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Abstract: Natural disasters, such as floods, earthquakes, and storms, cause significant human and economic losses
worldwide, necessitating accurate early prediction to enhance preparedness. This study leverages spatial (location-based)
and temporal (time-based) patterns in the EM-DAT global disaster dataset, containing over 22,071 records with variables
like disaster type, location, magnitude, and impacts, to predict disaster occurrence and severity. Three deep learning models
Convolutional Long Short-Term Memory (ConvLSTM), Graph Neural Network (GNN), and Long Short-Term Memory
(LSTM) were developed to capture spatial-temporal dynamics. The dataset was pre-processed to handle missing values,
normalize features, and construct spatial graphs and temporal sequences. Exploratory data analysis (EDA) revealed
patterns in disaster frequency, geographic hotspots, and temporal trends. On a held-out test set, the ConvLSTM model
achieved the highest performance, with an AUROC of 98.78%, accuracy of 98.45%, Recall of 96.62%, Precision of 97.59%
log loss of 0.0912 and F1-score of 97.10%, followed by LSTM and GNN. Visualizations, including spatial heatmaps, temporal
prediction curves, confusion matrix and geospatial plots, enhance interpretability. These findings underscore the potential

of specialized spatial and temporal models for disaster forecasting, supporting proactive mitigation strategies.
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L INTRODUCTION

Natural disasters, including floods, earthquakes, storms,
and droughts, have catastrophic impacts on human life,
infrastructure, and economies, with these impacts hastened by
climate change and urbanization [1]. The EM-DAT global
disaster database provides a comprehensive basis for
prediction, capturing spatial data (e.g., Latitude, Longitude,
Country) and temporal data (e.g., Start Year/Month)
alongside impact metrics like Total Deaths and Total Damage.
Forecasting the occurrence and size of disasters 6—12 months
ahead enables forward decision-making like resource
mobilization and evacuation planning [2]. Traditional
predictive models often focus on the spatial pattern (e.g.,
flood risk maps) or temporal trend (e.g., storm seasonal
cycles), yet have minimal ability to integrate both
dimensions. For example, floods cluster in river basins during
monsoons, requiring models to capture geographic and
temporal interactions [3]. Deep learning models such as
ConvLSTM, GNN, and LSTM offer promising solutions by
mimicking complex spatial-temporal dependencies, but their
comparative performance on global disaster datasets has been
largely untested.
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Classic disaster prediction methods, such as statistical
models (e.g., ARIMA) and rule-based systems (e.g., flood
warning stages), rely on predetermined criteria and are
overwhelmed by high-dimensional heterogeneous data.
These models assume linearity and stationarity and are unable
to capture non-linear spatial-temporal patterns [4]. Random
forest-based machine learning methods improve accuracy but
require extensive feature engineering and easily neglect
spatial dependencies or long-term temporal trends [5]. Class
imbalance and missing values in disaster data sets also
challenge traditional models, requiring advanced approaches
[6]. Accurate forecasting of disaster occurrence and impact is
hindered by the complex interplay of spatial (e.g., geographic
connectedness) and temporal (e.g., seasonality) dynamics,
missing data, and disaster types. Models are required that can
predict disaster occurrences and impacts (e.g., Total Deaths,
economic loss) 6—12 months in advance; Utilize spatial and
temporal patterns in the EM-DAT global disaster database;
Handle missing values and noise effectively and provide
interpretable insights for disaster management policymakers.

To develop and compare the performance of
ConvLSTM, GNN, and LSTM models in predicting disaster
occurrence and impact using spatial and temporal patterns in
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the EM-DAT global disaster database. Develop models for
prediction of disaster events and impacts (e.g., Total Deaths,
Total Damage) 6—12 months ahead, assessing them for trend
forecasting accuracy. Use the models to predict specific
disaster types (e.g., floods, earthquakes) in a 6—12-month
window, assessing performance using AUROC, accuracy, and
Fl-score. Systematically compare ConvLSTM, GNN, and
LSTM in modelling disaster data spatial and temporal
patterns.

II. LITERATURE REVIEW

Disaster prediction aims to mitigate the impacts of
natural disasters, which cause millions of deaths and billions
of dollars in losses annually. Traditional methods include
statistical models like ARIMA for time-series forecasting and
hazard-specific indices, i.e., the Palmer Drought Severity
Index (PDSI) for drought or the Saffir-Simpson scale for
hurricane. Such models predict disaster likelihood from
environmental metrics (e.g., precipitation, seismicity) but
assume linearity and stationarity and cannot capture complex
spatial-temporal dependencies [7]. For example, ARIMA is
insufficient to model flood propagation between areas or
seasonal patterns of storms. Rule-based approaches, e.g.,
flood warning levels, are founded on local data and fixed
thresholds and are hence not readily generalizable across
disaster types and geographies. These kinds of approaches are
confounded by high-dimensional data like EM-DAT that has
spatial, temporal, and impact variables. Missing data,
prevalent in worldwide disaster archives, complicate
modelling because simple imputation methods create biases

[6].

Machine learning (ML) algorithms, such as decision
trees, random forests, and support vector machines (SVMs),
have improved predictive capability. Mosavi etal [8] used
random forests to predict flood risk due to precipitation and
topography. ML models, nonetheless, require large-scale
feature engineering and do not capture spatial dependencies
(e.g., disaster impacts between areas) and long-term temporal
patterns (e.g., seasonal cycles) well. Class imbalance, when
disaster events are rare, also reduces model sensitivity [9].

Deep learning enables automatic feature learning from
complex datasets, simulating non-linear relationships and
sequential dependencies. This study contrasts three models:
ConvLSTM, GNN, and LSTM for disaster prediction,
leveraging their individual spatial and temporal capabilities.
ConvLSTM, proposed by Shi etal [10], adds convolutional
layers to LSTM units, enabling simultaneous modelling of
spatial and temporal patterns. In contrast to standard LSTMs,
ConvLSTM accepts grid-based inputs, making it a good fit
for tasks like precipitation nowcasting or flood prediction.
They demonstrated the use of ConvLSTM in predicting
rainfall from radar data, maintaining spatial correlations. In
disaster prediction, ConvLSTM has been used to simulate
flood dynamics in river basins from spatial features (e.g.,
terrain) and time series input (e.g., rainfall) [11]. ConvLSTM
is strong in hierarchical feature learning and temporal
modelling. It, nevertheless, assumes a regular grid structure,
which may not capture irregular spatial dependencies (e.g.,
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non-adjacent regions affected by a hurricane). ConvLSTM is
furthermore computationally intensive and hyperparameter-
dependent, which makes it less scalable for large datasets like
EM-DAT [12].

GNNs encode relational data by representing entities
(e.g., locations) as nodes and relationships (e.g., proximity)
as edges. They excel at capturing spatial dependencies, such
as earthquake aftershock patterns or flood cascades [13].
DeVries et al. [13] forecast aftershock locations with GNNs
by modelling seismic zones as a fault line-based graph. GNN5s
transmit information from neighbouring nodes via message-
passing, learning complex spatial patterns without grid
assumptions.

For disaster prediction, GNNs can model geographic
relationships in the EM-DAT dataset (e.g., water flow-
connected river basins) with Latitude, Longitude, and
Magnitude. Current work has applied GNNs to the prediction
of wildfire propagation, with geographic and climatic features
[14]. However, GNNs specialize in spatial modelling but are
poor at temporal dynamics, e.g., seasonality trends, and must
be combined with temporal models [15]. It is also challenging
to learn good graph structures for sparse data.

LSTMs, introduced by Hochreiter and Schmidhuber
[16], are RNNSs that capture long-term dependencies in time-
series data. Their gating functions (forget, input, output)
avoid vanishing gradients and thus are suitable for time-series
forecasting. In disaster prediction, LSTMs have forecasted
rainfall for floods or temperature trends for droughts [17]. Le
et al. [17] used LSTMs to forecast the occurrence of floods
based on precipitation and river flow time series. LSTMs are
ideally suited to capture temporal patterns within EM-DAT,
i.e., seasonal storm patterns or drought spells. They take in
data as one-dimensional sequences, lacking spatial context
(i.e., geographical disaster spread), however. LSTMs are
hyperparameter-sensitive and will also overfit imbalanced
datasets [18].

ConvLSTM integrates spatial-temporal modelling,
while GNNs and LSTMs are spatial and temporal specialists,
respectively. This division of labour allows for an exhaustive
evaluation of their strengths. Other models, including
Transformers, have been used for time-series forecasting of
hurricane impacts [19], and CNNs have detected floods from
satellite imagery [20]. However, specialization in either
temporal or spatial concerns compromises their adaptability
compared to ConvLSTM’s hybrid approach or the
complementary GNN-LSTM pair.

1II. MATERIALS AND METHODS

» Dataset Description

Preprocessing The EM-DAT dataset global disaster
dataset contains, maintained by the Centre for Research on
the Epidemiology of Disasters (CRED), contains over 22,071
records from 2000 to 2025, covering natural and
technological disasters. Key variables include:
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e Spatial: Latitude, range, Longitude, range, Country,
Subregion, Region, Location.

e Temporal: Start Year, start day, End Year, Date.

e Disaster Characteristics: Disaster Type (e.g., Flood,
Earthquake), Disaster Subtype, Magnitude, Magnitude
Scale.

e Impact Metrics: Total Deaths, No. Injured, No. Affected,
No. Homeless, Total Affected, CPI.
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e Metadata: DisNo., Historic, Classification Key, ISO,
OFDA/BHA Response, Appeal, Declaration, Entry Date,
Last Update, Year.

The target is a binary DisasterOccurrence (1 = disaster,
0 = no disaster) per time step and region, derived from Total

Deaths or Total Affected > 0.

Disaster Occurrence, ,, = | (TotalDeathsm > 0 Vv TotalAffected,, > 0)

Table 1 Key Variables in EM-DAT Dataset

Variable Description Type Non-Null Count
Latitude North-South coordinates Numeric [-72.64, 67.93] 22,071
Longitude East-West coordinates Numeric [-177.16, 179.65] 22,071
Disaster Type Type of disaster (e.g., Flood, Earthquake) Categorical 22,071
Magnitude Disaster intensity Numeric [0, 4¢7] 13,317
Total Deaths Total fatalities Numeric [0, 222,570] 22,071
Total Affected Total impacted individuals Numeric [0, 3.3e8] 22,071
Start Year Year of disaster onset Numeric [2000, 2025] 22,071
Start day Day of disaster onset Numeric [1, 31] 22,071
CPI Consumer Price Index Numeric [54.90, 100] 21,734

» Missing Data Handling

o Nature of Missingness

The entire disaster dataset, which was consolidated from
EM-DAT and supplemented with geographic centroids,
exhibits  heterogeneous  missingness  patterns. The
missingness gaps traverse structural metadata (e.g.,
administrative boundaries), financial estimates (e.g., insured
or overall losses), and geolocation attributes (latitude and
longitude). Specifically, financial attributes such as Insured
Damage, Reconstruction Costs, and AID Contributions
exhibited extensive sparsity, with some of fields missing in
over 90% of records. This reflects reporting gaps across
countries and disaster types, especially in poorer countries
where estimates of economic loss are unavailable or not
systematically recorded.

Similarly, a few records lacked coordinates, either due
to unregistered or ambiguous country names or missing
geolocation metadata. These gaps were an obstacle for
spatiotemporal modelling and needed deliberate correction
processes.

» ConvLSTM Model

Convolutional Long Short-Term Memory
(ConvLSTM), introduced by Shi et al. [10], is a specialized
neural network architecture that integrates convolutional
layers with LSTM units, designed to handle spatio-temporal
data effectively. This architecture is particularly beneficial for
tasks that involve sequential data with spatial dependencies,
such as video analysis and weather forecasting. ConvLSTM
captures both spatial and temporal features by processing data
in a sequence of frames, making it suitable for various
applications, including predicting oil and gas saturations in
fields like SACROC [22] and modelling dynamics in fluid
systems [23].
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e Architectural Design:
ConvLSTM integrates convolutional and recurrent
layers. Our model includes:

v' Three ConvLSTM layers (64 filters, 3x3 kernel)
processing grid-based data (12-month spatial-temporal
grids).

v Dropout (p = 0.3) for regularization.

v" Dense layer with sigmoid activation.

e  Mathematical Model:
v" Input Gate: Determines which information to store
Jp = oWy * X + Why x My + Wy © Cpoq + by)

v Forget Gate: Determine which information to discard
from the cell state

Tt = O'(fo * Xt + th * }[t—l + ch Q C’t_l + bf)

v' Cell State Update: Combines retained and new
information.

Cr =F: ©OCpqy +3, ©tanh(W,,, x X + Wy x Hy_y + b.)

v Output Gate: Controls the output based on the updated cell
state.

Otzo-(Von*xt'l'Who*j{t—1+VVco®Ct+bo)

v Hidden State: Produces the output for the current time
step.

H, =0, ® tanh(C,)

Where X, € RE*WXC| is the input at time (t),
Hy, Hyy € RE*WXMig the hidden states at time (t) and t-1,
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with M as the number of hidden units, C,, C,_,; € RF*W*M ig
the cell states, 7;, F;, O, € RT*W*M ig the input, forget and
output gates, W,;, Wy;, ... € REXKXCXM g the Convolutional
kernels (e.g., 3x3 kernels, K=3K=3K=3), b;, b, b., b, € R
is the Biases, * is Convolution operation, (© is the Element-

wise (Hadamard) product, o(x) = Py is the Sigmoid

. . d h eX—e™*
activation and tanh(x) =
) eX+e™*

is the hyperbolic tangent
function.

o Qutput Prediction:

The final hidden state H; at the last time step (T) (e.g.,
after 12 months) is flattened and passed to a dense layer for
binary classification (Disaster Occurrence):

¥ = o(W, - flatten(3;) + b,)

Where, W, € R»*HWM b €R and$ € [0,1] is
the predicted probability.

e Loss Function:
The model is trained to minimize binary cross-entropy
loss over (N) samples:

> [yilog@) + (1 =y log(d 3]

i=1

=

L=-—

Where y; € {0,1} is the true label

» Graph Neural Network (GNN) Model

Graph Neural Networks (GNN5s) represent a significant
advancement in deep learning, specifically tailored for
processing graph-structured data. They integrate node
features and graph topology to enhance representation
learning, making them suitable for various applications,
including social network analysis, molecular modelling, and
recommendation systems. GNNs utilize message-passing
mechanisms to iteratively update node features, allowing for
effective learning from complex relational data [24][25].

o Architectural Design:
GNNs model spatial relationships using graph
structures:

v" Two Graph Convolutional Network (GCN) layers (128
units, 64 units) for spatial feature aggregation.

v" Dropout (p = 0.3) and batch normalization.

v" Dense layer with sigmoid activation.

e Mathematical Model:

GNNs, specifically Graph Convolutional Networks
(GCNs) as used in Kipf & Welling (2017), operate on a graph
G = (V, E), where V is the set of nodes (locations) and (E) is
the set of edges (proximity relationships). Each node vi € V
has a feature vector h; ©) ¢ pF , initialized with features like
Magnitude, Total Deaths, or encoded Disaster Type from EM-
DAT. The adjacency matrix A € RV*IVIrepresents edge
connections (A= 1 if an edge exists between nodes
v;andvy, else 0).
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The GCN layer updates node features by aggregating
information from neighbours. For layer (1), the update rule is:

hi(l+1) _ 0/ 1 W(l)hj(l) + b(l)\

jeN v |d,d

Where hi(l) e RF"is the feature vector of node v; at
layer (1), N(i) is the set of neighbouring nodes of v;, d, = 1 +
Yjen(nAij is the normalized degree of node v; (including

self-loop), W® € RF“PxFY is the weight matrix for layer
(1), bW € RF™™ is the bias vector and o is the ReLU

activation (ag(x) = max(0, x).

e Matrix Form:
For all nodes, the GCN layer can be written as:

FeeD) G(D—l/ZAD—l/zg.[(f)W(l) n b(l))

Where, H® € RVIXFY s the Feature matrix for all
nodes at layer (1)., A = A + I is the Adjacency matrix with
self-loops (I) is the identity matrix) and D is the Diagonal
matrix with D,, = ijf;.

e OQOutput Prediction:

After (L) GCN layers (e.g., L=2L), the final node
embeddings H! are used for classification. For node v;, a
dense layer predicts the probability of disaster occurrence:

9, = o(W;h™ + by)

Where, W, € RIXF® by € R,and y, € [0,1]. For the
project, node-level predictions are aggregated (e.g., averaged)
to predict disaster occurrence for a region.

e Loss Function:
The model minimizes binary cross-entropy loss:

N
1
L= —N;[yi log@) + (1 — y) log(1 ~ 7]

Where (N) is the number of nodes with labels.

» Long Short-Term Memory (LSTM) Model

Long Short-Term Memory (LSTM) networks are a
specialized type of recurrent neural network (RNN) designed
to address the challenges of long-term dependencies in
sequential data. LSTMs utilize a unique architecture that
includes memory cells and gating mechanisms, allowing
them to retain information over extended periods while
mitigating issues such as gradient vanishing or explosion,
which are common in traditional RNNs [26][27].

o Architectural Design:
LSTMs model temporal sequences:
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v' Three LSTM layers (64 units) with gating mechanisms.
v" Dropout (p = 0.3).

v" Dense layer with sigmoid activation.

The parameters for each time step are calculated as
follows:

fi = J(Wf e, x ] + bf) (forget gate)
ip = oW, - [he_y,x.] + b;) (input gate)
C, = tanh(W, - [he_q,x¢] + b)) (cell candidate)
Co="f, Coy+i,-C, (cell state)
0 =W, - [he_y,xc] +by) (output gate)
h, = o, - tanh(C;) (hidden state)
Where:

o is the sigmoid function, C; is the cell state, and h; is
the hidden state/output.

» Evaluation Metrics

To rigorously assess the performance of the
ConvLSTM, GNN, and LSTM models in predicting disaster
occurrence, the following evaluation metrics were employed,
each with a specific formula to quantify different aspects of
model accuracy and reliability:

e Accuracy:
Measures the proportion of correct predictions (both
true positives and true negatives) out of all predictions.[28]

N _ TP + TN
CCUraCY = TP ¥ TN + FP + FN

Where (TP) = True Positives, (TN) = True Negatives,
(FP) = False Positives, and (FN) = False Negatives.

e Log Loss (Logarithmic Loss):

Quantifies the uncertainty of the predictions by
penalizing confident but incorrect predictions, with lower
values indicating better performance.

N
1
Log Loss = == > [ylog(p) + (1 = ylog(1 = p))]

i=1

Where (N) is the number of samples, y; is the true label
(0 or 1), and p; is the predicted probability.
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e Precision:
Measures the proportion of positive predictions that are
correct, emphasizing the minimization of false positives.[29]

TP

P .. —
reéci1sion —TP T FP

e Recall (Sensitivity):
Measures the proportion of actual positives correctly
identified, focusing on minimizing false negatives.

TP

Recall = TP+—FN

e [l-Score:
The harmonic means of precision and recall, providing
a balanced measure of a model’s performance.

Precision - Recall
F1-Score = 2 -

Precision + Recall

e AUROC (Area Under the Receiver Operating
Characteristic Curve):
Represents the model’s ability to distinguish between
positive and negative classes across various thresholds, with
higher values indicating better performance.[30]

1
AUROC = f TPR(t) - FPR'(t) dt
0

Where
TPR = TPTFN = Recall and FPR = TPETN = False Positive Rate
IVv. RESULTS AND DISCUSSIONS

This section presents the empirical findings of the study,
beginning with the exploratory data analysis (EDA) insights
derived from the EM—DATA global disaster dataset, followed
by the evaluation of the sequential deep learning models:
ConvLSTM, GNN and LSTM.

» Exploratory Data Analysis (EDA)

o Statistical Summaries and Frequency Distributions

The variables are comprised of global disaster event
records gathered from EM-DATA from 2000 to 2025,
categorized by various countries and time intervals, with 48
variables including event characteristics, socioeconomic
variables, and human impact indicators. The binary Disaster
occurrence variable was formed based on whether Total
Deaths or Total Affected were greater than zero or not. Table
1 presents the central tendency and dispersion for key
variables such as deaths, injuries, and economic impact
indicators.

Table 2 Descriptive Statistics for Selected Impact and Contextual Variables in the EM-DAT Global Disaster Dataset.

Variable Mean Std Dev Min Max
Total Deaths 126.33 3,137.21 0 222,570
No. Injured 488.70 13,954.51 0 1,800,000
IJISRT25SEP1204 WWW.ijisrt.com 2307
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No. Affected 262,515 3.92M 0 330,000,000
No. Homeless 2,002 53,229.13 0 5,000,000
Total Affected 265,006 3.93M 0 330,000,000

CPI (Index) 72.40 12.09 54.89 100

The target variable Disaster occurrence was initially
extremely imbalanced, with less than half the number of
disaster event instances than non-event instances. A Synthetic
Minority Over-Sampling Technique (SMOTE) was thus
applied to create an equally weighted 50:50 case mix between
disaster and non-disaster cases. This was done to facilitate
robust learning by the Graph Neural Network (GNN) and
prevent bias towards the majority category. Large standard
deviation in mortality and population influence variables
underlines the large dynamic range of the dataset, an
expression of the rare yet enormous magnitude of global
catastrophes. Variables such as CPI also provide
socioeconomic background that may impact vulnerability or
resilience to catastrophes. These characteristics mandated
data preprocessing, feature scaling, and predictive model
design.

o Geospatial Distribution of Disasters

The geospatial distribution of disasters, depicted in
Figure 1, illustrates spatial patterns across various disaster
types (e.g., Flood, Storm, Earthquake) with marker sizes
reflecting Total Deaths. The plot highlights high-impact
clusters, such as in South Asia and the Pacific Ring of Fire,
supporting spatial modelling for ConvLSTM and GNN. Table
2 summarizes disaster impacts for the top five countries, with
the Democratic Republic of the Congo and China showing the
highest Total Affected (186,295,002 and 1,770,988,259,
respectively), indicating severe regional vulnerability. These
patterns guide spatial feature engineering for predictive
models.

Type @ Drought

@ road @ Flood @ Extreme temperature © Fire (Miscellaneous)

Geospatial Distribution of Disasters by Type and Impact

@ \Volcanic activity @ Storm Q Wildfire

O Earthquake © Rall @ Air @ Collapse (Industrial) @ Collapse (Miscellaneous) @ Fire (Industrial) © Explosion (Miscellanec
© EcEpidemic @ water O Mass movement (wet) © Explosion (Industrial) O Chemicalspil @ Gasleak + Infestation
@ Miscellanecus accident (General) @ Poisoning @ Mass movement (dry) @ Industrial accident (General) @ Radiation Q Oil spi
« Impact Q Animalincdent @ Glacial lake outburst flood
Fig 1 Geospatial Distribution of Disasters by Type and Impact
Table 3 Disaster Impacts for Top Five Countries.
Sr. No. Country Disaster Count Total Deaths Total Affected
1 Cote d'Ivoire 2,000 54,000 7,612,880
2 Democratic Republic of the Congo 1,824 149,232 186,295,002
3 South Sudan 1,400 54,440 880,839,000
4 China 1,359 134,224 1,770,988,259
5 India 826 104,614 1,143,167,464
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o Temporal Trends and Patterns

Figure 2 shows the annual frequency of various disaster
types from 2000 to 2025, based on the Start Year attribute.
Notably, floods and storms display rising trends, possibly due
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to increasing climate variability, —while earthquake
occurrences remain relatively stable over time. These trends
underscore the importance of incorporating temporal
dynamics into predictive models.

Temporal Trends of Disaster Frequency by Type

350

300 -

250 A1

200 A1

150 A

Number of Disasters

100 A1

—e— Air

—» = Chemical spill

--=-- Collapse (Industrial)

—++- Collapse (Miscellaneous)
—+— Drought

-++= Earthquake

—u-- Epidemic

—-«-= Explosion (Industrial)
—v— Explosion (Miscellaneous)
—--=-- Extreme temperature
—®~— Fire (Industrial)

== Fire (Miscellaneous)

—=- Flood

--+-- Gas leak

—e- Infestation

—-+-- Mass movement (dry)

—e- Mass movement (wet)
--=--  Miscellaneous accident (General)
—e— Poisoning

=-+=- Rail

—e- Road

—-+=+ Storm

—e Volcanic activity
- Water

—e - Wildfire

-+ Industrial accident (General)
—e~- Radiation

~-== Oil spill

—e~- Impact

~-+=- Animal incident

—e-- Glacial lake outburst flood

Fig 2 Temporal Trends in Disaster Frequency by Type

o Frequency of Disaster Types

Figure 3 shows the frequency of disaster types, with
Floods, Roads, Storms, Epidemic, and Water as the top five
prevalent types, dominating the dataset. This distribution,

informs model design, suggesting a focus on these types for
ConvLSTM, GNN, and LSTM, with weighted loss functions
to address class imbalance and improve prediction accuracy
for less frequent events.

Flood

Road

Storm

Epidemic

Water

Air

Earthquake

Mass movement (wet)
Extreme temperature
Drought

Fire (Miscellaneous)
Explosion (Industrial)
Wildfire

Rail

Miscellaneous accident (General)
Collapse (Industrial)
Explosion (Miscellaneous)
Collapse (Miscellaneous)
Industrial accident (General)
olcanic activity

Fire (Industrial)

Poisoning

Gas leak 4

Infestation -

Chemical spill 4

Mass movement (dry) A

Oil spill 4

Glacial lake outburst flood 4
Radiation

Impact A

Animal incident

Disaster Type

Frequency of Disaster Types

T T
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T T T T
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Fig 3 Frequency of Disaster Types
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o Correlation Analysis

To examine correlation in the global disaster dataset of
EM-DAT, Pearson correlation was computed between
disaster (Magnitude, CPI), impact (Total Deaths, Total
Affected, No. Injured, No. Homeless), spatial (Latitude,
Longitude), and target variable (DisasterOccurrence). Figure
4 illustrates that the majority of the features were weakly
correlated with DisasterOccurrence (|r| < 0.1), indicating poor
linear predictability. Moderate correlations between impact
measures (Total Deaths and No. Injured, r = 0.15) reflect
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multi-output co-predictive validity. Low correlation between
Latitude and Longitude (r = 0.13) suggests possible spatial
clustering.

These results confirm the utilization of deep learning
models—ConvLSTM for spatial-temporal trends, GNN for
graph-based spatial relations, and LSTM for temporal
dynamics. Due to Pearson's linear constraints, these models
are better suited to describe the complex, non-linear nature of
disaster occurrence and impact.
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Fig 4 Pearson Correlation Matrix of Spatial, Temporal, and Impact Features

» Model Performance

The performance of the ConvLSTM, GNN, and LSTM
models was evaluated to predict disaster occurrence, aligning
with the objectives of leveraging spatial and temporal patterns
and comparing model efficacy using the EM-DAT dataset.

Metrics including Accuracy, Log Loss (%), Precision (%),
Recall (%), F1-Score (%), and AUROC were assessed to
capture the models’ ability to handle complex dynamics in
Table 4.

Table 4 Model Performance Metrics on Disaster Occurrence

Metric ConvLSTM GNN LSTM

Accuracy 0.9845 0.9444 0.9793

Log Loss (%) 0.0912 0.2809 0.0970

Precision (%) 0.9759 0.8667 0.9686

Recall (%) 0.9662 0.9123 0.9488

F1-Score (%) 0.9710 0.8889 0.9586

AUROC 0.9878 0.9340 0.9831

IJISRT25SEP1204 WwWw.ijisrt.com 2310


https://doi.org/10.38124/ijisrt/25sep1204
http://www.ijisrt.com/

Volume 10, Issue 9, September — 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep 1204
The ConvLSTM model outperformed both GNN and likely due to challenges in capturing spatial dependencies for
LSTM across all metrics, achieving an AUROC of 98.78%. less frequent disaster types.
While the LSTM exhibited strong recall (94.88%), it
struggled with precision (96.86%), indicating a slightly o ConvLSTM Results
higher false positive rate compared to ConvLSTM. The GNN Figure 5, 6 and Figure 7 below shows results for the
demonstrated balanced performance but lagged behind model accuracy and model loss, confusion matrix and
ConvLSTM in both precision (86.67%) and recall (91.23%), precision-recall plot for the ConvLSTM respectively.
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Precision-Recall Curve
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Fig 7 Precision-Recall Curve

o  Graph Neural Network (GNN) Results
Figure 8 below shows plot of model accuracy, model loss, Confusion matrix and precision-recall curve for the GNN model.
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o Long Short-Term Memory (LSTM)

Figure 9 below shows the model accuracy and model
loss for the long short term memory while Figure 10 and
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Figure 11 show the confusion matrix and precision-recall
curve respectively.
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Fig 9 Model Accuracy and Model Loss for LSTM Model.
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» Summary of Findings

The findings suggest that sequential deep learning
models can be successfully and efficiently applied to predict
whether or not a disaster occurs based on location and time
dependent patterns. The ConvLSTM model in particular
performed superiorly, likely due the ability of the integrated
convolution layers to spatially cluster the input features with
the LSTM layers being incorporated to adhere to the evolving
temporal dynamic of the dataset during training. The
exploratory data analysis results provided useful insights into
the geospatial distributions, temporal trends, and disaster type
frequencies useful in informing the model designs and feature
selection. Overall, these results highlight the potential of
employing deep learning models to support disaster risk
assessments, thereby bolstering early warning systems and
preparedness for disaster occurrences through prediction of
disaster occurrence.

This study compared three deep learning models—
LSTM, Graph Neural Network (GNN), and Convolutional
LSTM (ConvLSTM)—for predicting disaster occurrence
based on the EM-DAT dataset. Among them, the ConvLSTM
emerged as the best-performing model, achieving:

e Accuracy: 98.45%

e Recall: 96.62%

e AUROC: 0.9878 It also had the highest precision
(97.59%) and F1-Score (97.10%), making it effective at
minimizing both false negatives and false positives—
crucial for reliable disaster prediction.

IJISRT25SEP1204

The GNN showed competitive performance with:

e Accuracy: 94.44%
e AUROC: 0.9340 Its graph-based architecture captured
regional interactions effectively, offering a good trade-

off for spatially dependent disasters, though it lagged in
precision (86.67%).

The LSTM, while commonly used for time-series tasks,
performed the lowest:

e Accuracy: 97.93%
Recall: 94.88%
AUROC: 0.9831

e Reason for the ConvLSTM's Superiority

The ConvLSTM has the unique ability to combine
convolution and recurrent layers to complement both the
long-term spatial dependency (e.g., clustering around the
Pacific Ring of Fire) and long-term temporal change (e.g.,
increasing frequency of flooding), while being unconstrained
temporally, due to its hybrid architecture, which allowed for
the proposal to outperform both the GNN and LSTM models
when modeling the irregular patterns that occur to bring about
a disaster. The ConvLSTM performance shows promise for a
real-time early warning system for predicting disaster,
alerting officials up to before 24-48 hours before disaster
onset. When paired with explainability tools, such as SHAP,
the model would provide transparency in understanding the
risk factors, thus increasing trust and security in how
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decisions and intakes would occur within disaster relief
management.

e Limitations

e C(Class Imbalance: The most common disasters recorded in
our dataset (e.g., Flood, Storm) would make up for the
majority (~TBD%) compared to rare disasters (e.g.,
Epidemic) where prediction is difficult.

e Missing Data: Features including No. Injured had over
90% missingness, a large missingness could have
contributed to decreased ability to predict accurately.

e Generalisability: All data used in this study were globally
historical data, with no studies continued to validate this
process in other parts of the world.

V. CONCLUSION

This study demonstrates that deep learning models,
particularly ConvLSTM, can predict disaster occurrence 24—
48 hours ahead using multivariate spatial-temporal data. The
ConvLSTM surpassed the tested models by a wide margin
with the best AUROC (0.9878), accuracy (98.45%), and F1-
Score (97.10%). Its ability to capture complex spatial and
temporal dependencies makes it a strong contender for real-
time disaster early warning systems. The findings imply that
the use of ConvLSTM-based models could facilitate early
disaster readiness, lessening societal effect and death.
Through incorporation into worldwide monitoring
frameworks, these models could generate actionable
warnings to decision-makers.
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