 
regularity across the entire stellar interior. The boundary 

condition at the stellar center yields  m(r= 0)=0.  At the 

stellar boundary, a nonzero maximum gravitational red shift 

value has been observed. Fig. 2 presents the mass variation 

of the stellar object as a function of the parameter Bg for 

three distinct radial values: b=9Km, b=10Km and b=11Km. 

 

VII. MAXIMUM MASS AND MAXIMUM 

RADIUS OF THE STAR 

 

In this section, we calculate the probable maximum 
mass and maximum radius of the strange star taking MIT 

bag EOS. Here we use the numerical method to obtain the 

values of Mmax and bmax. The method is following: 
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 We calculate the maximum radius for a given surface 

value of energy density, ( ρs = 4Bg) using Eq. (23), 

where Bg  is bag constant. 

 Initially we assume a radius b and using Eqs. (23) and 

(31) and for a particular value of α and β, we obtain the 

values of A and  h. 

 The choice of α and β are arbitrary but we should keep in 

mind that the radial pressure must be positive inside the 
star and becomes zero at the surface. 

 Utilizing the determined values of A and h, the 

computation of the derivative ( 
𝑑𝑝𝑟

𝑑𝜌
) at the central point is 

performed.  It is observed that a specific value of 

parameter b yields the maximum value of  ( 
𝑑𝑝𝑟

𝑑𝜌
) at the 

center. This particular value of b, which corresponds to 

the maximum ( 
𝑑𝑝𝑟

𝑑𝜌
) at the center, represents the 

maximum permissible radius 𝑏𝑚𝑎𝑥 for the strange star 

configuration given a specified surface energy density 

(𝜌𝑠) or Bg  parameter. The maximum mass corresponds 

to the mass of  the compact stellar object encompassed 

within the radius 𝑏𝑚𝑎𝑥  according to this theoretical 

frame work and is determined through the expression  

𝑀𝑚𝑎𝑥 =
𝑏𝑚𝑎𝑥

2
(1 − 𝑒𝑏𝑚𝑎𝑥

−𝜆 + 𝐸2𝑏𝑚𝑎𝑥
2 ),where 𝑒𝑏𝑚𝑎𝑥

−𝜆  

denotes the value of  𝑒𝜆 evaluated at the radial 

coordinate 𝑟 = 𝑏𝑚𝑎𝑥. 

 

In Tabs 1 and 3, we have shown the maximum mass 

and maximum possible radius of strange star for different 

values of α at Bg=57.55 MeV /fm3   and   Bg= 95.11 MeV 

/fm 3   respectively. Tabs 2 and 4 show maximum mass and 

maximum possible radius of strange star for different values 

of β  at Bg=57.55 MeV /fm3   and   Bg= 95.11 MeV /fm 3  . 

From these tables, we notice that at Bg = 57.55MeV /fm3  

the maximum mass is Mmax=2.67Mʘ at radius bmax= 13.54 
(km), where as at Bg=95.11MeV/ fm3  there values are 

Mmax=2.08Mʘ and bmax=10.53(km) for α=2.0 and β =0. 

Again, at α =0, we notice that at Bg = 57.55MeV/ fm 3   the 

maximum mass  is Mmax=3.23Mʘ at radius bmx=13.82 (km), 

whereas at Bg =95.11MeV/ fm3  there values are 

Mmax=2.51Mʘ and bmax=10.75(km) for β =2.0.  Tables 5 and 

6 show the values of maximum compactness for different 

values of bag parameter Bg. 

 

Table 1 Maximum Radius bmax(Km) and Maximum Mass Mmax (Mʘ ) for Bg =575.5MeV /fm3 taking L=0.1,  J=0.3 and β =0. 

α A H h(km−2) bmax(km) Mmax(M⊙) 

0.0 1.97826 0.257892 0.000599 13.21 2.38 

1.0 1.68032 0.22778 0.000654 13.39 2.53 

2.0 1.38237 0.198633 0.000718202 13.54 2.67 

 

Table 2 Maximum Radius bmax(Km) and Maximum Mass Mmax(Mʘ) for Bg=57.55MeV/fm3 taking 

L=0.1,J=0.3 and α=0. 

β A H h(km−2) bmax(km) Mmax(Mʘ) 

0.0 1.97826 0.257892 0.000599 13.21 2.38 

1.0 1.20566 0.185942 0.000745 13.61 2.79 

2.0 0.433065 0.12177 0.000971 13.82 3.23 

 

Table 3 Maximum Radius bmax(Km) and Maximum Mass Mmax(M⊙) forBg=95.11MeV/fm3 taking  

L=0.1, J = 0.3 and  β = 0. 

α A H h(km−2) bmax(km) Mmax(M⊙) 

0.0 1.97826 0.257895 0.000990 10.27 1.85 

1.0 1.68032 0.227791 0.0010803 10.41 1.97 

2.0 1.38237 0.198633 0.00118694 10.53 2.08 

 

Table 4 Maximum Radius bmax(Km) and Maximum Mass Mmax(M⊙) for Bg=95.11MeV/fm3 taking 

L=0.1, J = 0.3 and α = 0. 

β A H h(km−2) bmax(km) Mmax(M⊙) 

0.0 1.97826 0.257895 0.000990 10.27 1.85 

1.0 1.20566 0.185945 0.001231 10.58 2.17 

2.0 0.433060 0.12177 0.0016051 10.75 2.51 

 

Table5 Maximum Radius bmax(Km)and Maximum Mass Mmax(Mʘ)for Bg=57.55MeV/fm 3  

taking L=0.1, J = 0.3 

β α bmax(km) Mmax(M⊙) umax 

0.5 0.5 13.50 2.66 0.2905 

1.5 1.5 13.83 3.23 0.3447 

2.5 2.5 13.74 3.78 0.4057 
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Table 6 Maximum Radius bmax(Km)and Maximum Mass Mmax(Mʘ) for Bg=95.11MeV/fm 3 

 taking L=0.1, J = 0.3 

β α bmax(km) Mmax(M⊙) umax 

0.5 0.5 10.50 2.07 0.2905 

1.5 1.5 10.76 2.51 0.3447 

2.5 2.5 10.69 2.94 0.4057 

 

VIII. PHYSICAL ANALYSIS OF THE STAR 
 

This section presents an examination of various 

physical parameters including metric potentials, radial 

pressure,  transverse pressure, and pressure anisotropy. The 

parameter value for α and β were selected arbitrarily. The 

metric potential distributions as functions of radial distance 

are illustrated in Fgs.(3)-(5) for the compact stellar objects  

PSRJ1903+327, HERX 1, and VELA  X 1. Analysis of 

these profiles reveals that the boundary condition  𝑒𝜈 = 𝑒−𝜆 

is satisfied at the stellar surface, while at the central region 

(r=0), the metric component satisfies  𝑒𝜆 = 1. Conversely, 

the metric component 𝑒𝜈 exhibits distinct values at the 
stellar center. Figs.(6)-(11) illustrate the radial distributions 

of matter density ρ, radial pressure pr ,transverse pressure pt 

, pressure anisotropy, electric field and charge density for 

the compact stellar objects PSRJ1903+327, HERX 1, and 

VELAX 1.The density profile presented in fig.6 

demonstrates that for any given bag parameter value, the 

matter density exhibits its maximum value at the stellar 

center and undergoes monotonic decrease with increasing 

radial coordinate. Furthermore, it is evident that elevated 

bag parameter values correspond to enhanced central density 

values. For a specified value of Bg. Consistent with the 
density behavior, the central radial pressure demonstrates 

positive correlation with increasing Bg values. The 

transverse pressure profile displays similar characteristics,  

with maximum values occurring at the center and sys 

thematic reduction toward the stellar surface. The pressure 

anisotropy parameter exhibits distinctly different behavior, 

vanishing at the center and progressively increasing with 

radial distance, ultimately reaching its maximum magnitude 

at the stellar boundary. The radial pressure distribution 

exhibits analogous behavior, achieving its peak magnitude 

at the center and diminishing to zero at the stellar boundary. 
 

 
Fig 1 The Figure Displays Mass Variation with Distance r 

for Two Scenarios: Black Line (Bg =57.55MeV/ fm3, 
Radius=13.88km) and Blue Line (Bg=95.11MeV/ fm3, 

Radius=10.76km), with α=β  =1.5 

 
Fig 2 The Figure Displays Mass Variation with Bg Using 

Black (b=9km), blue (b=10km), and Green (b=11Km) 

Lines, with α=β  =1.5. 

 

IX. ENERGY CONDITIONS IN 

PRESENCE OF CHARGE 

 

For a suitable and well behaved stellar model, all the 

energy conditions  such as: (i) Null energy condition (NEC), 

(ii)Weak energy condition(WEC), (iii)Strong  energy 
condition(SEC),  (iv)  Dominent  energy  condition  (DEC) 

(49; 50) should be satisfied throughout interior of the star. 

The energy conditions are given below 

 

 NEC: ρ+pr≥0, ρ+pt+E2≥0 

 WEC: ρ+pr≥0, ρ+E2/2≥0, ρ+pt+E2≥0 

 SEC: ρ+pr≥0, ρ+pt+E2≥0, ρ+pr+2pt+E2≥0 

 DEC: ρ+E2/2≥0, ρ-pr+E2≥0, ρ-pt≥0. 

 

 
Fig 3 The Figure Displays Metric Potential Variation with 

Radial Distance r for Compact Object PSRJ1903+327, 

where α =2.5, β =1.5, L=0.1 and J=0.3. Blue Line 

Represents  eν , Black Line Represents e-λ . 
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Fig 4 The Figure Displays Metric Potential Variation with 

Radial Distance r for Compact Object HER X-1, where α 

=2.5, β =1.5, L=0.1 and J=0.3. Blue Line Represents eν , 

black line represents e-λ. 

 

 
Fig 5 The Figure Displays Metric Potential Variation with 

Radial Distance r for Compact Object VELA X-1, where α 

=2.5,  β =1.5, L=0.1 and J=0.3. Blue Line Represents  eν , 
Black Line Represents e-λ . 

 

 
Fig 6 The Figure Displays Density Variation Versus Radial 

Distance r for Compact Objects PSRJ 1903+327 (Blue), 

HERX 1(Black), and VELAX 1(Green), with Parameters α 

=2.5,  β =1.5, L=0.1 and J=0.3. 

 
Fig 7 The Figure Displays Radial Pressure Variation Versus 

Radial Distance r for Compact Objects PSRJ 1903+327 

(Blue), HERX 1(Black), and VELAX 1(Green), with 

Parameters α =2.5,  β =1.5, L=0.1 and J=0.3. 

 

 
Fig 8 The Figure Displays Transverse Pressure Variation 

Versus Radial Distance r for Compact Objects PSRJ 

1903+327 (Blue), HERX 1(Black), and VELAX 1(Green), 
with Parameters α =2.5,  β =1.5, L=0.1 and J=0.3. 

 

 
Fig 9 The Figure Displays Pressure Anisotropy Variation 

Versus Radial Distance r for Compact Objects PSRJ 

1903+327 (Blue), HERX 1(Black), and VELAX 1(Green), 

with Parameters α =2.5,  β =1.5, L=0.1 and J=0.3. 
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Fig 10 The Figure Displays Electric Field Variation Versus 

Radial Distance r for Compact Objects PSRJ 1903+327 

(Blue), HERX 1(Black), and VELAX 1(Green), with 

Parameters α =2.5,  β =1.5, L=0.1 and J=0.3. 

 

 
Fig 11 The Figure Displays Charge Density Variation 

Versus Radial Distance r for Compact Objects PSRJ 

1903+327 (Blue), HERX 1(Black), and VELAX 1(Green), 

with Parameters α =2.5,  β =1.5, L=0.1 and J=0.3. 

 

 
Fig 12 The Figure Displays Energy Condition for Compact 

Objects PSRJ 1903+327 (Blue), HERX 1(Black), and 

VELAX 1(Green), with Parameters α =2.5,  β =1.5, L=0.1 

and J=0.3. 

 
Fig 13 The Figure Displays Energy Condition for Compact 

Objects PSRJ 1903+327 (Blue), HERX 1(Black), and 

VELAX 1(Green), with Parameters α =2.5,  β =1.5, L=0.1 

and J=0.3. 

 

 
Fig 14 The Figure Displays Energy Condition for Compact 

Objects PSRJ 1903+327 (Blue), HERX 1(Black), and 

VELAX 1(Green), with Parameters α =2.5,  β =1.5, L=0.1 

and J=0.3. 

 

 
Fig 15 The Figure Displays Energy Condition for Compact 

Objects PSRJ 1903+327 (Blue), HERX 1(Black), and 

VELAX 1(Green), with Parameters α =2.5,  β =1.5, L=0.1 

and J=0.3. 
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Fig 16 The Figure Displays Energy Condition for Compact 

Objects PSRJ 1903+327 (Blue), HERX 1(Black), and 

VELAX 1(Green), with Parameters α =2.5,  β =1.5, L=0.1 

and J=0.3. 

 

 
Fig 17 The Figure Displays Energy Condition for Compact 

Objects PSRJ 1903+327 (Blue), HERX 1(Black), and 

VELAX 1(Green), with Parameters α =2.5,  β =1.5, L=0.1 

and J=0.3. 

 

Figs 12-17 show the different energy conditions. From 

these figures,  it is evident that our model satisfy all energy 

conditions within the parameter space used to construct 

model. 

 

X. CAUSALITYCONDITION 

 
The fulfillment of causality condition is another 

important criterion which should satisfy to construct a well 

behaved stellar model. This condition tells us that the square 

of the radial sound speed (Vr
2) and the tangential sound 

speed (Vt
2) must obey the condition 𝑉𝑟

2 =
𝑑𝑝𝑟

𝑑𝜌
≤ 1 and 𝑉𝑡

2 =
𝑑𝑝𝑡

𝑑𝜌
≤ 1. In Figs. 18 and 19, we have shown the profile of 

causality conditions of compact objects PSRJ1903+327, 

HERX 1and VELAX 1. From the figures, it is evident that 

the square of the sound speeds throughout the interior of the 

star is less than 1 and also notice that both the speeds is 

maximum at the center and monotonically decreasing away 

from the center. 

 

 
Fig 18 The Figure Displays Causality Condition for 

Compact Objects PSRJ 1903+327 (blue), HERX 1(Black), 

and VELAX 1(Green), with Parameters α =2.5,  β =1.5, 

L=0.1 and J=0.3. 

 

 
Fig 19 The Figure Displays Causality Condition for 

Compact Objects PSRJ 1903+327 (Blue), HERX 1(Black), 

and VELAX 1(Green), with Parameters α =2.5,  β =1.5, 
L=0.1 and J=0.3. 

 

XI. PHYSICAL APPLICATION OF THE MODEL 

 

 In Order to Apply Physically , we have taken Three 

Compact Objects Namely: 

 

 PSRJ1903+327(51) which has observed mass and radius 

M=1.66Mʘ and b=9.438km respectively. 

 The second compact object is HERX 1(52) which has 

observed mass and radius M=0.85Mʘ and b=8.1km 
respectively. 

 The third compact object is VELAX 1(54) which has 

observed mass and radius M=1.77Mʘ and b=9.56km 

respectively. 

 

Using these three know compact objects, we have 

applied our model to study their physical properties. In 

Tab8, we have shown the values of central density, surface 
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density and central pressure of PSRJ1903+327,  HERX 1and 

VELAX 1. In Table9, we have predicted the radius of  two 

compact stars GW170817 and GW190814. 

 

Table 7 Values of Different Parameters of Compact Objects PSRJ1903+327, HERX 1 and VELAX 1 taking L=0.1, J=0.3, α =2.5 

and β=1.5. 

Star Bg(MeV/fm3) A H h(km-2) 

PSRJ1903+327 105.38 -2.23788 0.285939 0.001051 

HERX 1 95.60 -4.23418 0.552638 0.000583 

VELAX 1 106.12 -1.95631 0.254986 0.001146 

 

Table 8 Table Shows the Central Density ρ(0), Central Pressure p(0) and Surface Density ρ(s) for Different Star. 

Compact Bg (MeV/ fm3) ρ(0) ρ(s) p(0) 

Star  (gm/cm3) (gm/cm3) (dyn/cm2) 

PSRJ1903+327 105.38 12.30x1014 7.49x1014 2.37x1035 

HERX 1 95.60 8.68x1014 6.80x1014 7.54x1034 

VELAX 1 106.12 12.87x1014 7.55x1014 2.74x1035 

 

Table 9 Prediction of Radius of Stars GW170817 (53) and GW190814 (54) Using Our Model. Here we have taken α =1 
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XII. STABILITY OF THE MODEL: VARIATION OF 

LAGRANGIAN PERTURBATION OF 

PRESSURE WITH FREQUENCY 

 

Recent studies examine stellar model stability using 

Lagrangian perturbation of radial pressure at stellar surfaces. 

Our model analyzes how Lagrangian perturbation of radial 

pressure varies with frequency ( ω2) by plotting pressure 
perturbation versus frequency (ω2). In the present model, we 

employ the methodology established by Pretel (55), where 

in the radial oscillation mode is characterized through the 

following system of equations: 

 
dχ

dr
= −

1

r
(3χ +

Δpr

Γpr

) +
1

2
(

dν

dr
) χ, … … … … … … … … . eq(40) 

 

And 

 

𝜒(
𝜔2

𝐶2
𝑒𝜆−𝜈(𝜌 + 𝑝𝑟)𝑟 − 4

𝑑𝑝𝑟

𝑑𝑟
− 𝛴(𝜌 + 𝑝𝑟)𝑒𝜆𝑟𝑝𝑟 +

𝑟

4
(𝜌 + 𝑝𝑟)(

𝑑𝜈

𝑑𝑟
)2) 

 

- Δpr(
1

2

dν

dr
+ 2𝛴(𝜌 + 𝑝𝑟)𝑒𝜆) = 

𝑑(𝛥𝑝𝑟)

𝑑𝑟
… … … … … … … 𝑒𝑞(41) 

 

Where 
8𝜋𝐺

𝐶4 = 𝛴 ,  Γ =
𝑑𝑝𝑟

𝑑𝑟
(

𝜌+𝑝𝑟

𝑝𝑟
)   and the eigen 

function χ is connected to the radial part of the Lagrangian 

displacement by the relation χ =
δ(r)

r
.   G is the Newtonian 

gravitational constant and C is velocity of light in free space. 

At the center of the star the eigen functions can be 

normalized so that 𝜒(𝑟 = 0) = 1. Again from Eq.(40),  it is 

evident that this equation has a singularity at the center i.e at 

r=0. So, in order to find a realistic solution, the coefficient 

of  
1

𝑟
  must vanish as 𝑟 → 0 which gives the condition 

 

𝛥𝑝𝑟 = −3 (
𝜆

2
) 𝜒𝑝𝑟 , … … … … … … … … … … … … … … . 𝑒𝑞(42) 

 

Along with this condition, we have, at the surface of 

the star i.e at 𝑟 = 𝑏 the pressure is equal to zero and the 

Lagrangian perturbation of  the pressure also vanishes i.e as 

𝑟 → 𝑏 
 

𝛥𝑝𝑟 = 0 … 𝑒𝑞(43) 

 

The absolute value of  the Lagrangian change in 

pressure is plotted against frequency (𝜔𝑛
2)  of compact  

objects PSRJ1903+327, HERX 1 and VELAX 1 and shown 
in Fig.20. The minima of these plots corresponds to correct 

value of the normal model frequency. It is evident that for 

all normal modes (𝜔𝑛
2) > 0. Thus we can say that our model 

is stable under Lagrangian perturbation of radial oscillation. 

 

 
Fig 20 Figure Shows the Variation of Perturbation in 

Pressure with Frequency  ω2  of Compact Objects 

PSRJ1903+ 327,  HERX 1 and VELAX 1.  Blue Line for 

PSRJ1903+327, Black Line for HERX 1 and Green line for 

VELAX 1. Here α=2.5,  β=1.5, L=0.1and J=0.3. 

 

XIII. DISCUSSION 

 

In this work, we have found a new solution of 

Einstein- Maxwell field equations using the 𝑔𝑡𝑡 component 

of metric potential stated in Eq. (12). In this paper, we have 

take n=6 for constructing our model. Using this value of 𝑔𝑡𝑡 

for n = 6 we have obtained the value of 𝑔𝑟𝑟 component of 

metric potential both for isotropic and anisotropic charged 
star model. However solution for value n > 6 can also be 

obtained by taking suitable choice of pressure anisotropy as 

well as charge E2.  Using MIT bag EOS given in Eq. (3),  

we calculate the values of maximum mass and 

corresponding maxi mum radius by solving   ρs =  4Bg   and  

p(b) = 0 for charged strange matter distribution. The values 

of maximum mass and maximum radius are shown in Tables 

1- 5. In these tables, we have shown different cases. In table 

1, we have tabulated the values of maximum mass and 

maximum radius for different values of α with β = 0, J =0.3 

and L=0.1 at Bg =57.55 MeV/ fm3 while in table. 2 for 

different values of β with α = 0, J = 0.3 and L =0.1 at Bg 
=57.55MeV/ fm3.  Similarly in tables. 3 and 4, we have 

shown maximum mass and maximum radius at Bg = 95.11 

MeV/ fm3. From the table it is evident that for an isotropic 

uncharged star the maximum mass and radius is obtained as  

bmax = 13.21 Km and Mmax = 2.38 Mʘ  for Bg = 57.55 MeV/ 

fm3 and bmax = 10.27 Km and Mmax = 1.85 Mʘ for Bg = 

95.11 MeV/ fm3. The maximum mass and radius at  two 

different bag values with non zero α and β are shown in 

Tables 5 and 6. The maximum compactness are shown in 

Tables 5 and 6. we have shown the maximum compactness 

and surface red shift. Central density, surface density and 
central pressure of compact stars PSRJ1903+327, HER X 1 

and VELA X 1 are shown in Table 8. Fig. 1 shows the 

variation of mass function with radial distance. From this 

figure, it is evident that mass function is well behaved and it 

vanishes at the center of the star. The profile of mass 

variation with bag value for different radius is shown in Fig. 

2. In Figs. 3- 5, we have shown the variation of metric 

potentials with distance of compact objects PSRJ1903+327, 
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HERX 1 and VELAX 1. From these figures, It is evident 

that the value of e-λ = eν at   r = b.  In Fig. 6, we have shown 

the variation of density with respect to distance of stars 

PSRJ1903+327, HER X 1 and VELAX 1. It is evident that 

the density is maximum at the centre and decreases away 

from the centre. The variation of radial and transverse 

pressure are shown in Figs. 7 and 8. Radial pressure is 

maximum at the center and decreases to zero at the surface. 
The profile of pressure  anisotropy of compact objects 

PSRJ1903 + 327, HERX 1 and VELAX 1 are shown in 

Fig.9.  From the figure it is evident that the pressure 

anisotropy vanishes at the center. The variation of electric 

field with radial distance of stars PSRJ1903 + 327, HER X 1 

and VELA X 1 is shown in Fig. 10.  All the energy 

conditions are well satisfied in our model and shown in Figs. 

12- 17. From the figures, it is evident that the model follows 

the energy conditions. In Figs. 18 and 19, we have shown 

the profile of square of radial sound speed and transverse 

sound speed with distance of compact objects 
PSRJ1903+327, HER X 1 and VELAX 1. In this model, we 

have studied the stability by showing the variation in the 

absolute value of the Lagrangian perturbation of radial 

pressure at the surface of the compact stars PSRJ1903+327,  

HER X 1 and VELA X 1 with the frequencies of the normal 

mode of oscillations and The variation of absolute value of 

Lagrangian  perturbation in radial pressure at the surface 

against ω2 is shown in Fig. 20.  We note that all cases, the 

frequency spectrum is real (𝜔𝑛
2) > 0). This immediately 

indicates that our model is stable under this criterion. 
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