A Study on the Deteriorating Air Quality due to

https://doi.org/10.38124/ijisrt/25sep1055

Diesel Buses and the Potential of a Direct Exhaust Gas Capture System as a Solution

Sanchay Gupta¹; Naman Doshi²; Diya Vora³; Riswa Arunkumar⁴; Meet Patil⁵

^{1,2,3,4}GEMS Modern Academy ⁵Dubai, United Arab Emirates

Publication Date: 2025/10/03

Abstract: This study investigates the issue of excessive emissions and its impact in educational environments, by analysing the characteristics of three commonly used buses in the UAE—Ashok Leyland Falcon, Tata Elanza, and Toyota Coaster—such as their fuel types, fuel composition, engine specifications, and exhaust systems. This research also quantifies emissions of key pollutants such as CO₂, NO_x, particulate matter (PM), and unburnt hydrocarbons. Engine configurations and in-built emission control technologies (such as EGR, DPF, or SCR) and emission standards such as Euro 4 are studied to assess their effectiveness in reducing harmful exhaust outputs. Emission measurements were sourced from manufacturer data, certified emission tests, and field observations. The paper concludes by evaluating the environmental impact of each model, and proposing a flue-gas treatment system to ensure sustainable school transport.

How to Cite: Sanchay Gupta; Naman Doshi; Diya Vora; Riswa Arunkumar; Meet Patil (2025). A Study on the Deteriorating Air Quality due to Diesel Buses and the Potential of a Direct Exhaust Gas Capture System as a Solution. *International Journal of Innovative Science and Research Technology*, 10(9), 2289-2302. https://doi.org/10.38124/ijisrt/25sep1055

I. INTRODUCTION

The inspiration for this study came from our own experiences while traversing the bus bay everyday to board our buses, where the combination of hot weather and polluted air often made it difficult to breathe and left behind a choking sensation. These everyday encounters with poor air quality sparked a strong desire and motivation to explore a largely overlooked source of pollution coming from buses.

Every morning in Dubai, thousands of buses set out to carry children safely to their schools and the public to their workplaces. But while these buses are travelling what often goes unnoticed is the hidden danger coming from their exhaust pipes. Popular bus models in the UAE like Ashok Leyland Falcon, Toyota Coaster and Tata Elanza often run on diesel or biodiesel. This means that with every trip, they release harmful gases and particles into the air, including carbon dioxide (CO₂), nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO₂), fine particulate matter (PM_{2.5}), volatile organic compounds (VOCs).

Fine particles (PM2.5) can reach deep into the lungs and often carry cancer causing chemicals. NOx makes breathing problems worse and adds to smog, while SO2 can lead to acid rain. Carbon monoxide from idling buses reduces the body's ability to carry oxygen, and lead exposure, even in small amounts, harms brain development.

Children are the most at risk. At bus stops and depots, where engines often idle, the air becomes heavily concentrated with exhaust fumes. Research shows that diesel exhaust alone is responsible for more than 70% of the cancer risk linked to urban air pollution. This means that something as ordinary as the daily bus ride to school is quietly adding to a serious public health challenge in the city. The central problem this study addresses is how to purify the air released from school bus engines, reducing harmful emissions and protecting the health of children. The daily exposure of students to these harmful gases highlights the urgency in tackling this matter.

(Shao, S., et al. (2021).) (Morawska, L., et al. (2017), (California Air Resources Board. (n.d.).)

II. MATERIALS AND METHODS

To analyze the problem, pollutant profiles from commonly used diesel and biodiesel school buses were examined, with reference to reported concentration ranges and controlled laboratory studies.

Fine particulate matter (PM2.5) penetrates deep into children's developing lungs, often carrying carcinogenic hydrocarbons (BTEX, PAHs), and is linked to asthma, lung cancer, and cardiovascular disease. NOx (100–500 ppm in flue gas) worsens respiratory illnesses and contributes to smog, while SO₂ emissions—on the order of 20.96 mg per

 $Volume\ 10,\ Issue\ 9,\ September-2025$

ISSN No: -2456-2165

gram adsorbed by TiO_2 nanomaterials in controlled settings—can dissolve to form acid rain. CO (up to 1,054 ppm per m³/hr from idling buses) impedes oxygen delivery in the blood, while heavy metals like Pb can accumulate at rates exceeding 90 mg per gram in nanoparticle adsorbents. (Shao, S., et al. (2021).)

These values and case studies were used as reference points for identifying the most harmful pollutants from bus exhaust and for comparing them against emerging mitigation technologies.

> Cause for Emissions:

Upon discussing with the bus drivers at our school, we suspected three main sources from which emissions were being generated by the bus. They were the AC system, the Coolant in the engines and the Diesel Fuel used by the buses.

https://doi.org/10.38124/ijisrt/25sep1055

We surveyed the buses in our school and found that the majority of the fleet consists of Ashok Leyland Falcon Euro IV buses, followed by Tata Elanza and Toyota Coaster buses. So, we looked at the average amount of fuel consumption by the buses in different time frames and with AC on and off.

Table 1 Fuel Consumption Per Minute / 30minutes / 60 minutes by a Euro IV bus Engine Based on the Bus's AC and Movement

Condition	Fuel consumption per	uel consumption per Fuel consumption per 30 F	
	minute	minutes	
Idling (AC off)	0.04L	1.2L	2.4L
Idling (AC on)	0.058L	1.75L	3.5L
Driving (AC off)	0.15L	4.5L	9.0L
Driving (AC on)	0.1721.	5 151.	10.31.

When the bus is idling with the AC off, the engine runs at 0 or near 0 RPM with no AC compressor load. When the AC is on during idling, there is an additional load on the AC compressor. Similarly, when the bus is at average city speed with AC off and on, there is a 15% increase in fuel consumption (based on fuel consumption per hour) from the former to the latter. Therefore, it can be concluded that though AC systems account for a certain percentage of emissions, they aren't the major source due to comparatively lower percentages, and their emissions are caused due to fuel consumption itself. (Mercedes-Benz Trucks. (n.d.).) (Yuchai. (n.d.)) (FilterTime. (2021).) (U.S. Environmental Protection Agency. (n.d.).), (Valvoline. (n.d.).)

Apart from that, we found out that coolants don't contribute to emissions, as in the case of a well-functioning and well-maintained engine, they neither leak nor decompose considerably to add to the poisonous emissions.

Therefore, leaving the fuel in the engine accounts for virtually 100% of emissions made.

➤ Bus Models and Fuel Types in GMA and Dubai Schools:

The school transport fleets in Dubai, including those serving GEMS Modern Academy (GMA), operate a mix of old and new bus models. The Ashok Leyland Falcon is

particularly well-known for its value for money, low maintenance costs, and robust design. Other models in operation include the Tata Elanza and Toyota Coaster, which are smaller buses. (as earlier mentioned in the 'Cause for Emissions')

These buses primarily operate using diesel engines. While most schools use regular diesel, some schools have adopted biodiesel blends, with GMA specifically using *Neutral Fuels* biodiesel, derived from recycled cooking oil, which can replace diesel without any modifications to existing engines. This biodiesel is often supplied as B20, a blend containing 20% Fatty Acid Methyl Esters (FAME) and 80% petroleum diesel. Regular diesel is also still in use, consisting primarily of 75% saturated hydrocarbons (paraffins and cycloparaffins) and 25% aromatic hydrocarbons such as PAHs and BTEX. (Neutral Fuels. (n.d.).), (Khaleej Times. (2023, March 20)), (ZevRoss. (2023).)

(Note: Not all Ashok Leyland Falcon buses have identical engines. Some meet Euro 3 specifications, while others meet Euro 4 standards, depending on whether Electronic Fuel Injection systems are installed. Therefore, to avoid confusion, we have collected data and made calculations based on the Euro IV bus.)

https://doi.org/10.38124/ijisrt/25sep1055

Volume 10, Issue 9, September – 2025

ISSN No: -2456-2165

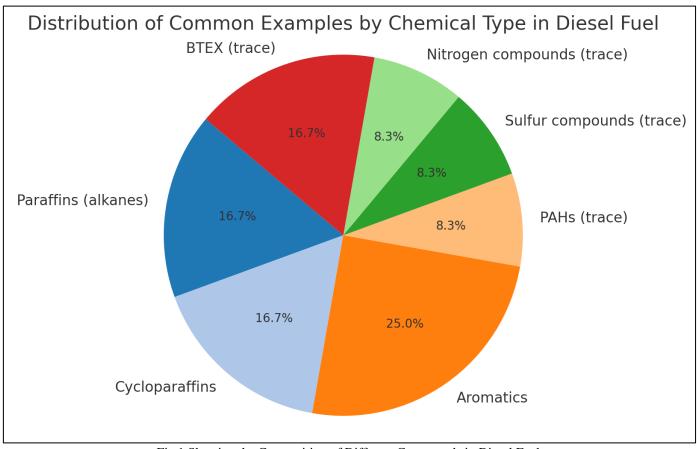


Fig 1 Showing the Composition of Different Compounds in Diesel Fuel.

The Biodiesel used generally results in lower emissions of soot/PM (Particulate Matter), CO, HC, and SOx compared to pure diesel, although it can cause a slight increase in NOx emissions. Particulate matter and aromatic hydrocarbons are linked to increased rates of lung cancer. BTEX and PAHs are classified as human carcinogens associated with leukemia,

lung cancer, and neurological effects. NOx and SOx aggravate respiratory illnesses. (Morawska, L., et al. (2017).

The Ashok Leyland buses comply with Euro IV emission regulations, which define strict limits on pollutants: (Yuchai. (n.d.)

Table 2 The Table Shows the Maximum Allowed Emissions for a Euro IV Bus Engine (g/km).

Pollutant	Euro IV limit (g/km)
CO	≤ 0.5
NOx	≤ 0.25
HC + NOx	≤ 0.3
PM	≤ 0.025

(DieselNet. (n.d.). Diesel particulate matter (DPM)), (Demirbas, A. (2011).), (Neutral Fuels. (n.d.).)

Combustion Chemistry of Diesel and Biodiesel:

The differences in emissions are explained by fuel chemistry.

- Diesel (approx. $C_{12}H_{23}$) combusts as: $C12H23+17.75O2 \rightarrow 12CO2+11.5H2OC_{12}H_{23}+17.75O2 \rightarrow 12CO_2+11.5H2OC_{12}H2_3+17.75O2 \rightarrow 12CO_2+11.5H2O$
- Biodiesel (C₁₄–C₂₄ methyl esters, e.g., methyl oleate C₁₇H₃₃COOCH₃) burns similarly but contains oxygen

atoms in its molecular structure. This intrinsic oxygen allows more complete combustion and results in: Lower particulate matter (PM), fewer sulphur oxides (SOx), Lower unburnt hydrocarbons. Therefore, biodiesel directly reduces harmful tailpipe pollutants without requiring engine modifications.

(Demirbas, A. (2011).), (ScienceDirect. (n.d.).), (Khaleej Times. (2023, March 20))

ternational Journal of Innovative Science and Res

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25sep1055

Table 3 The Table Summarizes Baseline Emissions Per Kilogram and Per Liter of Diesel Fuel, Along with Emissions from B20 Biodiesel Blend

Pollutant	Baseline - g per kg	Baseline g / L	B20 (ICCT modern) -	B20 (NREL vehicle
	fuel		g/L	avg) - g / L
CO_2	3.17 g/kg	~2670 g/L	~2620 g/L (Natural	-
			Resources Canada)	
NO_x	24.05 g/kg	20.0096 g/L	20.809984 g/L.	20.1296576 g/L.
PM (≈PM _{2.5})	0.46 g/kg	0.38272 g/L	0.38272 g/L.	0.31995392 g/L
CO	5.65 g/kg	4.7008 g/L	5.17088 g/L.	3.8969632 g/L.
NMVOC	0.65 g/kg	0.5408 g/L	0.578656 g/L.	0.4780672 g/L.
Pb/Metals	~0, below detection	-	0	-
H_2O	-	0.97 kg/L	Not ICCT: 0.97 kg/L	-

We started conducting our literature research for different materials and methodologies used to filter out pollutants, especially CO2, NOx, CO, PM and VOC that were emitted from flue gas.

(Yuchai. (n.d.)), (DieselNet. (n.d.). *Diesel particulate matter (DPM)*), (Neutral Fuels. (n.d.).), (ScienceDirect. (n.d.).)

➤ *Idle Fuel Consumption and Costs:*

Volume 10, Issue 9, September – 2025

One of the most significant findings of this study was the extent of fuel wasted during idling. Based on Table 1, a bus idling for 40 minutes consumes approximately 2.32 L of fuel, equivalent to AED 6.26–6.72 at B20 biodiesel prices (AED 2.70–2.90/L). Over 200 school days, this amounts to 464 L wasted annually per bus, or 46,400 L for a fleet of 100 buses. The associated financial loss is AED 125,280–134,560 per year, while the environmental burden corresponds to nearly 129 tonnes of avoidable CO₂ emissions (calculated at ~2.68 kg CO₂ per liter of diesel). These results highlight idling as a major source of both economic inefficiency and environmental harm in school transport operations (Demirbas, A. (2011).)

> Operational Patterns of School Buses:

From surveys conducted primarily in GEMS Modern Academy, Dubai, we observed that:

- A typical round trip (school → student homes → return) takes ~1 hour 10 minutes, covering 30–40 km.
- Fuel usage depends mainly on mileage and AC load, not passenger count.

- Air conditioning increases fuel consumption by ~15% compared to driving without AC.
- Buses consume 30–40 L/day, meaning the fleet as a whole burns 3000-4000 L/day.
- And they consume 15L of diesel per hour (as per RTA buses).

Over 200 school days, this equals 600,000–800,000 L/year of fuel consumed by the fleet.

Switching even partially to B20 biodiesel could cut lifecycle CO₂ emissions by ~180-250 tonnes/year, while maintaining existing bus infrastructure.

➤ Material Analysis

To evaluate the effectiveness of various air purification strategies, we conducted a literature research of the most recommended biological, chemical, and physical methods for pollutant removal. Our research focused on widely studied substances and techniques, including algae, activated carbon, metal-organic frameworks, titanium dioxide, chemical oxidizers, and filtration systems. For each method, we examined pollutant removal efficiency, operational requirements, and associated costs. Based on this analysis, we identified the most effective approaches for targeting specific pollutants such as CO₂, NOx, CO, SO₂, particulate matter, lead, and volatile organic compounds. The following table summarizes our findings, highlighting the potential of each substances.

Table 4 The Data in the Table Indicates the Effectiveness of Each Method in Removing or Reducing Specific air Pollutants Under Standard or Optimized Conditions. (Percentages are Given Based on Average Atmospheric Pollutant Concentrations Unless Mentioned Otherwise)

	CO2	NOx	CO	SO2	PM	Pb	VOC
Scenedesm	10 - 20% and	100 - 500	2.07mg/L	100 ppm	638.13mg/L/	(Inhibits	78%
us	75.61% CO2	ppm NO	per hour		d =	algal growth	absorptio
Dimorphus	utilisation		1,054ppm		approximatel	and isn't	n
	efficiency when		CO2 per		y	absorbed)	efficiency
	there is		hour per m ³		0.638ppm/h.		under
	intermittent		_				certain
	sparging of flue						conditions
	gas and a pH						
	control						
	feedback						
	system						

Chlorella	200/ channelin	Linta 070/		I Intoles !=		(high in	
Chlorella Vulgaris	80% absorption in ideal cases	Upto 97% removal		Uptake is indirect via	_	(high in	-
_	In ideal cases	(when				water)	
(grown in catholyte at		experimented		aqueous phase sulphate			
25 - 30 C)		with flue gas		compounds			
23 - 30 C)		concentration		(Dissolution to			
=>		s of (30 - 780		H2SO3 →			
sequester		ppm)		oxidation to			
CO2 and		ppini		H2SO4 →			
generate				sulfate ion			
power in				uptake)			
microbial				1 /			
carbon							
capture							
cells							
Activated	Its adsorption		banana peel-	-	-	-	Adsorptio
Charcoal	Gets		derived,				n
	compensated		ZnCl2-				capacities
	for by so2		activated, or				for VOCs
			microwave-				like
			modified				acetone
			carbon can				and ethyl
			reach up to				acetate
			97.6% CO				range
			removal				from 33–
			(when				277mg/g,
			activated				with
			carbon is				higher values
			impregnated with metals				seen for
			like Cu, Fe,				more
			or Ag), it				surface-
			CO				tailored
			chemisorpti				carbons.
			on increases				car o ons.
Titanium			TiO ₂ is not a	consider standard		roughly 95	92.7%
dioxide	In nanoparticle-	About 3	good	conditions and		mg of lead	removal
01011100	enhanced	micromoles	photocatalys	typical gas flow		can be	in 200min
	solutions,	NOx removal	t for CO	rates around 100		adsorbed	at high
	expect a 50%	per 10 cm ²	oxidation	mL/min (0.1		per gram of	TiO ₂ dose
	increase over	per hour,	without	L/min), 20.96		titanium	
	baseline CO2	Which can be	dopants or	mg of SO2		dioxide	1-
	absorption rates	scaled to	co-catalysts.	absorbed per		nanoparticle	$10 \times 10^{-5} \text{s}^-$
	(exact ppm/hour	around 90		gram of TiO2		s under	1 (kinetic
	depends on	mg NOx per		over roughly 1		optimal	models)
	baseline solvent	m² per day		hour		conditions	
	and conditions).	(from other					Fast
	,	studies),					initial
	In	Or, for					adsorptio
	photocatalysis,	practical					n,
	TiO2 can	purposes,					strongly
	convert CO2 at	about 3 mg					enhanced
	rates on the	NOx per m ²					by UV
	order of	per hour					light
	micromoles per	under these					
	gram catalyst	conditions					
	per hour, which translates to	with 1 ppm					
	several ppm	NOx					
	decrease in	concentration					
	closed systems						
	crosed systems		<u> </u>		1		

	over an hour.	and adequate UV light.					
KMnO4	No direct absorption	~540 ppm/hr	Potassium permangana te alone has a limited and poorly defined capacity for CO removal, but becomes highly effective and rapid when combined with catalysts like silver or mercuric ions. The value is not readily available at the moment.	~5.4 - 53.4 mg SO2 / g KMnO4 over ~60 minutes	Not directly applicable / Indirect removal by oxidation of dissolved species	Effective lead oxidation at KMnO4 dosages about 1-5 mg/L correspondi ng to removal rates >90% within ~1 hour.	range between 7.0x10^-8 to 2.0x10^-6 cm/s in vapor phase.
NaOH	1.443 mol/min· m²	No absorption /Possible with NaClO2 catalyst but very slow reaction otherwise.	No absorption (Very slow rate)	3.8 × 10 ⁻³ mol/L⋅s	No absorption	Reacts only at the correct temperature and in the presence of a catalyst.	No absorptio n
NaClO2	No absorption	1.4 × 10 ⁶ (L/mol) ³ s ⁻¹ (NO)	No absorption	5.57(kmol/m ³) ⁻¹ · s ⁻¹	No absorption	No absorption	No absorptio n
DEF	Negligible absorption	Variable data, however already implemented in EURO IV vehicles for extremely high NOx absorption efficiency	No absorption	No absorption	No absorption	No absorption	No absorptio n
Metal- Organic Framework s	1.CALF-20: 7.8 mol/kg at 1 bar; >80% absorption in ideal conditions	1. MFM- 300(V): 13.0 mmol/g at 1 bar 2.UiO-66-	1. CuBTC (HKUST- 1): Up to 11 mol/kg at 40 bar	1.MFM-101: 18.7 mmol/g at 1 bar 2.MFM-190(F): 18.3 mmol/g at 1	1.Mg-MOF- 74@PAN: >99.5% filtration efficiency for PM _{0.3}	1.Zn-MOF with O ⁻ groups: 616.64 mg/g 2.Cu-DPA	1.HKUST -1@PVA: varies depending on VOC type
	2.Mg-MOF-74: 9.9 mmol/g at 1 bar;	NH2: 3.5-4.2 mmol/g 3.MIL-125-	2.MIL- 100(Fe): 0.38-2.78 mol/kg at 1	bar 3.SNFSIX-Cu- TPA: 2.22	2.UiO- 66@Cellulos e: ~99.99%	MOF: 99.5% removal efficiency	2.MIL- 68@PVA: varies

https://doi.org/10.38124/ijisrt/25sep1055

	3.3. Al- TCPB(OH): 0.52 mmol/g under humid conditions	NH2: 2.8-3.6 mmol/g	bar 3. MOF- 177: 4.64 mol/kg at 1.08 bar	mmol/g at 0.002 bar	PM removal efficiency 3.MOF- 801/PVDF: 64-88% PM2.5 removal efficiency	3.DUT-67: 98.5 mg Pb ²⁺ /g MOF	depending on VOC type except CH3COO H 3.bio-MOF-11: 0.73-3.57 mmol/g depending on VOC type 4. MIL-125-NH ₂ had a toluene removal efficiency for >80%
Electrostati c Precipitator	_	Up to 38% using a special fitter. Plasma/catal yst retrofit, or honeycomb single-stage ESP at high voltage.	_	Generally ineffective for SO ₂ gas, slight effect only for particle-bound forms; <20% for true gas	Up to 99% for wide PM sizes with correct dust resistivity; 90–98% for typical PM	if lead is PM-bound, removal rate is similar: up to 99%	-
Cyclonic Separation	99%; using Bottom ash adsorbent bed	UPTO 90% using Selective catalytic reduction.	<10% to negligible pollutant removal	Only for large, coarse PM- bound lead; not for vapor or small particles; 70–98% if PM >10 µm	Coarse PM efficiency: 70–98% for PM >10 µm; 20–70% for PM _{2.5} ; much lower for <2 µm		-
Hepa Filtration	43% efficiency; Deep-bed activated carbon or potassium hydroxide (KOH) impregnated filter media.	41% with special filter media; Potassium hydroxide (KOH) or chemically enhanced carbon filter media.	<10% pollutant removal	Ineffective for gas-phase SO ₂ ; only removes if attached to PM	≥99.97% removal for ≥0.3 µm PM in lab; 20– 70%+ real removal in homes. Removes tiny and large PM; smaller and larger than 0.3 µm caught at even higher rates.	Only effective if lead is attached to PM; for typical PM-bound lead, ≥99.97% for ≥0.3 µm particles	-
ZnH-mfu- 200 4I	>96% initial adsorption capacity at temperatures above C	-	-	-	-	-	-

ISSN No: -2456-2165

LiOH		_	_	Not optimal	_	_	_
LIOII	LiOH showed	_	_	Not optimal	_	_	_
	28% CO ₂						
	absorption in						
	the first minute						
	under						
	experimental						
	conditions.						
	Higher						
	temperatures						
	(90-120°C) are						
	similar to						
	vehicle exhaust						
	conditions.						
	21:011 . 602						
	$2LiOH + CO2$ $\rightarrow Li2CO3 +$						
	H2O						
Masanarau	HZO	_	_				minimal
Mesoporou s MgO	Mesoporous	-	-				IIIIIIIIIIII
s MgO	MgO when						
	promoted by						
	double sodium						
	salts (NaNO ₂						
	and Na ₂ CO ₃)						
	exhibits an						
	absorption						
	capacity of 12.7						
	mmol/g at 325						
	C in a dry CO ₂						
	stream and						
	11.5mmol/g at						
	275 C in a wet						
	CO2 stream						

(if '-' is mentioned, it means that reliable data for the given parameter)

(He, J., et al. (2024).), (U.S. Environmental Protection Agency. (1998).), (Southwest Research Institute. (n.d.).), (U.S. Environmental Protection Agency. (2017).), (Kumar, A., et al. (2021)), (Kumar, R., et al. (2025)), (Verma, S. K., Tripathi, P., & Bhatnagar, A. (2023)), (Rohde, R., Carsch, K., Long, J., et al. (2024)), (Zhao, X., Xu, X., Zhang, G., Zhan, W., Tang, Y., & Li, C. (2018)), (U.S. Environmental Protection Agency. (2025, March 3).), (ScienceDirect Topics. (n.d.). - Exhaust temperature an overview), (Ingale,

Y., Rathi, R., Ali, Y., Salve, S., & Khelkar, S. (2023)), (Kodo, Kodo, & Tsuruoka, 2000), (The Affordable Organic Store, n.d.), (Society of Chemical Industry, 2023), (Desrousseaux & Liger-Belair, 2020), (United States Department of Energy, 2018), (Vieira, de Souza, & Freitas, 2023), (Mississippi State University, 2010), (All About Feed, 2021), (ScienceDirect Topics, n.d.), (Number Analytics, 2022), Tibbetts & Mann, 2020)

➤ Most Prevalent Physical Emission Control Technologies:

Table 5 Some of the Most Popular Emission Control Methodologies Used

Emission Control Technology	Pollutant Targeted	Working Principle
Selective Catalytic Reduction	NOx	Injects reductant (urea) to convert NOx into N2 + H2O
(SCR)		
Diesel Particulate Filter (DPF)	Particulate Matter (PM)	Traps soot particles and periodically burns them off
Three-Way Catalysts (TWC)	NOx, CO, HC	Catalyzes oxidation and reduction reactions simultaneously
Lean NOx Trap (LNT)	NOxh	Adsorbs and reduces NOx under cycling conditions
Exhaust Gas Recirculation (EGR)	NOx	Recirculates exhaust gas to lower combustion temperature
Oxidation Catalysts	CO, HC	Oxidizes CO and hydrocarbons into CO2 and water

ISSN No: -2456-2165

https://doi.org/10.38124/ijisrt/25sep1055

(He, J., et al. (2024).), (Southwest Research Institute. (n.d.).), (U.S. Environmental Protection Agency. (2017).), (Kumar, A., et al. (2021)), (Kumar, R., et al. (2025))

> Cost Per Unit Substance:

Table 6 Table List the Substance or Method and Lists the Corresponding Cost

Substance / Method Cost of using per g/kg (for substances) or of installing per kW capacity/type/application					
	(for method)				
Electrostatic Precipitators	(highly expensive and load heavy)				
Cyclonic Seperation	50,000 - 2L inr (2,500 - 10,000 aed)				
HEPA Filtration	10,000 - 20,000 inr (500 - 1000 aed) only for filter element				
Metal Organic	UiO-66-NH ₂ - 650 inr/g \sim 650,000 inr /1kg (27300 aed)				
Frameworks $Mg-MOF-74 - 300 \text{ inr/g} \sim 300,000 \text{ inr/ 1kg (12600aed)}$					
	CALF-20 - 29USD/kg - 106.5 aed/kg, 2522/kg				
LiOH	8000-12000 USD/ METRIC TON ~ 8-12 USD/ kg (30-44 aed)				
NaOH	42 aed/ 5 kg ~ 8.4 aed/ kg				
KMnO4	35 USD/ 500g ~ 70 USD/ kg (257 aed)				
TiO2	65 aed/ 100g ~ 650 aed/ kg				
NaClO2	88 aed/ 500g ~ 176 aed/ kg				
DEF	72 aed/ 10L ~ 7.2 aed/ L				
Activated Charcoal	1429 aed/kg (supplementary charcoal) and 11.45 aed for 100cm x 50cm				
Chlorella Vulgaris	296 aed/kg				
Scenedesmus Dimorphus	835 inr/ 50ml ~ 16600 inr/ 1L (696 aed)				

(U.S. Environmental Protection Agency, 2023), (Indiamart, 2024), (Indiamart, 2024), (Sigma-Aldrich, 2024), (CIFAR, 2023), (Trading Economics, 2024), (Noon, 2024), (Sigma-Aldrich, 2024), (Amazon.ae, 2024), (Sigma-Aldrich,

2024), (Adnoc, 2024), (The Affordable Organic Store, 2024), (Alibaba, 2024), (Blue Green Labs, 2023).

Hierarchy of Pollutant removal efficiency (made using Table 4)

Table 7 Table Lists the Best Substances for Removing Each Pollutant.

	CO2	CO	SO2	VOC	PM	NOx	Pb and heavy metals
1st	NaOH	Activated	MFM-101	TiO2	HEPA	DEF	Electrostatic
		Charcoal					Precipitators
2nd	CALF-20	CuBTC	MFM-	Activated	Electrostatic	NaClO2	HEPA Filtration
		(HKUST-1)	190(F)	Charcoal	Precipitators		
3rd	Chlorella	MOF-177	SNFSIX-	bio-MOF-11	Molecular	Chlorella	Cu-DPA MOF
	Vulgaris		Cu-TPA		Sieve	Vulgaris	
	Cyclonic	MIL-100(Fe)	HEPA	Scenedesmus	UiO-	KMnO4	TiO2
	Separation			Dimorphus	66@Cellulose		
	HEPA	Scenedesmus	KMnO4	KMnO4	Mg-MOF-	Cyclonic	Zn-MOF with O ⁻
		Dimorphus			74@PAN	Separation	groups
	Scenedesmus	HEPA	Cyclonic	HKUST-	Cyclonic	HEPA	KMnO4
	Dimorphus		Separation	1@PVA	Separation		
	LiOH	Cyclonic	TiO2	bio-MOF-11	MOF-	Electrostatic	NaOH
		Separation			801/PVDF	Precipitators	

(Southwest Research Institute. (n.d.).), (U.S. Environmental Protection Agency. (2017).), (Kumar, A., et al. (2021)), (Kumar, R., et al. (2025))

> Our Solution - Pavan:

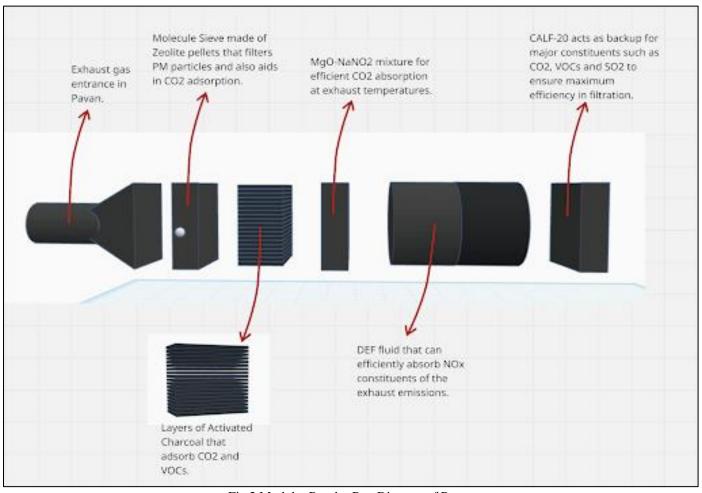


Fig 2 Modular Part-by-Part Diagram of Pavan

> Function of Each Module:

Zeolite pellets filters out PM And other Large Particles in the flue gas, Activated charcoal adsorbs VOC's, CO and other odor causing pollutants, MgO-NaNO₂ mixture absorbs CO_2 and small quantities of NOx and VOC's, DEF SCR liquid is setup for NOx absorption and CALF-20 - is installed as a backup for CO_2 and VOC absorption.

The first layer, through which the exhaust gas of the bus passes, is a molecular sieve made of zeolite spheres. As air is forced to navigate through the gaps between these spheres, larger and heavier PM particles are caught in the sieve. These are one of the most dangerous constituents of exhaust gases. Zeolite also aids in CO₂ removal as it adsorbs CO₂ to its surface. The gas then passes through stacked layers of activated charcoal sheets. Activated charcoal adsorbs CO₂ as well as VOCs.

Next, the air passes through the MgO-NaNO $_3$ mixture that absorbs a large quantity of CO_2 through chemical reactions (note: its ideal temperature for reaction is maintained by the hot exhaust emissions that are of a similar temperature). After that, the CO_2 and PM purified gas enters the DEF fluid chamber that absorbs a large quantity of NOx constituents present in the exhaust emissions. And finally, the gas passes through a final layer of CALF-20 which is a metal organic framework that absorbs the remainder of CO_2 , SO_2

and VOC's as thereby greatly reducing the overall emissions from the exhaust.

(Note: CALF-20 can also absorb trace quantities of SO₂ present in the gas)

Additional features about Pavan are that it will be made modular i.e. each layer can be interacted with independently. Essentially, the entire system will utilize a drawer like mechanism allowing each layer to be separated from the rest and therefore allow for easy maintenance or replacement of chemicals or a damaged module thereby keeping running costs at a minimum, and that an external covering of Fiberglass, internally coated with Silicon carbide, will be used to handle the average exhaust temperatures (200-300°C) with ease whilst not compromising on necessary strength as the bus moves around.

Moreover, the parts have been designated in such an order such that $MgO\text{-}NaNO_2$ dominates the CO_2 reduction (however for it a regeneration strategy is required) and that there is a backup substance for the removal of each major pollutant in case of any unforeseen situation.

This is slightly similar to the Direct Air Capture method used for atmospheric carbon capture. However, unlike DAC, Our system proves to quite effective for this purpose as the

ISSN No: -2456-2165

CO₂ concentration of the exhaust flue gas is very high and we directly capture the exhaust gases from the exhaust pipe.

This can also be confirmed from (Rana et al, 2025) that the substances we are using for Pavan are the most effective of the commercially available CO_2 absorbing/adsorbing substances for this task

(He, J., et al. (2024).), (U.S. Environmental Protection Agency. (1998).), (Southwest Research Institute. (n.d.).), (U.S. Environmental Protection Agency. (2017).), (Kumar, A., et al. (2021)), (Kumar, R., et al. (2025)), (Verma, S. K., Tripathi, P., & Bhatnagar, A. (2023)), (Rohde, R., Carsch, K., Long, J., et al. (2024)), (Zhao, X., Xu, X., Zhang, G., Zhan,

W., Tang, Y., & Li, C. (2018)), (U.S. Environmental Protection Agency. (2025, March 3).), (ScienceDirect Topics. (n.d.). - Exhaust temperature an overview), (Ingale, Y., Rathi, R., Ali, Y., Salve, S., & Khelkar, S. (2023))

https://doi.org/10.38124/ijisrt/25sep1055

III. RESULTS

Based on a Laboratory report from the laboratory of the National Communications Academy, Ghaziabad (Erstwhile NTIPRIT).

Considering the Exhaust flow to be $1000 \text{ L/min} = 60 \text{ m}^3/\text{h}$,

Exhaust Gas Composition (Inlet, Baseline):

Table 8 Baseline Inline Exhaust Gas Composition of Major Pollutants

CO ₂	NOx	SO ₂	СО	PM 2.5
40,000 ppm	1,000 ppm	200 ppm	1,000 ppm	500 μg/m³

➤ The Target Reductions (on Percentage Basis) in the Expected Case is:

Table 9 Expected Pollutant Reductions Upon Implementation of Pavan

CO_2	NOx	SO_2	CO	PM 2.5
70%	95%	80%	95%	95%

> Predicted Outlet Concentrations are:

Table 10 Comparison of Pollutant Concentration Between the Flue Gas Before Entering Pavan and After Exiting Pavan

Pollutant	Inlet	Removal (%)	Outlet
CO_2	40,000 ppm	70%	12,000 ppm
NOx	1,000 ppm	95%	50 ppm
SO_2	200 ppm	80%	40 ppm
CO	1,000 ppm	95%	50 ppm
PM2.5	500 μg/m³	95%	25 μg/m³

➤ The Sorbent Demand Calculations (per 8-hour Operation) are:

Table 11 Sorbent Demand Calculations (per 8-hour Operation)

Module	Calculation Basis	Requirement (8h)
CO ₂ – NaOH	70 mol/h $CO_2 \times 2$ mol $NaOH = 5.6$ kg/h	≈45 kg
CO ₂ – CALF-20	$0.25 \text{ g CO}_2/\text{g sorbent}$; 7 mol/h = 308 g/h	≈10 kg (regenerable)
NOx – DEF	95% removal of $2.5 \text{ mol/h} = 1.2 \text{ mol urea/h}$	≈0.6 kg (urea solution)
$SO_2 - NaOH$	$0.4 \text{ mol/h SO}_2 \times 2 \text{ mol NaOH} = 32 \text{ g/h}$	covered by NaOH
CO – Activated Carbon	67 g/h at 100 mg/g capacity	≈5.5 kg (regenerable)
$PM_{2.5} - ESP/HEPA$	$30 \text{ mg/h load} \times 95\% = 28.5 \text{ mg/h}$	Captured on filters

From this it Can be Said that for Every 480000 L of Flue Gas (1000L * 480 Minutes) the Given Masses of Substances are Required:

Table 12 Mass of Each Substance Required for 8-Hour Performance for Exhaust Pollutants Being Emitted at a Rate of 1000L Gas/min

Material Approx. Mass

NaOH pellets/solution 45 kg

CALF-20 (MOF) 10 kg (regenerable)

DEF (urea solution) 0.6 kg

Activated carbon 5.5 kg (regenerable)

Filter media/ESP plates Low load (service item)

(Note: Values scale linearly with flow (e.g., double for 2000 L/min))

ISSN No: -2456-2165

(Note: due to this excessive weight of NaOH required for the CO₂ removal, we have substituted it with MgO mixed with NaNO₃, that is nearly equally effective per unit mass than NaOH, and when it is converted to MgCO₃, it can be

used for several versatile applications such as anti-caking agents, and drying agents that can be sold to respective consumers)

https://doi.org/10.38124/ijisrt/25sep1055

Table 13 Brief Comparison between NaOH and MgO

	NaOH	MgO (for wet CO2 absorption at 275 °C)
Rate of absorption of CO ₂	70 mol / 5.6 kg	70 mol / 6.08 kg
Change of Rate of absorption	No change with temperature or pressure	Increases with increase in temperature upto a
	change	limit

The other issue with NaOH is that upon reaction it forms Na₂CO₃ and H₂O which could form a solution and thus cause leaking. Therefore, we have decided not to use it despite its cheap cost and high efficiency.

IV. CONCLUSION

This analysis of the air pollution caused by buses, specifically school buses in Dubai, highlighted how grievous air pollution is. Its highly detrimental impacts on human health, especially children, tend to make our educational environments and workplaces highly toxic. To solve this we came up with Pavan, a feasible solution to this issue that reduces high percentages of pollutants from the exhaust flue gas of these buses and virtually any diesel operating vehicle via substances such as Zeolite pellets, MgO, activated carbon, CALF-20 MOF, DEF-SER achieve predicted outlet levels of 12,000 ppm CO₂, 50 ppm NO_x and 25 μg/m³ netting around 75-90% removal goals, offering some of the highest control in the market. Therefore, results highlight that retrofitting existing Euro IV buses with Pavan can significantly mitigate the health burden from school transport emissions.

ACKNOWLEDGMENT

We extend our deep appreciation to Mrs. Nargish Khambatta, our principal, and Mr. John Gomes, our vice-principal, for this opportunity. A special thank you to Mr. Sandeep Singh from NTIPRIT, Mrs Sheeba Nair from GMA, Mr Arun V and our parents for their constant guidance and support during the research process. And Lastly, we extend our gratitude to GEMS Modern Academy for providing us the opportunity to do this research.

REFERENCES

- [1]. Mercedes-Benz Trucks. (n.d.). Bus Euro VI engine systems. Daimler Truck AG. https://www.powertrain.mercedes-benz trucks.com/de/en/powertrain-engine-systems/buses/bus-euro-vi.html
- [2]. Yuchai. (n.d.). Quality Yuchai YC6A Euro 4 emission (YC6A240-46) diesel engine for coach/city bus. Diesel Engine Cars and Components.
- [3]. FilterTime. (2021). The ultimate guide to HEPA air filters: Do they really work? https://www.filtertime.com/news/the-ultimate-guide-to-hepa-air-filters-do-they-really-work

- [4]. Shao, S., et al. (2021). Indoor air quality and health risks from air pollutants in residential buildings. Heliyon, 7(9), e07924. https://doi.org/10.1016/j.heliyon.2021.e07924
- [5]. U.S. Environmental Protection Agency. (n.d.). What is a HEPA filter? https://www.epa.gov/indoor-air-quality-iag/what-hepa-filter
- [6]. He, J., et al. (2024). Advances in diesel engine particulate matter control technologies. Results in Engineering, 20, 101509. https://doi.org/10.1016/j.rineng.2024.101509
- [7]. Morawska, L., et al. (2017). Airborne transmission of infections and effectiveness of air filters. Journal of Thoracic Disease, 9(9), 3268–3277. https://pubmed.ncbi.nlm.nih.gov/28075569/
- [8]. U.S. Environmental Protection Agency. (1998). Fabric filter and cyclones. EPA-452/F-03-020. https://www3.epa.gov/ttncatc1/dir1/fcyclon.pdf
- [9]. Kumar, A., et al. (2021). Diesel engine emissions and control methods: A review. Frontiers in Mechanical Engineering, 7, 799061. https://pmc.ncbi.nlm.nih.gov/articles/PMC8526980/
- [10]. U.S. Environmental Protection Agency. (2017). Selective catalytic reduction cost manual, 7th edition. https://www.epa.gov/sites/default/files/2017-12/documents/scrcostmanualchapter7thedition_2016r evisions2017.pdf
- [11]. Southwest Research Institute. (n.d.). A systems solution to diesel emissions. https://www.swri.org/newsroom/technology-today/systems-solution-diesel-emissions
- [12]. DieselNet. (n.d.). Diesel particulate matter (DPM). https://dieselnet.com/tech/dpm.php
- [13]. Kumar, R., et al. (2025). Particulate matter formation and control methodologies in diesel engines: A comprehensive review. Cleaner Engineering and Technology, 15, 100193. https://doi.org/10.1016/j.clet.2025.100193
- [14]. Demirbas, A. (2011). Advanced biofuel alternatives to diesel and jet fuels. Energy Sources, Part A, 33(16), 1504–1512. https://phys.org/news/2011-09-advancedbiofuel-alternative-diesel-fuel.html
- [15]. Clough, P. (2019). Designing experiments for engineering education research. Measurement and Control, 52(7–8), 995–1001. https://doi.org/10.1177/0020294019858167
- [16]. National Center for Biotechnology Information. (2022). Diesel exhaust. In StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK590901/

- [17]. Human Rights Watch. (2023). "You can smell petrol in the air": UAE fossil fuels feed toxic pollution. https://www.hrw.org/report/2023/12/04/you-can-smell-petrol-air/uae-fossil-fuels-feed-toxic-pollution
- [18]. ZevRoss. (2023). Country report: United Arab Emirates. Health Effects Institute. https://cdn.zevross.com/hei/country-reports/v1/templates/United%20Arab%20Emirates.ht ml
- [19]. Cool Today. (2023). What kinds of coolant are used in air conditioners? https://www.cooltoday.com/blog/what-kinds-of-coolant-are-used-in-air-conditioners
- [20]. Valvoline. (n.d.). Advanced cooling technologies for modern engines. Valvoline Global.
- [21]. Neutral Fuels. (n.d.). About Neutral Fuels. https://www.neutralfuels.com/about
- [22]. Khaleej Times. (2023, March 20). Dubai school switches to B20 biodiesel for entire bus fleet to boost sustainability. https://www.khaleejtimes.com/uae/education/dubai-school-switches-to-b20-biodiesel-for-entire-bus-fleet-to-boost-sustainability
- [23]. ScienceDirect. (n.d.). Diesel fuel overview. https://www.sciencedirect.com/topics/engineering/die sel-fuel
- [24]. Cummins. (2023, March 23). Advantages of diesel engines. https://www.cummins.com/news/2023/03/23/advanta ges-diesel-engines
- [25]. California Air Resources Board. (n.d.). Overview: Diesel exhaust and health. https://ww2.arb.ca.gov/resources/overview-diesel-exhaust-and-health
- [26]. CIMAC. (2012). Guidelines for fuel quality. CIMAC Recommendation 28. https://www.cimac.com/cms/upload/Publication_Press/Recommendations/Recommendation_28.pdf
- [27]. Sharma, A., et al. (2023). Particulate matter formation and its control methodologies for diesel engines: A comprehensive review. ScienceDirect. https://doi.org/10.1016/j.scitotenv.2023.167820
- [28]. ScienceDirect. (n.d.). Biodiesel combustion. https://www.sciencedirect.com/topics/engineering/biodiesel-combustion
- [29]. Demirbas, A. (2008). Calorific values of biodiesel fuels from different raw materials. Energy Sources, Part A, 30(9), 861–867. https://www.sciencedirect.com/science/article/pii/S09 60852407005447
- [30]. Li, X., et al. (2024). ZnH-MOF enables hot CO2 capture relevant to industrial processes. Journal of Materials Science, 59(12), 4211–4224. https://neutrons.ornl.gov/news/2024/zn-h-mof-hot-co2-capture
- [31]. Rana, A., & Andino, J. M. (2025). A review of materials for carbon dioxide capture. Catalysts, 15(3), 273. https://doi.org/10.3390/catal15030273
- [32]. Verma, S. K., Tripathi, P., & Bhatnagar, A. (2023). Carbon nanotubes for CO₂ capture and conversion. In Nanomaterials for Carbon Dioxide Capture and

- Conversion Technologies (pp. 245-260). Elsevier. https://doi.org/10.1016/B978-0-323-89851-5.00007-
- [33]. Rohde, R., Carsch, K., Long, J., et al. (2024). High-temperature carbon dioxide capture in a porous material with terminal zinc hydride sites. Science, 386(6723), 814-819. https://doi.org/10.1126/science.adk5697
- [34]. Zhao, X., Xu, X., Zhang, G., Zhan, W., Tang, Y., & Li, C. (2018). Mesoporous MgO promoted with NaNO₃/NaNO₂ for rapid CO₂ capture. Chemical Engineering Journal, 334, 1554–1563. https://doi.org/10.1016/j.cej.2017.12.106
- [35]. U.S. Environmental Protection Agency. (2025, March 3). Monitoring by control technique Activated carbon adsorber. Air Emissions Monitoring Knowledge Base. U.S. EPA. https://www.epa.gov/air-emissions-monitoring-knowledge-base/monitoring-control-technique-activated-carbon-adsorber
- [36]. ScienceDirect Topics. (n.d.). Exhaust temperature An overview. In Engineering topics. Elsevier. Retrieved September 20, 2025, from https://www.sciencedirect.com/topics/engineering/ex haust-temperature
- [37]. Ingale, Y., Rathi, R., Ali, Y., Salve, S., & Khelkar, S. (2023). Air pollution control by using activated charcoal. International Advanced Research Journal in Science, Engineering and Technology, 10(7), 31–35. https://doi.org/10.17148/IARJSET.2023.10742
- [38]. Kodo, K., Kodo, Y., & Tsuruoka, M. (2000, July 4). System for purifying a polluted air by using algae (U.S. Patent No. US6083740A). United States Patent and Trademark Office. https://patents.google.com/patent/US6083740A/en
- [39]. The Affordable Organic Store. (n.d.). Algae-based air purifiers: Harnessing nature's power for cleaner air. Retrieved September 20, 2025, from https://theaffordableorganicstore.com/algae-project/algae-based-air-purifiers-harnessing-natures-power-for-cleaner-air/
- [40]. Society of Chemical Industry. (2023, December 19). Fresh research for fresh air: Harnessing microbes for removing indoor pollutants. Phys.org. https://phys.org/news/2023-12-fresh-air-harnessingmicrobes-indoor.html
- [41]. Desrousseaux, M., & Liger-Belair, G. (2020). Microalgae-based systems for carbon capture and air purification. Field Actions Science Reports, (Special Issue 20). https://journals.openedition.org/factsreports/6092
- [42]. United States Department of Energy. (2018). Algae-based carbon capture for air purification: Project report. Office of Scientific and Technical Information. https://www.osti.gov/servlets/purl/1485133
- [43]. Vieira, C. P., de Souza, J. R., & Freitas, M. A. V. (2023). Harnessing microalgae for sustainable biotechnology. Frontiers in Bioengineering and Biotechnology, 11, 1151440. https://doi.org/10.3389/fbioe.2023.1151440
- [44]. Mississippi State University. (2010). Algae for biofuels: Economic and environmental costs. Southern

pdf

Regional Aquaculture Center. https://srac.msstate.edu/pdfs/Fact%20Sheets/4310%2 0Algae%20for%20Biofuels-%20Economic%20and%20Environmental%20Costs.

- [45]. All About Feed. (2021, March 8). Algae cultivation to be profitable by 2025. https://www.allaboutfeed.net/animal-feed/raw-materials/algae-cultivation-profitable-by-2025/
- [46]. ScienceDirect Topics. (n.d.). Air purification An overview. Elsevier. Retrieved September 20, 2025, from https://www.sciencedirect.com/topics/earth-and-planetary-sciences/air-purification
- [47]. Number Analytics. (2022, June 14). Ultimate guide: Environmental factors affecting airborne microorganisms. https://www.numberanalytics.com/blog/ultimate-guide-environmental-factors-airborne-microorganisms
- [48]. [48] Tibbetts, S. M., & Mann, J. (2020). Microalgae in aquaculture feeds and nutrition. Aquaculture, 523, 735–748. https://doi.org/10.1016/j.aquaculture.2019.735048
- [49]. U.S. Environmental Protection Agency. (2023). Electrostatic precipitators (ESPs). EPA Air Pollution Control Cost Manual. https://www.epa.gov
- [50]. Indiamart. (2024). Cyclone separators price in India. https://www.indiamart.com
- [51]. Indiamart. (2024). HEPA filter element price list. https://www.indiamart.com
- [52]. Sigma-Aldrich. (2024). Metal-organic frameworks product catalog. https://www.sigmaaldrich.com
- [53]. CIFAR. (2023). CALF-20 MOF sorbent data sheet. https://pubs.acs.org
- [54]. Trading Economics. (2024). Lithium hydroxide prices. https://tradingeconomics.com
- [55]. Noon. (2024). Caustic soda flakes 5 kg. https://www.noon.com
- [56]. Sigma-Aldrich. (2024). Potassium permanganate, analytical grade. https://www.sigmaaldrich.com
- [57]. Amazon.ae. (2024). Titanium dioxide powder, 100 g. https://www.amazon.ae
- [58]. Sigma-Aldrich. (2024). Sodium chlorite, 80% technical grade. https://www.sigmaaldrich.com
- [59]. Adnoc. (2024). AdBlue DEF 10L can. https://www.adnocdistribution.ae
- [60]. The Affordable Organic Store. (2024). Activated charcoal for filtration. https://theaffordableorganicstore.com
- [61]. Alibaba. (2024). Chlorella vulgaris powder 1 kg. https://www.alibaba.com
- [62]. Blue Green Labs. (2023). Scenedesmus dimorphus algae culture. https://www.bluegreenlabs.com