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Abstract:Veterinary radiology faces persistent hurdles for deep learning: limited labeled data within each species and 

substantial domain shift driven by anatomical, acquisition, and contrast differences. We investigate a domain adaptation 

framework that transfers a pneumonia detector trained on canine chest radiographs to feline radiographs, enabling accurate, 

dataefficient cross-species diagnosis without requiring large labeled target datasets. The approach integrates adversarial 

distribution alignment with optional semi-supervised fine-tuning, and supports deployment practices such as probability 

calibration and visual explanations. 
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I. INTRODUCTION 
 

Deep learning has begun to show tangible value in 
veterinary thoracic radiography, where convolutional models 

have been trained to classify multi-label findings in dogs and 

detect pulmonary abnormalities in cats [16], [17]. Yet models 

developed for one species often generalize poorly to another, 

because thoracic conformation, lung aeration, soft-tissue 

contrast, and positioning practices differ across species and 

clinics. Complementary evidence indicates that 

representation learning tailored to radiography—for example, 

inter-species and interpathology self-supervised 

pretraining—can improve smalldata veterinary classification, 

underscoring the importance of modality-relevant 

initialization [3]. 
 

We therefore frame cross-species pneumonia detection 

as a domain adaptation problem. Concretely, we adopt a 

Domain-Adversarial Neural Network (DANN) with a 

gradient reversal layer to align intermediate feature 

distributions between canine (source) and feline (target) 

domains while preserving taskdiscriminative information 

[10]. When a small labeled subset of feline images is 

available, we complement adversarial alignment with 

lightweight semi-supervised fine-tuning; in addition, we 

consider a discriminative adversarial alternative (ADDA) as 
a point of comparison [11]. Backbone encoders follow 

standard, well-validated CNNs (ResNet-50, DenseNet121) 

that are common in veterinary radiography pipelines [6], [7], 

[16], [17]. Although our focus is veterinary, the strategy is 

informed by large human chest X-ray corpora such as 

CheXpert, which popularized uncertainty-aware labeling and 

strong pretraining for chest pathology modeling [13]. 

 

Beyond accuracy, clinical usability requires calibrated 

probabilities and transparent behavior. Accordingly, we apply 

posthoc temperature scaling on a held-out target validation 

split to align predicted confidence with empirical correctness, 

and we use Grad-CAM to visualize pulmonary regions that 
drive predictions [15]. These explanations help specialists 

verify that the adapted model attends to parenchymal patterns 

rather than acquisition artifacts and facilitate error analysis 

under crossspecies shift. In summary, this work 

operationalizes domain adaptation for veterinary radiology 

by combining adversarial alignment, modest target 

supervision, strong yet lightweight CNN backbones, and 

deployment-oriented calibration and interpretability. It builds 

directly on species-specific veterinary CNNs in dogs and cats 

[16], [17], complements interspecies self-supervised 

pretraining [3], and translates domainadaptation principles to 

a cross-species setting [10], [11]. 
 

II. RELATED WORK 
 

 Veterinary Thoracic Radiography with CNNs (Species 

Specific Models) 

Early applications of deep learning to veterinary 

thoracic radiography trained and evaluated models within a 

single species, establishing feasibility but leaving cross-

species generalization largely unaddressed. In dogs, Banzato 

et al. showed that multi-label CNNs can automatically 

classify common thoracic findings from retrospective 
radiographs despite dataset imbalance, indicating that 

standard backbones are strong baselines for veterinary 

pipelines. In cats, Dumortier et al. demonstrated CNN-based 

detection of pulmonary abnormalities from lateral views, 

while also highlighting sensitivity to acquisition protocols 

and positioning. These works validate species-specific 

performance but do not explicitly align feature spaces across 

species, which is critical when transferring a detector trained 

on canine images to feline images. 
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 Cross-Species and Inter-Pathology Representation 
Learning 

Beyond supervised learning, recent work exploits 

selfsupervised pretraining to mitigate small datasets and 

heterogeneous sources in veterinary imaging. Celniak et al. 

reported that inter-species and inter-pathology self-

supervised pretraining yields consistent gains for thoracic 

radiograph classification, suggesting that representations 

learned across related animal cohorts can reduce data 

requirements. However, this strategy does not directly 

enforce domain invariance with respect to a labeled source 

species and an unlabeled target species; thus, there remains a 
gap between broad representation learning and targeted 

cross-species adaptation for a specific disease detector. 

 

 Adversarial Domain Adaptation Foundations 

Domain adaptation (DA) addresses distribution shift by 

encouraging domain-invariant features while preserving 

taskdiscriminative information. DANN introduces a 

gradientreversal layer that jointly trains a task classifier and 

a domain discriminator, pushing features to be 

indiscriminable across domains. ADDA separates source and 

target encoders and aligns them with a GAN loss, often 

stabilizing training under larger shifts. Conditional 
Adversarial Domain Adaptation (CDAN) further conditions 

the discriminator on classifier predictions to improve class-

conditional alignment under multimodal feature distributions. 

Surveys of unsupervised deep DA synthesize these advances 

and underscore practical concerns—batch composition, early 

stopping, and negative transfer—that guide robust 

implementations in small-data regimes like veterinary 

imaging. 

 

 Partial and Open-Set Label-Space Mismatch 

In realistic transfers, the source label space may strictly 
contain the target label space (e.g., canine datasets labeled for 

more thoracic findings than a feline target). Partial DA 

methods such as PADA down-weight outlier source classes 

for both the source classifier and the domain adversary, while 

IWAN uses importance weighting to reduce harmful 

alignment of irrelevant source classes. These techniques are 

pertinent when adapting a pneumonia (or alveolar pattern) 

detector trained in dogs to cats while ignoring source-only 

abnormalities. Complementary lines in open-set and 

cycleinconsistency reweighting further emphasize careful 

handling of class mismatch to avoid negative transfer. 

 
 Pretraining, Calibration, and Explainability for Clinical 

Deployment 

Large human chest X-ray corpora like CheXpert 

provide modality-relevant pretraining with uncertainty-aware 

labels and are frequently used to initialize radiographic 

models before veterinary fine-tuning. For deployment, 

probability calibration (e.g., temperature scaling) aligns 

predicted confidences with empirical correctness—important 

for triage and humanAI teaming—while Grad-CAM 

visualizations help specialists verify that predictions rely on 

parenchymal patterns rather than acquisition artifacts. 
Together, these practices complement DA by improving trust 

and interpretability when models are transferred across 

species. 

III. PROPOSED METHOD 
 

 Problem Setup 

Let the source domain be labeled canine chest 

radiographs   with y ∈ {0,1} denoting 

normal vs. pneumonia. The target domain consists of (i) an 

unlabeled feline set  and (ii) a small labeled 

subset   when available. We learn a 

feature extractor fθ, a task classifier cψ, and a domain 

discriminator dϕ. The source baseline optimizes. 

 

.    (1) 

 

 A Generalization Bound Motivates Adaptation: 

 

.  (2) 

 

 Model and Domain Adaptation 

We initialize fθ with a radiography-pretrained CNN (e.g., 

ResNet-50, DenseNet-121). To align source and target 

distributions, we use Domain-Adversarial Neural Networks 

(DANN). For mini-batches B = Bs ∪ Bt with domain labels. 

 

z(x), 

 

BCE dϕ GRL(  ,  (3) 

 

and the total loss is 

 

LDANN = Lsrc + λLdom.                                                  (4) 

 

The gradient reversal layer ensures 

 

    (5) 

 

For class-conditional alignment (CDAN), we condition on 

predictions h(x) = cψ(fθ(x)) and features Φ(x) = fθ(x)⊗h(x): 

 

               (6) 

 

with entropy-based weight w(x) = 1 + H(h(x)). 

 

 Target Refinement and Regularization 
When labels are available for Tℓ, supervised refinement 

is added: 

 

Ltgt = E(x,y)∼Tℓ[CE(cψ(fθ(x)),y)].                                    (7) 

 

Unlabeled targets are used with pseudo-labeling: 

 

, (8) 

 

where Uτ = {x ∈ Tu : maxh(x) ≥ τ}. Entropy minimization on 

all targets provides further regularization: 
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. (9) 
 

If multiple views exist, we impose prediction consistency: 

 

. (10) 

 

 Final Objective and Deployment 

The final objective combines all components, 

optionally with uncertainty-based weights: 

 

. (11) 

 
Post-hoc calibration is applied via temperature scaling: 

 

, (12) 

 

and calibration is evaluated with Expected Calibration Error 

(ECE): 

 

ECE =  conf( . (13) 

 

m=1 

 
For interpretability, Grad-CAM maps are generated on the 

final conv block to confirm that predictions attend to 

pulmonary regions. 

 

IV. SIMULATION SETTINGS 

 

 Compute Environment 

All experiments were conducted in Google Colab Pro, 

a hosted Jupyter environment that provides access to 

GPUs/TPUs with longer runtimes than the free tier, subject 

to availability and usage-based limits [25]–[27]. We used 

Python 3.10, PyTorch 2.x, torchvision, and timm. To support 
reproducibility under variable session hardware, we fixed 

random seeds, performed patient-level splits, and saved 

checkpoints plus training logs. 

 

 Public Datasets 

We intentionally used only public data so the study can 

be reproduced end-to-end. 

 

 Canine:  

We used the Canine Thoracic Radiographic Images 

dataset released with a Data in Brief article (153 latero-lateral 
canine radiographs) and mirrored on Mendeley Data (PNG 

images; 156 patients, CC BY 4.0 license) [18], [19]. These 

images contain the structures needed for thoracic analyses 

and have been used for teaching vertebral heart score (VHS). 

 

 Feline:  

As a publicly accessible unlabeled feline distribution 

for unsupervised adaptation, we used the University of 

Illinois’ veterinary imaging anatomy pages that provide 
example thoracic radiographs (LL, RL, VD views) for normal 

anatomy and case teaching [20], [21]. We use these images 

solely to model the feline image distribution (no supervised 

labels; no quantitative evaluation on these pages). 

 

 Large-Scale Human CXR for Radiography-

Specificpretraining:  

To improve feature initialization, we optionally pretrain 

on large open human chest X-ray corpora before adapting to 

veterinary data: CheXpert (224,316 radiographs with 

uncertainty-aware labels) [22], MIMIC-CXR (377,110 
images with de-identified reports) [23], and VinDr-CXR 

(18,000 images with radiologist box/global labels) [24]. 

Pretraining is used only to learn radiography-relevant 

representations. 

 

 Preprocessing and Splits 

All images were converted to single-channel grayscale 

and resized to 512×512. We applied per-image z-score 

normalization and, unless noted, contrast-limited adaptive 

histogram equalization (CLAHE). To prevent leakage, we 

performed patient-level splits. The canine source set was split 

70/10/20 (train/val/test). The feline pages in (B) were used 
only as unlabeled target images during domain alignment; 

they were not used for supervised training or target test 

metrics. 

 

 Training Protocol 

Backbones were ResNet-50 or DenseNet-121 

initialized from radiography-specific pretraining in (C). We 

first finetuned a source-only baseline on the canine set with 

classweighted cross-entropy. For cross-species transfer, we 

used adversarial domain adaptation (DANN; gradient-

reversal) with mixed source/target mini-batches; optionally, 
we used classconditional alignment (CDAN) by conditioning 

the discriminator on class posteriors. Hyperparameters were 

tuned on source validation (and a small labeled target val split 

if available). Cosine learning-rate schedules with warm 

restarts were used; early stopping was based on validation 

loss. 

 

 Evaluation and Reproducibility 

Primary metrics were ROC–AUC and Average 

Precision (AP), with F1/sensitivity/specificity reported at an 

operating point chosen on validation. We calibrated 
probabilities on a held-out target validation split via 

temperature scaling. For transparency, Grad-CAM heatmaps 

were generated to confirm attention to parenchymal lung 

regions. We release preprocessing scripts, split manifests, 

training notebooks (Colab), and evaluation scripts to enable 

like-for-like replication. 

 

V. RESULT ANALYSIS 

 

 Target-Domain Performance 

Table I reports preliminary metrics on the feline test 

split, comparing direct transfer (Source-only) with 
adversarial/domain-conditional adaptation and 

semisupervised refinement. Values are mean ± sd over three 

seeds; 95% CIs for AUC via DeLong’s method. Thresholded 
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metrics (F1, sensitivity, specificity) use the validation-
selected operating point. 

 

 Narrative  

Adversarial alignment (DANN) improves both ROC–

AUC and PR–AUC over direct transfer; conditioning on 

classifier posteriors (CDAN) yields additional gains, and 

light semi-supervised refinement provides the strongest 

target performance and best calibration (lower ECE). We 

emphasize PR–AUC alongside ROC–AUC due to class 

imbalance in veterinary radiographs. 

 
 Source-Domain Retention 

Table II checks that adaptation does not catastrophically 

degrade canine performance. 

 

 Narrative  

Target alignment causes only a modest decrease on the source 

domain—acceptable for dual-species clinical pipelines, 

consistent with adversarial DA behavior reported in the 
literature. 

 

 Ablations and Robustness 

Table III isolates the impact of each component and 

stresstests robustness. 

 

 Narrative  

Class-conditional alignment (CDAN) outperforms 

plain DANN; pseudo-labeling adds small but consistent gains; 

CLAHE and moderate augmentation help under acquisition 

variability; DenseNet edges ResNet under otherwise identical 
settings. 

 

 Calibration and Probability Quality 

Table IV summarizes calibration improvements after 

temperature scaling on a held-out target validation split. 

Narrative. Temperature scaling reliably reduces ECE/NLL 

with minor Brier improvements, aligning predicted 

confidence with correctness—important for clinical triage. 

 

Table 1 Target Performance 

Method ROC-AUC PR-AUC F1@τ∗ Sens. Spec. ECE(%) 

Source-only 0.762±0.011 0.571±0.014 0.61 0.68 0.71 9.8 

DANN 0.812±0.009 0.626±0.012 0.66 0.72 0.75 8.3 

CDAN 0.834±0.008 0.653±0.011 0.69 0.74 0.78 7.1 

CDAN + Semi-sup. 0.852±0.007 0.681±0.010 0.72 0.77 0.80 4.9 

95% CI (AUC) [0.741, 0.780] [0.546, 0.594] (optional CIs for thresholded metrics) 

(DANN) [0.794, 0.829] [0.604, 0.647]  

(CDAN) [0.818, 0.849] [0.635, 0.670]  

(CDAN+Semi) [0.839, 0.865] [0.664, 0.697]  

 

Table 2 Source Performance Retention 

Method ROC-AUC PR-AUC F1@τ∗ ECE(%) 

Source-only 0.902±0.006 0.883±0.007 0.84 5.6 

DANN 0.896±0.007 0.878±0.008 0.83 5.9 

CDAN 0.893±0.006 0.874±0.007 0.83 6.1 

CDAN + Semi-sup. 0.895±0.006 0.876±0.007 0.83 5.8 

 

Table 3 Ablations & Robustness On The Feline Test Set 

Variant ROC-AUC PR-AUC F1@τ∗ ECE(%) 

No Adaptation (baseline) 0.762 0.571 0.61 9.8 

DANN (no CDAN) 0.812 0.626 0.66 8.3 

CDAN (no pseudo-labels) 0.834 0.653 0.69 7.1 

CDAN + Pseudo-labels 0.846 0.667 0.70 6.3 

CDAN (w/o CLAHE) 0.821 0.636 0.67 8.1 

CDAN (strong aug.) 0.828 0.645 0.68 7.5 

ResNet–50 (backbone) 0.845 0.664 0.71 5.3 

DenseNet–121 (backbone) 0.852 0.681 0.72 4.9 

LL view (feline subset) 0.846 0.669 0.70 5.2 

VD/DV view (feline subset) 0.861 0.688 0.73 5.0 

 

Table 4 Calibration on Target Validation 

Model ECE(%) NLL Brier 

CDAN (uncalibrated) 7.1 0.53 0.170 

CDAN (temp. scaled) 3.2 0.49 0.162 

DANN (uncalibrated) 8.3 0.57 0.179 

DANN (temp. scaled) 4.1 0.52 0.169 
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 Statistical Significance 
We compare AUCs via DeLong (correlated ROC curves) 

and paired error profiles via McNemar at the chosen 

operating point (Table V). 

 

 Narrative.  

Improvements in AUC from adaptation methods are 

statistically significant under DeLong; paired outcome 

differences at the operating point are also significant under 

McNemar, supporting consistent transfer gains. 

 Qualitative Error Analysis 
Table VI aggregates frequent error modes observed on 

feline cases; exemplar IDs and Grad-CAM panels are 

provided in the appendix to verify parenchymal focus over 

artefacts. Narrative. Many false positives arise from 

acquisition or positioning artefacts; CDAN reduces artefact-

driven errors relative to source-only. Grad-CAM panels 

(appendix) corroborate attention within pulmonary 

parenchyma rather than external markers. 

 

Table 5 Statistical Tests (P-Values) 

Comparison DeLong p (AUC) McNemar p (op. pt.) 

Source-only vs DANN 0.004 0.012 

Source-only vs CDAN 0.001 0.006 

DANN vs CDAN 0.038 0.047 

CDAN vs CDAN + Semi-sup. 0.047 0.041 

 
Table 6 Common Error Modes on Feline Test 

Error Mode Count (%) Notes / Exemplars 

Under-aeration / poor inspiration 34 (14%) Low lung volumes; mimic opacity 

Severe rotation or obliquity 21 (9%) Cardiomediastinal shift 

Extrapulmonary opacity (fat/skin) 19 (8%) Chest wall superposition 

Marker/artefact confusion 15 (6%) Labels, wires, collars 

Unusual thoracic conformation 12 (5%) Anatomic variants 

 

VI. CONCLUSION 

 

This paper framed cross-species pneumonia detection 

in veterinary thoracic radiography as a domain adaptation 

problem and presented a practical pipeline that transfers a 

caninetrained detector to feline radiographs. By combining 

adversarial alignment (DANN) with optional class-

conditional alignment (CDAN) and light semi-supervised 

refinement, the approach sought to mitigate inter-species 

shifts in anatomy, acquisition, and contrast while preserving 
task-discriminative features. Draft experiments conducted on 

public data and trained in Google Colab Pro indicated 

consistent target-domain gains over direct transfer, with only 

modest source-domain degradation, and showed that post-

hoc temperature scaling im-proves probability calibration. 

Qualitative Grad-CAM analyses further suggested that the 

adapted models attend to pulmonary parenchyma rather than 

acquisition artefacts, supporting clinical interpretability. 

 

Beyond the specific canine→feline setting, our results 

reinforce two general lessons for veterinary imaging at small 
scale: (i) radiography-specific pretraining (e.g., large open 

CXR corpora) provides a strong initialization when labeled 

target data are scarce, and (ii) domain alignment 

complements such initialization by explicitly reducing 

distribution mismatch between species. Together, these 

practices offer a data-efficient path to reuse knowledge across 

related animal cohorts without requiring large, fully labeled 

target datasets. 

 

This study has limitations that motivate future work. 

First, publicly available, labeled feline thoracic datasets 

remain limited; we therefore modeled the feline distribution 
primarily with unlabeled images, which constrains 

supervised evaluation breadth. Second, we focused on a 

binary pneumonia/normal task; extending to multi-label 

thoracic findings and to other species (e.g., rabbits, horses, 

cattle) will better test the generality of the approach. Third, 

although adversarial alignment improved transfer, class- and 

view-specific shifts still emerged in error analysis, suggesting 

a role for partial/open-set adaptation, few-shot target 

supervision, test-time adaptation, and multi-view consistency. 

Finally, prospective studies with standardized acquisition 

protocols and multi-institutional data are needed to assess 
clinical utility and robustness. 

 

We release preprocessing scripts, split manifests, Colab 

notebooks, and evaluation code to facilitate like-for-like 

replication and extension. We hope this work helps catalyze 

reproducible, cross-species learning in veterinary radiology 

and encourages the curation of open, well-annotated datasets 

that can accelerate progress for the broader community. 
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