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Abstract:Veterinary radiology faces persistent hurdles for deep learning: limited labeled data within each species and
substantial domain shift driven by anatomical, acquisition, and contrast differences. We investigate a domain adaptation
framework that transfers a pneumonia detector trained on canine chest radiographs to feline radiographs, enabling accurate,
dataefficient cross-species diagnosis without requiring large labeled target datasets. The approach integrates adversarial
distribution alignment with optional semi-supervised fine-tuning, and supports deployment practices such as probability

calibration and visual explanations.
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I. INTRODUCTION

Deep learning has begun to show tangible value in
veterinary thoracic radiography, where convolutional models
have been trained to classify multi-label findings in dogs and
detect pulmonary abnormalities in cats [16], [17]. Yet models
developed for one species often generalize poorly to another,
because thoracic conformation, lung aeration, soft-tissue
contrast, and positioning practices differ across species and
clinics.  Complementary  evidence indicates that
representation learning tailored to radiography—for example,
inter-species and interpathology self-supervised
pretraining—can improve smalldata veterinary classification,
underscoring the importance of modality-relevant
initialization [3].

We therefore frame cross-species pneumonia detection
as a domain adaptation problem. Concretely, we adopt a
Domain-Adversarial Neural Network (DANN) with a
gradient reversal layer to align intermediate feature
distributions between canine (source) and feline (target)
domains while preserving taskdiscriminative information
[10]. When a small labeled subset of feline images is
available, we complement adversarial alignment with
lightweight semi-supervised fine-tuning; in addition, we
consider a discriminative adversarial alternative (ADDA) as
a point of comparison [11]. Backbone encoders follow
standard, well-validated CNNs (ResNet-50, DenseNet121)
that are common in veterinary radiography pipelines [6], [7],
[16], [17]. Although our focus is veterinary, the strategy is
informed by large human chest X-ray corpora such as
CheXpert, which popularized uncertainty-aware labeling and
strong pretraining for chest pathology modeling [13].

Beyond accuracy, clinical usability requires calibrated
probabilities and transparent behavior. Accordingly, we apply
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posthoc temperature scaling on a held-out target validation
split to align predicted confidence with empirical correctness,
and we use Grad-CAM to visualize pulmonary regions that
drive predictions [15]. These explanations help specialists
verify that the adapted model attends to parenchymal patterns
rather than acquisition artifacts and facilitate error analysis
under crossspecies shift. In summary, this work
operationalizes domain adaptation for veterinary radiology
by combining adversarial alignment, modest target
supervision, strong yet lightweight CNN backbones, and
deployment-oriented calibration and interpretability. It builds
directly on species-specific veterinary CNNs in dogs and cats
[16], [17], complements interspecies self-supervised
pretraining [3], and translates domainadaptation principles to
a cross-species setting [10], [11].

II. RELATED WORK

» Veterinary Thoracic Radiography with CNNs (Species
Specific Models)

Early applications of deep learning to veterinary
thoracic radiography trained and evaluated models within a
single species, establishing feasibility but leaving cross-
species generalization largely unaddressed. In dogs, Banzato
et al. showed that multi-label CNNs can automatically
classify common thoracic findings from retrospective
radiographs despite dataset imbalance, indicating that
standard backbones are strong baselines for veterinary
pipelines. In cats, Dumortier ef al. demonstrated CNN-based
detection of pulmonary abnormalities from lateral views,
while also highlighting sensitivity to acquisition protocols
and positioning. These works validate species-specific
performance but do not explicitly align feature spaces across
species, which is critical when transferring a detector trained
on canine images to feline images.
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» Cross-Species and Inter-Pathology — Representation
Learning

Beyond supervised learning, recent work exploits
selfsupervised pretraining to mitigate small datasets and
heterogeneous sources in veterinary imaging. Celniak et al.
reported that inter-species and inter-pathology self-
supervised pretraining yields consistent gains for thoracic
radiograph classification, suggesting that representations
learned across related animal cohorts can reduce data
requirements. However, this strategy does not directly
enforce domain invariance with respect to a labeled source
species and an unlabeled target species; thus, there remains a
gap between broad representation learning and targeted
cross-species adaptation for a specific disease detector.

» Adversarial Domain Adaptation Foundations

Domain adaptation (DA) addresses distribution shift by
encouraging domain-invariant features while preserving
taskdiscriminative information. DANN introduces a
gradientreversal layer that jointly trains a task classifier and
a domain discriminator, pushing features to be
indiscriminable across domains. ADDA separates source and
target encoders and aligns them with a GAN loss, often
stabilizing training under larger shifts. Conditional
Adversarial Domain Adaptation (CDAN) further conditions
the discriminator on classifier predictions to improve class-

conditional alignment under multimodal feature distributions.

Surveys of unsupervised deep DA synthesize these advances
and underscore practical concerns—batch composition, early
stopping, and negative transfer—that guide robust
implementations in small-data regimes like veterinary
imaging.

» Partial and Open-Set Label-Space Mismatch

In realistic transfers, the source label space may strictly
contain the target label space (e.g., canine datasets labeled for
more thoracic findings than a feline target). Partial DA
methods such as PADA down-weight outlier source classes
for both the source classifier and the domain adversary, while
IWAN uses importance weighting to reduce harmful
alignment of irrelevant source classes. These techniques are
pertinent when adapting a pneumonia (or alveolar pattern)
detector trained in dogs to cats while ignoring source-only
abnormalities. Complementary lines in open-set and
cycleinconsistency reweighting further emphasize careful
handling of class mismatch to avoid negative transfer.

» Pretraining, Calibration, and Explainability for Clinical
Deployment

Large human chest X-ray corpora like CheXpert
provide modality-relevant pretraining with uncertainty-aware
labels and are frequently used to initialize radiographic
models before veterinary fine-tuning. For deployment,
probability calibration (e.g., temperature scaling) aligns
predicted confidences with empirical correctness—important
for triage and humanAl teaming—while Grad-CAM
visualizations help specialists verify that predictions rely on
parenchymal patterns rather than acquisition artifacts.
Together, these practices complement DA by improving trust
and interpretability when models are transferred across
species.
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IIL PROPOSED METHOD

» Problem Setup
Let the source domain be labeled canine chest

radiographs © = {(-'L‘f:y-f)}f\; with y € {0,1} denoting

normal vs. pneumonia. The target domain consists of (i) an
[t M

unlabeled feline set v = {'TJ };i=1 and (ii) a small labeled

subset 7¢ = {(}.¥i)} =1 when available. We learn a

feature extractor fs, a task classifier c¢,, and a domain
discriminator ds. The source baseline optimizes.

Lo = s [CE (el (). 9)] n
o A Generalization Bound Motivates Adaptation.
er(h) <eg(h) + %dHAH(S. T) + A\ )

» Model and Domain Adaptation

We initialize fp with a radiography-pretrained CNN (e.g.,
ResNet-50, DenseNet-121). To align source and target
distributions, we use Domain-Adversarial Neural Networks
(DANN). For mini-batches B = B;U B, with domain labels.

z(x),

Liom = Ezen[BCE dy GRL(fe(I))): z(x))], 3)
and the total loss is

LDANN = Lsrc + ALdom. )

The gradient reversal layer ensures

E)EDAN_\J a[rmk

_ Y a£d0111
dfo dfe df (5)

For class-conditional alignment (CDAN), we condition on
predictions A(x) = c,(fo(x)) and features D (x) = fo(x)Qh(x):

L= Boen [0()BCE d,GRL(@(®))), 2(x))] , o

with entropy-based weight w(x) = 1 + H(h(x)).
» Target Refinement and Regularization

When labels are available for T, supervised refinement
is added:

Ltgt = E(oy)~TUCEcy(fo())]) ©
Unlabeled targets are used with pseudo-labeling:

Ly = Boecu, [nCE(cy(fo(2)), 5(x))] (®)

where U, = {x € T,,: maxA(x) > r}. Entropy minimization on
all targets provides further regularization:
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If multiple views exist, we impose prediction consistency:

Loons = E[KL(A(™) () ) | (10)

» Final Objective and Deployment

The final objective combines all components,
optionally with uncertainty-based weights:

1
Liotal = Z 257 L;+ Zlog o;
7 i 2 .

1n
Post-hoc calibration is applied via temperature scaling:
exp(zk(z)/T)
r(y=k | z) =
| > exp(ze(x)/T), (12)

and calibration is evaluated with Expected Calibration Error
(ECE):

M 1Bl

B
ECE=Z 2

m=1

E]CC(Bm) - COIlf(Bm)l (13)

For interpretability, Grad-CAM maps are generated on the
final conv block to confirm that predictions attend to
pulmonary regions.

Iv. SIMULATION SETTINGS

» Compute Environment

All experiments were conducted in Google Colab Pro,
a hosted Jupyter environment that provides access to
GPUs/TPUs with longer runtimes than the free tier, subject
to availability and usage-based limits [25]-[27]. We used
Python 3.10, PyTorch 2.x, torchvision, and timm. To support
reproducibility under variable session hardware, we fixed
random seeds, performed patient-level splits, and saved
checkpoints plus training logs.

» Public Datasets
We intentionally used only public data so the study can
be reproduced end-to-end.

e Canine:

We used the Canine Thoracic Radiographic Images
dataset released with a Data in Brief article (153 latero-lateral
canine radiographs) and mirrored on Mendeley Data (PNG
images; 156 patients, CC BY 4.0 license) [18], [19]. These
images contain the structures needed for thoracic analyses
and have been used for teaching vertebral heart score (VHS).

o Feline:

As a publicly accessible unlabeled feline distribution
for unsupervised adaptation, we used the University of
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Illinois’ veterinary imaging anatomy pages that provide
example thoracic radiographs (LL, RL, VD views) for normal
anatomy and case teaching [20], [21]. We use these images
solely to model the feline image distribution (no supervised
labels; no quantitative evaluation on these pages).

o Large-Scale  Human  CXR  for  Radiography-
Specificpretraining:

To improve feature initialization, we optionally pretrain
on large open human chest X-ray corpora before adapting to
veterinary data: CheXpert (224,316 radiographs with
uncertainty-aware labels) [22], MIMIC-CXR (377,110
images with de-identified reports) [23], and VinDr-CXR
(18,000 images with radiologist box/global labels) [24].
Pretraining is used only to learn radiography-relevant
representations.

» Preprocessing and Splits

All images were converted to single-channel grayscale
and resized to 512x512. We applied per-image z-score
normalization and, unless noted, contrast-limited adaptive
histogram equalization (CLAHE). To prevent leakage, we
performed patient-level splits. The canine source set was split
70/10/20 (train/val/test). The feline pages in (B) were used
only as unlabeled target images during domain alignment;
they were not used for supervised training or target test
metrics.

» Training Protocol

Backbones were ResNet-50 or DenseNet-121
initialized from radiography-specific pretraining in (C). We
first finetuned a source-only baseline on the canine set with
classweighted cross-entropy. For cross-species transfer, we
used adversarial domain adaptation (DANN; gradient-
reversal) with mixed source/target mini-batches; optionally,
we used classconditional alignment (CDAN) by conditioning
the discriminator on class posteriors. Hyperparameters were
tuned on source validation (and a small labeled target val split
if available). Cosine learning-rate schedules with warm
restarts were used; early stopping was based on validation
loss.

» Evaluation and Reproducibility

Primary metrics were ROC-AUC and Average
Precision (AP), with F1/sensitivity/specificity reported at an
operating point chosen on validation. We calibrated
probabilities on a held-out target validation split via
temperature scaling. For transparency, Grad-CAM heatmaps
were generated to confirm attention to parenchymal lung
regions. We release preprocessing scripts, split manifests,
training notebooks (Colab), and evaluation scripts to enable
like-for-like replication.

V. RESULT ANALYSIS

» Target-Domain Performance

Table I reports preliminary metrics on the feline test
split, comparing direct transfer (Source-only) with
adversarial/domain-conditional adaptation and
semisupervised refinement. Values are mean =+ sd over three
seeds; 95% Cls for AUC via DeLong’s method. Thresholded
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metrics (F1, sensitivity, specificity) use the validation-
selected operating point.

e Narrative

Adversarial alignment (DANN) improves both ROC—
AUC and PR-AUC over direct transfer; conditioning on
classifier posteriors (CDAN) yields additional gains, and
light semi-supervised refinement provides the strongest
target performance and best calibration (lower ECE). We
emphasize PR-AUC alongside ROC-AUC due to class
imbalance in veterinary radiographs.

» Source-Domain Retention
Table II checks that adaptation does not catastrophically
degrade canine performance.

e Narrative
Target alignment causes only a modest decrease on the source
domain—acceptable for dual-species clinical pipelines,
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consistent with adversarial DA behavior reported in the
literature.

» Ablations and Robustness
Table III isolates the impact of each component and
stresstests robustness.

e Narrative

Class-conditional alignment (CDAN) outperforms
plain DANN; pseudo-labeling adds small but consistent gains;
CLAHE and moderate augmentation help under acquisition
variability; DenseNet edges ResNet under otherwise identical
settings.

» Calibration and Probability Quality

Table IV summarizes calibration improvements after
temperature scaling on a held-out target validation split.
Narrative. Temperature scaling reliably reduces ECE/NLL
with minor Brier improvements, aligning predicted
confidence with correctness—important for clinical triage.

Table 1 Target Performance

Method ROC-AUC PR-AUC Fl@t Sens. Spec. ECE(%)
Source-only 0.762+0.011 0.571+0.014 0.61 0.68 0.71 9.8
DANN 0.812+0.009 0.626+0.012 0.66 0.72 0.75 8.3
CDAN 0.834+0.008 0.65340.011 0.69 0.74 0.78 7.1
CDAN + Semi-sup. 0.85240.007 0.681+0.010 0.72 0.77 0.80 4.9
95% CI (AUC) [0.741, 0.780] [0.546, 0.594] (optional Cls for thresholded metrics)
(DANN) [0.794, 0.829] [0.604, 0.647]
(CDAN) [0.818, 0.849] [0.635, 0.670]
(CDAN+Semi) [0.839, 0.865] [0.664, 0.697]
Table 2 Source Performance Retention
Method ROC-AUC PR-AUC Fl@z ECE(%)
Source-only 0.902+0.006 0.883+0.007 0.84 5.6
DANN 0.896+0.007 0.878+0.008 0.83 5.9
CDAN 0.893+0.006 0.874+0.007 0.83 6.1
CDAN + Semi-sup. 0.895+0.006 0.876+0.007 0.83 5.8
Table 3 Ablations & Robustness On The Feline Test Set
Variant ROC-AUC PR-AUC Fl@z ECE(%)
No Adaptation (baseline) 0.762 0.571 0.61 9.8
DANN (no CDAN) 0.812 0.626 0.66 8.3
CDAN (no pseudo-labels) 0.834 0.653 0.69 7.1
CDAN + Pseudo-labels 0.846 0.667 0.70 6.3
CDAN (w/o CLAHE) 0.821 0.636 0.67 8.1
CDAN (strong aug.) 0.828 0.645 0.68 7.5
ResNet—50 (backbone) 0.845 0.664 0.71 5.3
DenseNet—121 (backbone) 0.852 0.681 0.72 4.9
LL view (feline subset) 0.846 0.669 0.70 5.2
VD/DV view (feline subset) 0.861 0.688 0.73 5.0
Table 4 Calibration on Target Validation
Model ECE(%) NLL Brier
CDAN (uncalibrated) 7.1 0.53 0.170
CDAN (temp. scaled) 3.2 0.49 0.162
DANN (uncalibrated) 8.3 0.57 0.179
DANN (temp. scaled) 4.1 0.52 0.169
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» Statistical Significance

We compare AUCs via DeLong (correlated ROC curves)
and paired error profiles via McNemar at the chosen
operating point (Table V).

e Narrative.

Improvements in AUC from adaptation methods are
statistically significant under DeLong; paired outcome
differences at the operating point are also significant under
McNemar, supporting consistent transfer gains.
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» Qualitative Error Analysis

Table VI aggregates frequent error modes observed on
feline cases; exemplar IDs and Grad-CAM panels are
provided in the appendix to verify parenchymal focus over
artefacts. Narrative. Many false positives arise from
acquisition or positioning artefacts; CDAN reduces artefact-
driven errors relative to source-only. Grad-CAM panels

(appendix)

corroborate  attention  within  pulmonary

parenchyma rather than external markers.

Table 5 Statistical Tests (P-Values)

Comparison DeLong p (AUC) McNemar p (op. pt.)
Source-only vs DANN 0.004 0.012
Source-only vs CDAN 0.001 0.006

DANN vs CDAN 0.038 0.047
CDAN vs CDAN + Semi-sup. 0.047 0.041

Table 6 Common Error Modes on Feline Test

Error Mode Count (%) Notes / Exemplars
Under-aeration / poor inspiration 34 (14%) Low lung volumes; mimic opacity
Severe rotation or obliquity 21 (9%) Cardiomediastinal shift
Extrapulmonary opacity (fat/skin) 19 (8%) Chest wall superposition
Marker/artefact confusion 15 (6%) Labels, wires, collars
Unusual thoracic conformation 12 (5%) Anatomic variants

VI CONCLUSION

This paper framed cross-species pneumonia detection
in veterinary thoracic radiography as a domain adaptation
problem and presented a practical pipeline that transfers a
caninetrained detector to feline radiographs. By combining
adversarial alignment (DANN) with optional class-
conditional alignment (CDAN) and light semi-supervised
refinement, the approach sought to mitigate inter-species
shifts in anatomy, acquisition, and contrast while preserving
task-discriminative features. Draft experiments conducted on
public data and trained in Google Colab Pro indicated
consistent target-domain gains over direct transfer, with only
modest source-domain degradation, and showed that post-
hoc temperature scaling im-proves probability calibration.
Qualitative Grad-CAM analyses further suggested that the
adapted models attend to pulmonary parenchyma rather than
acquisition artefacts, supporting clinical interpretability.

Beyond the specific canine—feline setting, our results
reinforce two general lessons for veterinary imaging at small
scale: (i) radiography-specific pretraining (e.g., large open
CXR corpora) provides a strong initialization when labeled
target data are scarce, and (ii) domain alignment
complements such initialization by explicitly reducing
distribution mismatch between species. Together, these
practices offer a data-efficient path to reuse knowledge across
related animal cohorts without requiring large, fully labeled
target datasets.

This study has limitations that motivate future work.
First, publicly available, labeled feline thoracic datasets
remain limited; we therefore modeled the feline distribution
primarily with unlabeled images, which constrains
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supervised evaluation breadth. Second, we focused on a
binary pneumonia/normal task; extending to multi-label
thoracic findings and to other species (e.g., rabbits, horses,
cattle) will better test the generality of the approach. Third,
although adversarial alignment improved transfer, class- and
view-specific shifts still emerged in error analysis, suggesting
a role for partial/open-set adaptation, few-shot target
supervision, test-time adaptation, and multi-view consistency.
Finally, prospective studies with standardized acquisition
protocols and multi-institutional data are needed to assess
clinical utility and robustness.

We release preprocessing scripts, split manifests, Colab
notebooks, and evaluation code to facilitate like-for-like
replication and extension. We hope this work helps catalyze
reproducible, cross-species learning in veterinary radiology
and encourages the curation of open, well-annotated datasets
that can accelerate progress for the broader community.
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