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Abstract: Natural disasters, such as floods, earthquakes, and storms, cause significant human and economic losses 

worldwide, necessitating accurate early prediction to enhance preparedness. This study leverages spatial (location-based) 

and temporal (time-based) patterns in the EM-DAT global disaster dataset, containing over 22,071 records with variables 

like disaster type, location, magnitude, and impacts, to predict disaster occurrence and severity. Three deep learning models 

Convolutional Long Short-Term Memory (ConvLSTM), Graph Neural Network (GNN), and Long Short-Term Memory 

(LSTM) were developed to capture spatial-temporal dynamics. The dataset was pre-processed to handle missing values, 

normalize features, and construct spatial graphs and temporal sequences. Exploratory data analysis (EDA) revealed 

patterns in disaster frequency, geographic hotspots, and temporal trends. On a held-out test set, the ConvLSTM model 

achieved the highest performance, with an AUROC of 98.78%, accuracy of 98.45%, Recall of 96.62%, Precision of 97.59% 

log loss of 0.0912 and F1-score of 97.10%, followed by LSTM and GNN. Visualizations, including spatial heatmaps, temporal 

prediction curves, confusion matrix and geospatial plots, enhance interpretability. These findings underscore the potential 

of specialized spatial and temporal models for disaster forecasting, supporting proactive mitigation strategies. 
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I. INTRODUCTION 

 

Natural disasters, including floods, earthquakes, storms, 
and droughts, have catastrophic impacts on human life, 

infrastructure, and economies, with these impacts hastened by 

climate change and urbanization [1]. The EM-DAT global 

disaster database provides a comprehensive basis for 

prediction, capturing spatial data (e.g., Latitude, Longitude, 

Country) and temporal data (e.g., Start Year/Month) 

alongside impact metrics like Total Deaths and Total Damage. 

Forecasting the occurrence and size of disasters 6–12 months 

ahead enables forward decision-making like resource 

mobilization and evacuation planning [2]. Traditional 

predictive models often focus on the spatial pattern (e.g., 

flood risk maps) or temporal trend (e.g., storm seasonal 
cycles), yet have minimal ability to integrate both 

dimensions. For example, floods cluster in river basins during 

monsoons, requiring models to capture geographic and 

temporal interactions [3]. Deep learning models such as 

ConvLSTM, GNN, and LSTM offer promising solutions by 

mimicking complex spatial-temporal dependencies, but their 

comparative performance on global disaster datasets has been 

largely untested. 

 

Classic disaster prediction methods, such as statistical 

models (e.g., ARIMA) and rule-based systems (e.g., flood 

warning stages), rely on predetermined criteria and are 
overwhelmed by high-dimensional heterogeneous data. 

These models assume linearity and stationarity and are unable 

to capture non-linear spatial-temporal patterns [4]. Random 

forest-based machine learning methods improve accuracy but 

require extensive feature engineering and easily neglect 

spatial dependencies or long-term temporal trends [5]. Class 

imbalance and missing values in disaster data sets also 

challenge traditional models, requiring advanced approaches 

[6]. Accurate forecasting of disaster occurrence and impact is 

hindered by the complex interplay of spatial (e.g., geographic 

connectedness) and temporal (e.g., seasonality) dynamics, 

missing data, and disaster types. Models are required that can 
predict disaster occurrences and impacts (e.g., Total Deaths, 

economic loss) 6–12 months in advance; Utilize spatial and 

temporal patterns in the EM-DAT global disaster database; 

Handle missing values and noise effectively and provide 

interpretable insights for disaster management policymakers. 

 

To develop and compare the performance of 

ConvLSTM, GNN, and LSTM models in predicting disaster 

occurrence and impact using spatial and temporal patterns in 
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the EM-DAT global disaster database. Develop models for 

prediction of disaster events and impacts (e.g., Total Deaths, 

Total Damage) 6–12 months ahead, assessing them for trend 

forecasting accuracy. Use the models to predict specific 

disaster types (e.g., floods, earthquakes) in a 6–12-month 

window, assessing performance using AUROC, accuracy, and 

F1-score. Systematically compare ConvLSTM, GNN, and 

LSTM in modelling disaster data spatial and temporal 
patterns. 

 

II. LITERATURE REVIEW 

 

Disaster prediction aims to mitigate the impacts of 

natural disasters, which cause millions of deaths and billions 

of dollars in losses annually. Traditional methods include 

statistical models like ARIMA for time-series forecasting and 

hazard-specific indices, i.e., the Palmer Drought Severity 

Index (PDSI) for drought or the Saffir-Simpson scale for 

hurricane. Such models predict disaster likelihood from 
environmental metrics (e.g., precipitation, seismicity) but 

assume linearity and stationarity and cannot capture complex 

spatial-temporal dependencies [7]. For example, ARIMA is 

insufficient to model flood propagation between areas or 

seasonal patterns of storms. Rule-based approaches, e.g., 

flood warning levels, are founded on local data and fixed 

thresholds and are hence not readily generalizable across 

disaster types and geographies. These kinds of approaches are 

confounded by high-dimensional data like EM-DAT that has 

spatial, temporal, and impact variables. Missing data, 

prevalent in worldwide disaster archives, complicate 

modelling because simple imputation methods create biases 
[6]. 

 

Machine learning (ML) algorithms, such as decision 

trees, random forests, and support vector machines (SVMs), 

have improved predictive capability. Mosavi etal [8] used 

random forests to predict flood risk due to precipitation and 

topography. ML models, nonetheless, require large-scale 

feature engineering and do not capture spatial dependencies 

(e.g., disaster impacts between areas) and long-term temporal 

patterns (e.g., seasonal cycles) well. Class imbalance, when 

disaster events are rare, also reduces model sensitivity [9]. 
 

Deep learning enables automatic feature learning from 

complex datasets, simulating non-linear relationships and 

sequential dependencies. This study contrasts three models: 

ConvLSTM, GNN, and LSTM for disaster prediction, 

leveraging their individual spatial and temporal capabilities. 

ConvLSTM, proposed by Shi etal [10], adds convolutional 

layers to LSTM units, enabling simultaneous modelling of 

spatial and temporal patterns. In contrast to standard LSTMs, 

ConvLSTM accepts grid-based inputs, making it a good fit 

for tasks like precipitation nowcasting or flood prediction. 

They demonstrated the use of ConvLSTM in predicting 
rainfall from radar data, maintaining spatial correlations. In 

disaster prediction, ConvLSTM has been used to simulate 

flood dynamics in river basins from spatial features (e.g., 

terrain) and time series input (e.g., rainfall) [11]. ConvLSTM 

is strong in hierarchical feature learning and temporal 

modelling. It, nevertheless, assumes a regular grid structure, 

which may not capture irregular spatial dependencies (e.g., 

non-adjacent regions affected by a hurricane). ConvLSTM is 

furthermore computationally intensive and hyperparameter-

dependent, which makes it less scalable for large datasets like 

EM-DAT [12]. 

 

GNNs encode relational data by representing entities 

(e.g., locations) as nodes and relationships (e.g., proximity) 

as edges. They excel at capturing spatial dependencies, such 
as earthquake aftershock patterns or flood cascades [13]. 

DeVries et al. [13] forecast aftershock locations with GNNs 

by modelling seismic zones as a fault line-based graph. GNNs 

transmit information from neighbouring nodes via message-

passing, learning complex spatial patterns without grid 

assumptions. 

 

For disaster prediction, GNNs can model geographic 

relationships in the EM-DAT dataset (e.g., water flow-

connected river basins) with Latitude, Longitude, and 

Magnitude. Current work has applied GNNs to the prediction 
of wildfire propagation, with geographic and climatic features 

[14]. However, GNNs specialize in spatial modelling but are 

poor at temporal dynamics, e.g., seasonality trends, and must 

be combined with temporal models [15]. It is also challenging 

to learn good graph structures for sparse data. 

 

LSTMs, introduced by Hochreiter and Schmidhuber 

[16], are RNNs that capture long-term dependencies in time-

series data. Their gating functions (forget, input, output) 

avoid vanishing gradients and thus are suitable for time-series 

forecasting. In disaster prediction, LSTMs have forecasted 

rainfall for floods or temperature trends for droughts [17]. Le 
et al. [17] used LSTMs to forecast the occurrence of floods 

based on precipitation and river flow time series. LSTMs are 

ideally suited to capture temporal patterns within EM-DAT, 

i.e., seasonal storm patterns or drought spells. They take in 

data as one-dimensional sequences, lacking spatial context 

(i.e., geographical disaster spread), however. LSTMs are 

hyperparameter-sensitive and will also overfit imbalanced 

datasets [18]. 

 

ConvLSTM integrates spatial-temporal modelling, 

while GNNs and LSTMs are spatial and temporal specialists, 
respectively. This division of labour allows for an exhaustive 

evaluation of their strengths. Other models, including 

Transformers, have been used for time-series forecasting of 

hurricane impacts [19], and CNNs have detected floods from 

satellite imagery [20]. However, specialization in either 

temporal or spatial concerns compromises their adaptability 

compared to ConvLSTM’s hybrid approach or the 

complementary GNN-LSTM pair. 

 

III. MATERIALS AND METHODS 

 

 Dataset Description 
Preprocessing The EM-DAT dataset global disaster 

dataset contains, maintained by the Centre for Research on 

the Epidemiology of Disasters (CRED), contains over 22,071 

records from 2000 to 2025, covering natural and 

technological disasters. Key variables include: 
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 Spatial: Latitude, range, Longitude, range, Country, 

Subregion, Region, Location. 

 Temporal: Start Year, start day, End Year, Date. 

 Disaster Characteristics: Disaster Type (e.g., Flood, 

Earthquake), Disaster Subtype, Magnitude, Magnitude 

Scale. 

 Impact Metrics: Total Deaths, No. Injured, No. Affected, 
No. Homeless, Total Affected, CPI. 

 Metadata: DisNo., Historic, Classification Key, ISO, 

OFDA/BHA Response, Appeal, Declaration, Entry Date, 

Last Update, Year. 

 

The target is a binary DisasterOccurrence (1 = disaster, 

0 = no disaster) per time step and region, derived from Total 

Deaths or Total Affected > 0. 

 
Disaster Occurrence𝑡,𝑟 = 𝐼(TotalDeaths𝑡,𝑟 > 0  ∨  TotalAffected𝑡,𝑟 > 0) 

 

Table 1 Key Variables in EM-DAT Dataset 

Variable Description Type Non-Null Count 

Latitude North-South coordinates Numeric [-72.64, 67.93] 22,071 

Longitude East-West coordinates Numeric [-177.16, 179.65] 22,071 

Disaster Type Type of disaster (e.g., Flood, Earthquake) Categorical 22,071 

Magnitude Disaster intensity Numeric [0, 4e7] 13,317 

Total Deaths Total fatalities Numeric [0, 222,570] 22,071 

Total Affected Total impacted individuals Numeric [0, 3.3e8] 22,071 

Start Year Year of disaster onset Numeric [2000, 2025] 22,071 

Start day Day of disaster onset Numeric [1, 31] 22,071 

CPI Consumer Price Index Numeric [54.90, 100] 21,734 

 

 Missing Data Handling 

 

 Nature of Missingness 

The entire disaster dataset, which was consolidated from 

EM-DAT and supplemented with geographic centroids, 

exhibits heterogeneous missingness patterns. The 

missingness gaps traverse structural metadata (e.g., 
administrative boundaries), financial estimates (e.g., insured 

or overall losses), and geolocation attributes (latitude and 

longitude). Specifically, financial attributes such as Insured 

Damage, Reconstruction Costs, and AID Contributions 

exhibited extensive sparsity, with some of fields missing in 

over 90% of records. This reflects reporting gaps across 

countries and disaster types, especially in poorer countries 

where estimates of economic loss are unavailable or not 

systematically recorded. 

 

Similarly, a few records lacked coordinates, either due 
to unregistered or ambiguous country names or missing 

geolocation metadata. These gaps were an obstacle for 

spatiotemporal modelling and needed deliberate correction 

processes. 

 

 ConvLSTM Model 

Convolutional Long Short-Term Memory 

(ConvLSTM), introduced by Shi et al. [10], is a specialized 

neural network architecture that integrates convolutional 

layers with LSTM units, designed to handle spatio-temporal 

data effectively. This architecture is particularly beneficial for 

tasks that involve sequential data with spatial dependencies, 
such as video analysis and weather forecasting. ConvLSTM 

captures both spatial and temporal features by processing data 

in a sequence of frames, making it suitable for various 

applications, including predicting oil and gas saturations in 

fields like SACROC [22] and modelling dynamics in fluid 

systems [23]. 

 

 

 Architectural Design: 

ConvLSTM integrates convolutional and recurrent 

layers. Our model includes: 

 

 Three ConvLSTM layers (64 filters, 3x3 kernel) 

processing grid-based data (12-month spatial-temporal 

grids). 
 Dropout (p = 0.3) for regularization. 

 Dense layer with sigmoid activation. 

 

 Mathematical Model: 

 

 Input Gate: Determines which information to store 

 

ℐ𝓉 = 𝜎(𝑊𝑥𝑖 ∗ 𝒳𝓉 +𝑊ℎ𝑖 ∗ ℋ𝓉−1 +𝑊𝑐𝑖⊙𝒞𝓉−1 + 𝑏𝑖) 
 

 Forget Gate: Determine which information to discard 
from the cell state 

 

ℱ𝓉 = 𝜎(𝑊𝑥𝑓 ∗ 𝒳𝓉 +𝑊ℎ𝑓 ∗ℋ𝓉−1 +𝑊𝑐𝑓⊙𝒞𝓉−1 + 𝑏𝑓) 

 

 Cell State Update: Combines retained and new 
information. 

 
𝒞𝓉 = ℱ𝓉⊙𝒞𝓉−1 + ℐ𝓉⊙ tanh(𝑊𝑥𝑐 ∗𝒳𝓉 +𝑊ℎ𝑐 ∗ ℋ𝓉−1 + 𝑏𝑐) 

 

 Output Gate: Controls the output based on the updated cell 

state. 
 

𝒪𝓉 = 𝜎(𝑊𝑥𝑜 ∗ 𝒳𝓉 +𝑊ℎ𝑜 ∗ ℋ𝓉−1 +𝑊𝑐𝑜⊙𝒞𝓉 + 𝑏𝑜) 
 

 Hidden State: Produces the output for the current time 

step. 

 

ℋ𝓉 = 𝒪𝓉⊙ tanh(𝒞𝓉) 
 

Where 𝒳𝓉 ∈ 𝑅
𝐻×𝑊×𝐶, is the input at time (t), 

ℋ𝓉 ,ℋ𝓉−1 ∈ 𝑅
𝐻×𝑊×𝑀is the hidden states at time (t) and t-1, 
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with M as the number of hidden units, 𝒞𝓉 , 𝒞𝓉−1 ∈ 𝑅
𝐻×𝑊×𝑀 is 

the cell states, ℐ𝓉 , ℱ𝓉 , 𝒪𝓉 ∈ 𝑅
𝐻×𝑊×𝑀 is the input, forget and 

output gates, 𝑊𝑥𝑖 ,𝑊ℎ𝑖 , … ∈ 𝑅
𝐾×𝐾×𝐶×𝑀 is the  Convolutional 

kernels (e.g., 3x3 kernels, K=3K=3K=3), 𝑏𝑖 , 𝑏𝑓 , 𝑏𝑐 , 𝑏𝑜 ∈ 𝑅
𝑀 

is the Biases, * is Convolution operation, ⊙ is the Element-

wise (Hadamard) product, σ(𝑥) =
1

1+𝑒−𝑥
 is the Sigmoid 

activation and tanh(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
 is the hyperbolic tangent 

function. 

 

 Output Prediction: 

The final hidden state 𝐻𝑇 at the last time step (T) (e.g., 
after 12 months) is flattened and passed to a dense layer for 

binary classification (Disaster Occurrence): 

 

𝑦̂ = σ(𝑊𝑑 ⋅ flatten(ℋ𝒯) + 𝑏𝑑) 
 

Where, 𝑊𝑑 ∈ 𝑅
𝟙×(𝐻⋅𝑊⋅𝑀), 𝑏𝑑 ∈ 𝑅, 𝑎𝑛𝑑 𝑦̂ ∈ [0,1] is 

the predicted probability. 

 

 Loss Function: 

The model is trained to minimize binary cross-entropy 

loss over (N) samples: 

 

ℒ = −
1

𝑁
∑[𝑦𝑖 log(𝑦𝑖̂) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖̂)]

𝑁

𝑖=1

 

 

Where 𝑦𝑖 ∈ {0,1} is the true label 
 

 Graph Neural Network (GNN) Model 

Graph Neural Networks (GNNs) represent a significant 

advancement in deep learning, specifically tailored for 

processing graph-structured data. They integrate node 

features and graph topology to enhance representation 

learning, making them suitable for various applications, 

including social network analysis, molecular modelling, and 

recommendation systems. GNNs utilize message-passing 

mechanisms to iteratively update node features, allowing for 

effective learning from complex relational data [24][25]. 

 

 Architectural Design: 

GNNs model spatial relationships using graph 

structures: 

 

 Two Graph Convolutional Network (GCN) layers (128 

units, 64 units) for spatial feature aggregation. 

 Dropout (p = 0.3) and batch normalization. 

 Dense layer with sigmoid activation. 

 

 Mathematical Model: 

GNNs, specifically Graph Convolutional Networks 
(GCNs) as used in Kipf & Welling (2017), operate on a graph 

G = (V, E), where V is the set of nodes (locations) and (E) is 

the set of edges (proximity relationships). Each node vi ∈ V 

has a feature vector ℎ𝑖
(0)

 ∈ 𝑅𝐹, initialized with features like 

Magnitude, Total Deaths, or encoded Disaster Type from EM-

DAT. The adjacency matrix 𝐴 ∈ 𝑅|𝑉|×|𝑉|represents edge 

connections (𝐴(𝑖𝑗)= 1 if an edge exists between nodes 

𝑣𝑖𝑎𝑛𝑑𝑣𝑗, else 0). 

The GCN layer updates node features by aggregating 

information from neighbours. For layer (l), the update rule is: 

 

ℎ𝑖
(𝑙+1) = σ

(

 ∑
1

√𝑑𝑖𝑑𝑗̃
̃𝑗∈𝒩(𝑖)∪{𝑖}

𝑊(𝑙)ℎ𝑗
(𝑙) + 𝑏(𝑙)

)

  

 

Where ℎ𝑖
(𝑙) ∈ 𝑅𝐹

(𝑙)
is the feature vector of node 𝑣𝑖 at 

layer (1), N(i) is the set of neighbouring nodes of 𝑣𝑖, 𝑑𝑖̃ = 1+
∑ 𝐴𝑖𝑗𝑗∈𝒩(𝑖)  is the normalized degree of node 𝑣𝑖 (including 

self-loop), 𝑊(𝑙) ∈ 𝑅𝐹
(𝑙+𝟙)×𝐹(𝑙)  is the weight matrix for layer 

(1), 𝑏(𝑙) ∈ 𝑅𝐹
(𝑙+𝟙)

 is the bias vector and 𝜎 is the ReLU 

activation (𝜎(𝑥)  =  𝑚𝑎𝑥(0, 𝑥). 
 

 Matrix Form: 

For all nodes, the GCN layer can be written as: 

 

ℋ(ℓ+1) = σ(𝐷−1/2𝐴̃̃ 𝐷−1/2ℋ(ℓ)̃ 𝑊(𝑙) + 𝑏(𝑙)) 

 

Where, ℋ(ℓ) ∈ 𝑅|𝕍|×𝐹
(𝑙)

 is the Feature matrix for all 

nodes at layer (l)., 𝐴̃ = 𝐴 + 𝐼 is the Adjacency matrix with 

self-loops (I) is the identity matrix) and 𝐷̃ is the Diagonal 

matrix with  𝐷𝑖𝑖̃ = ∑ 𝐴𝑖𝑗̃𝑗 . 

 

 Output Prediction: 

After (L) GCN layers (e.g., L=2L), the final node 

embeddings 𝐻𝐿 are used for classification. For node 𝑣𝑖, a 

dense layer predicts the probability of disaster occurrence: 

 

𝑦𝑖̂ = σ(𝑊𝑑ℎ𝑖
(𝐿)
+ 𝑏𝑑) 

 

Where, 𝑊𝑑 ∈ 𝑅
𝟙×𝐹(𝐿) , 𝑏𝑑 ∈ 𝑅, and 𝑦𝑖̂ ∈ [0,1]. For the 

project, node-level predictions are aggregated (e.g., averaged) 

to predict disaster occurrence for a region. 

 

 Loss Function: 

The model minimizes binary cross-entropy loss: 

 

ℒ = −
1

𝑁
∑[𝑦𝑖 log(𝑦𝑖̂) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖̂)]

𝑁

𝑖=1

 

 

Where (N) is the number of nodes with labels. 
 

 Long Short-Term Memory (LSTM) Model 

Long Short-Term Memory (LSTM) networks are a 

specialized type of recurrent neural network (RNN) designed 

to address the challenges of long-term dependencies in 

sequential data. LSTMs utilize a unique architecture that 

includes memory cells and gating mechanisms, allowing 

them to retain information over extended periods while 

mitigating issues such as gradient vanishing or explosion, 

which are common in traditional RNNs [26][27]. 

 

 Architectural Design: 

LSTMs model temporal sequences: 
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 Three LSTM layers (64 units) with gating mechanisms. 

 Dropout (p = 0.3). 

 Dense layer with sigmoid activation. 

 

The parameters for each time step are calculated as 

follows: 

 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (forget gate) 

 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (input gate) 
 

𝐶𝑡̃ = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)  (cell candidate) 
 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ 𝐶𝑡̃  (cell state) 

 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (output gate) 
 

ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝐶𝑡)  (hidden state) 
 

Where: 

 

𝜎 is the sigmoid function, 𝐶𝑡 is the cell state, and ℎ𝑡 is 
the hidden state/output. 

 

 Evaluation Metrics 
To rigorously assess the performance of the 

ConvLSTM, GNN, and LSTM models in predicting disaster 

occurrence, the following evaluation metrics were employed, 

each with a specific formula to quantify different aspects of 

model accuracy and reliability: 

 

 Accuracy:  

Measures the proportion of correct predictions (both 

true positives and true negatives) out of all predictions.[28] 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Where (TP) = True Positives, (TN) = True Negatives, 

(FP) = False Positives, and (FN) = False Negatives. 

 

 Log Loss (Logarithmic Loss):  

Quantifies the uncertainty of the predictions by 
penalizing confident but incorrect predictions, with lower 

values indicating better performance. 

 

Log Loss = −
1

𝑁
∑[𝑦𝑖lo g(𝑝𝑖) + (1 − 𝑦𝑖)lo g(1 − 𝑝𝑖)]

𝑁

𝑖=1

 

 

Where (N) is the number of samples, 𝒚𝒊 is the true label 

(0 or 1), and 𝒑𝒊 is the predicted probability. 

 

 
 

 Precision:  

Measures the proportion of positive predictions that are 

correct, emphasizing the minimization of false positives.[29] 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

 Recall (Sensitivity):  

Measures the proportion of actual positives correctly 

identified, focusing on minimizing false negatives. 

 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

 F1-Score:  

The harmonic means of precision and recall, providing 

a balanced measure of a model’s performance. 

 

F1-Score = 2 ⋅
Precision ⋅ Recall

Precision+ Recall
 

 

 AUROC (Area Under the Receiver Operating 

Characteristic Curve):  

Represents the model’s ability to distinguish between 

positive and negative classes across various thresholds, with 

higher values indicating better performance.[30] 

 

AUROC = ∫ TPR(𝑡)
1

0

⋅ FPR′(𝑡) 𝑑𝑡 

 

Where 

 

TPR =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 = Recall 𝑎𝑛𝑑 FPR =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 =  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 

 

IV. RESULTS AND DISCUSSIONS 

 

This section presents the empirical findings of the study, 

beginning with the exploratory data analysis (EDA) insights 

derived from the EM–DATA global disaster dataset, followed 

by the evaluation of the sequential deep learning models: 

ConvLSTM, GNN and LSTM. 
 

 Exploratory Data Analysis (EDA) 

 

 Statistical Summaries and Frequency Distributions 

The variables are comprised of global disaster event 

records gathered from EM-DATA from 2000 to 2025, 

categorized by various countries and time intervals, with 48 

variables including event characteristics, socioeconomic 

variables, and human impact indicators. The binary Disaster 

occurrence variable was formed based on whether Total 

Deaths or Total Affected were greater than zero or not. Table 
1 presents the central tendency and dispersion for key 

variables such as deaths, injuries, and economic impact 

indicators. 

 

Table 2 Descriptive Statistics for Selected Impact and Contextual Variables in the EM-DAT Global Disaster Dataset. 

Variable Mean Std Dev Min Max 

Total Deaths 126.33 3,137.21 0 222,570 

No. Injured 488.70 13,954.51 0 1,800,000 
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No. Affected 262,515 3.92M 0 330,000,000 

No. Homeless 2,002 53,229.13 0 5,000,000 

Total Affected 265,006 3.93M 0 330,000,000 

CPI (Index) 72.40 12.09 54.89 100 

 

The target variable Disaster occurrence was initially 

extremely imbalanced, with less than half the number of 

disaster event instances than non-event instances. A Synthetic 

Minority Over-Sampling Technique (SMOTE) was thus 

applied to create an equally weighted 50:50 case mix between 

disaster and non-disaster cases. This was done to facilitate 

robust learning by the Graph Neural Network (GNN) and 

prevent bias towards the majority category. Large standard 
deviation in mortality and population influence variables 

underlines the large dynamic range of the dataset, an 

expression of the rare yet enormous magnitude of global 

catastrophes. Variables such as CPI also provide 

socioeconomic background that may impact vulnerability or 

resilience to catastrophes. These characteristics mandated 

data preprocessing, feature scaling, and predictive model 

design. 

 Geospatial Distribution of Disasters 

The geospatial distribution of disasters, depicted in 

Figure 1, illustrates spatial patterns across various disaster 

types (e.g., Flood, Storm, Earthquake) with marker sizes 

reflecting Total Deaths. The plot highlights high-impact 

clusters, such as in South Asia and the Pacific Ring of Fire, 

supporting spatial modelling for ConvLSTM and GNN. Table 

2 summarizes disaster impacts for the top five countries, with 
the Democratic Republic of the Congo and China showing the 

highest Total Affected (186,295,002 and 1,770,988,259, 

respectively), indicating severe regional vulnerability. These 

patterns guide spatial feature engineering for predictive 

models. 

 

 
Fig 1 Geospatial Distribution of Disasters by Type and Impact 

 

Table 3 Disaster Impacts for Top Five Countries. 

Sr. No. Country Disaster Count Total Deaths Total Affected 

1 Côte d'Ivoire 2,000 54,000 7,612,880 

2 Democratic Republic of the Congo 1,824 149,232 186,295,002 

3 South Sudan 1,400 54,440 880,839,000 

4 China 1,359 134,224 1,770,988,259 

5 India 826 104,614 1,143,167,464 
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 Temporal Trends and Patterns 

Figure 2 shows the annual frequency of various disaster 

types from 2000 to 2025, based on the Start Year attribute. 

Notably, floods and storms display rising trends, possibly due 

to increasing climate variability, while earthquake 

occurrences remain relatively stable over time. These trends 

underscore the importance of incorporating temporal 

dynamics into predictive models. 

 

 
Fig 2 Temporal Trends in Disaster Frequency by Type 

 

 Frequency of Disaster Types 

Figure 3 shows the frequency of disaster types, with 

Floods, Roads, Storms, Epidemic, and Water as the top five 

prevalent types, dominating the dataset. This distribution, 

informs model design, suggesting a focus on these types for 

ConvLSTM, GNN, and LSTM, with weighted loss functions 

to address class imbalance and improve prediction accuracy 

for less frequent events. 

 

 
Fig 3 Frequency of Disaster Types 
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 Correlation Analysis 

To examine correlation in the global disaster dataset of 

EM-DAT, Pearson correlation was computed between 

disaster (Magnitude, CPI), impact (Total Deaths, Total 

Affected, No. Injured, No. Homeless), spatial (Latitude, 

Longitude), and target variable (DisasterOccurrence). Figure 

4 illustrates that the majority of the features were weakly 

correlated with DisasterOccurrence (|r| < 0.1), indicating poor 
linear predictability. Moderate correlations between impact 

measures (Total Deaths and No. Injured, r = 0.15) reflect 

multi-output co-predictive validity. Low correlation between 

Latitude and Longitude (r = 0.13) suggests possible spatial 

clustering. 

 

These results confirm the utilization of deep learning 

models—ConvLSTM for spatial-temporal trends, GNN for 

graph-based spatial relations, and LSTM for temporal 

dynamics. Due to Pearson's linear constraints, these models 
are better suited to describe the complex, non-linear nature of 

disaster occurrence and impact. 

 

 
Fig 4 Pearson Correlation Matrix of Spatial, Temporal, and Impact Features 

 

 Model Performance 

The performance of the ConvLSTM, GNN, and LSTM 

models was evaluated to predict disaster occurrence, aligning 
with the objectives of leveraging spatial and temporal patterns 

and comparing model efficacy using the EM-DAT dataset. 

Metrics including Accuracy, Log Loss (%), Precision (%), 

Recall (%), F1-Score (%), and AUROC were assessed to 

capture the models’ ability to handle complex dynamics in 
Table 4. 

 

Table 4 Model Performance Metrics on Disaster Occurrence 

Metric ConvLSTM GNN LSTM 

Accuracy 0.9845 0.9444 0.9793 

Log Loss (%) 0.0912 0.2809 0.0970 

Precision (%) 0.9759 0.8667 0.9686 

Recall (%) 0.9662 0.9123 0.9488 

F1-Score (%) 0.9710 0.8889 0.9586 

AUROC 0.9878 0.9340 0.9831 
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The ConvLSTM model outperformed both GNN and 

LSTM across all metrics, achieving an AUROC of 98.78%. 

While the LSTM exhibited strong recall (94.88%), it 

struggled with precision (96.86%), indicating a slightly 

higher false positive rate compared to ConvLSTM. The GNN 

demonstrated balanced performance but lagged behind 

ConvLSTM in both precision (86.67%) and recall (91.23%), 

likely due to challenges in capturing spatial dependencies for 

less frequent disaster types. 

 

 ConvLSTM Results 

Figure 5, 6 and Figure 7 below shows results for the 

model accuracy and model loss, confusion matrix and 

precision-recall plot for the ConvLSTM respectively. 

 

 
Fig 5 Model Accuracy and Loss Plot 

 

 
Fig 6 Confusion Matrix 

https://doi.org/10.38124/ijisrt/25sep1204
http://www.ijisrt.com/


Volume 10, Issue 9, September – 2025                                International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                                 https://doi.org/10.38124/ijisrt/25sep1204 

 

 

IJISRT25SEP1204                                                                www.ijisrt.com                                                                                           2312  

 
Fig 7 Precision-Recall Curve 

 

 Graph Neural Network (GNN) Results 

Figure 8 below shows plot of model accuracy, model loss, Confusion matrix and precision-recall curve for the GNN model. 

 

 
Fig 8 Evaluation Plots for GNN Model 
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 Long Short-Term Memory (LSTM) 

Figure 9 below shows the model accuracy and model 

loss for the long short term memory while Figure 10 and 

Figure 11 show the confusion matrix and precision-recall 

curve respectively. 

 

 
Fig 9 Model Accuracy and Model Loss for LSTM Model. 

 

 
Fig 10 Confusion Matrix 
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Fig 11 Precision-Recall Curve 

 

 Summary of Findings 

The findings suggest that sequential deep learning 

models can be successfully and efficiently applied to predict 

whether or not a disaster occurs based on location and time 

dependent patterns. The ConvLSTM model in particular 

performed superiorly, likely due the ability of the integrated 
convolution layers to spatially cluster the input features with 

the LSTM layers being incorporated to adhere to the evolving 

temporal dynamic of the dataset during training. The 

exploratory data analysis results provided useful insights into 

the geospatial distributions, temporal trends, and disaster type 

frequencies useful in informing the model designs and feature 

selection. Overall, these results highlight the potential of 

employing deep learning models to support disaster risk 

assessments, thereby bolstering early warning systems and 

preparedness for disaster occurrences through prediction of 

disaster occurrence. 
 

This study compared three deep learning models—

LSTM, Graph Neural Network (GNN), and Convolutional 

LSTM (ConvLSTM)—for predicting disaster occurrence 

based on the EM-DAT dataset. Among them, the ConvLSTM 

emerged as the best-performing model, achieving: 

 

 Accuracy: 98.45% 

 Recall: 96.62% 

 AUROC: 0.9878 It also had the highest precision 

(97.59%) and F1-Score (97.10%), making it effective at 
minimizing both false negatives and false positives—

crucial for reliable disaster prediction. 

 

The GNN showed competitive performance with: 

 

 Accuracy: 94.44% 

 AUROC: 0.9340 Its graph-based architecture captured 

regional interactions effectively, offering a good trade-

off for spatially dependent disasters, though it lagged in 
precision (86.67%). 

 

The LSTM, while commonly used for time-series tasks, 

performed the lowest: 

 

 Accuracy: 97.93% 

 Recall: 94.88% 

 AUROC: 0.9831 

 

 Reason for the ConvLSTM's Superiority 

The ConvLSTM has the unique ability to combine 
convolution and recurrent layers to complement both the 

long-term spatial dependency (e.g., clustering around the 

Pacific Ring of Fire) and long-term temporal change (e.g., 

increasing frequency of flooding), while being unconstrained 

temporally, due to its hybrid architecture, which allowed for 

the proposal to outperform both the GNN and LSTM models 

when modeling the irregular patterns that occur to bring about 

a disaster. The ConvLSTM performance shows promise for a 

real-time early warning system for predicting disaster, 

alerting officials up to before 24–48 hours before disaster 

onset. When paired with explainability tools, such as SHAP, 
the model would provide transparency in understanding the 

risk factors, thus increasing trust and security in how 
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decisions and intakes would occur within disaster relief 

management. 

 

 Limitations 

 

 Class Imbalance: The most common disasters recorded in 

our dataset (e.g., Flood, Storm) would make up for the 

majority (~TBD%) compared to rare disasters (e.g., 
Epidemic) where prediction is difficult. 

 Missing Data: Features including No. Injured had over 

90% missingness, a large missingness could have 

contributed to decreased ability to predict accurately. 

 Generalisability: All data used in this study were globally 

historical data, with no studies continued to validate this 

process in other parts of the world. 

 

V. CONCLUSION 

 

This study demonstrates that deep learning models, 
particularly ConvLSTM, can predict disaster occurrence 24–

48 hours ahead using multivariate spatial-temporal data. The 

ConvLSTM surpassed the tested models by a wide margin 

with the best AUROC (0.9878), accuracy (98.45%), and F1-

Score (97.10%). Its ability to capture complex spatial and 

temporal dependencies makes it a strong contender for real-

time disaster early warning systems. The findings imply that 

the use of ConvLSTM-based models could facilitate early 

disaster readiness, lessening societal effect and death. 

Through incorporation into worldwide monitoring 

frameworks, these models could generate actionable 
warnings to decision-makers. 
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