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Abstract: Machine Learning (ML) is no longer a novel academic domain or even a niche within a specific technology but
has become a technological engine that transforms many sectors of life: healthcare and finance, transportation and
entertainment, etc. The effectiveness of such algorithms in analysing complex data, recognising patterns and giving precise
predictions is frequently viewed as a kind of computational alchemy. This impression is however, false and does not represent
a hard mathematical framework which is fundamental to both the knowledge and development of the field. Linear algebra
forms the basis of this foundation by a very huge margin. In this paper, a detailed assessment will be given explaining the
inseparable nature of linear algebra as the language of machine learning. The goal is to systematically break down the
important ML algorithms, including both simplistic linear regression, but also more complicated deep learning models, and
explicitly trace their basic mechanisms to the underlying linear algebraic operations, including: matrix multiplication,
transformations of vectors spaces, and manipulations of tensors. This review will help to dispel the mystique of the black
box nature of ML by showing that data representation, model operation, and optimization are all intrinsically linear
algebraic operations. This synthesis is valuable to students in need of a more conceptual grasp, researchers in need of
creating new algorithms, and practitioners in need of debugging, optimizing, and innovating their ML pipelines. Detailed
understanding of these mathematical foundations is not only academic but a requirement to be able to master the practice
and innovate in the sphere of artificial intelligence.
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I INTRODUCTION The functioning and effectiveness of these algorithms

are not a secret, but are deeply rooted in serious mathematics,

Machine learning, a sub-field of artificial intelligence
is officially described as the research of those computer
algorithms that may be enhanced by experience and by means
of data (Mitchell, 1997). It is broadly divided into supervised
learning, where the models are trained to map input data to
known output labels; unsupervised learning, where the model
is trained to learn the patterns based on the input data without
the responses being provided; and reinforcement learning, as
an agent is trained to make decisions by taking action and
being rewarded in an environment (Sutton and Barto, 2018).
The widespread use of ML applications has developed a
tools-centric culture in which sophisticated models may be
written in only a few lines of high-level code and the
mathematical engines behind them may often be hidden. This
abstraction results in the major issue, that is, practitioners can
effectively use models without being able to sense their
failure, maximize their performance out of the baseline
parameters or advance on their architectures because of not
knowing the underlying principles.
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especially linear algebra. Linear algebra gives us the
vocabulary and syntax of explaining and performing the
computations that underlie ML. It is the system that data is
organized on, models are developed, and learning is
operationalized. As an example, a single data element, i.e. the
health statistics of a patient or the features of a product is
inherently modeled as a high-dimensional vector. A full set
of such data, such as thousands or millions of such data
points, is organized in a matrix. This basic process of making
a prediction in a linear model is simplified to a dot product of
a weight vector and a feature vector. Moreover, the learning
process, or fitting the model parameters to the minimal error,
is a type of optimization problem, which is usually addressed
with methods based on the matrix calculus, including gradient
descent (Bishop, 2006).

The underlying connection of linear algebra to
machine learning is long-standing in textbook literature. ML
as a story of the linear algebraic origin of the former can be
explicitly constructed in textbooks like Strang's "Linear
Algebra and Learning from Data" (2019) and Goodfellow's
"Deep Learning" (2016). This body of work establishes the
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fact that linear algebra is not merely a helpful tool but the very

medium of computational learning. In order to describe this
relationship in a systematic way, it is informative to directly
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map major concepts of linear algebra to their key uses in
machine learning paradigms, as in Table 1.

Table 1 Correspondence Between Key Linear Algebra Concepts and Machine Learning Applications

Linear Algebra

Definition & Mathematical Significance

Primary ML

Impact on ML Algorithm

Decomposition
(SVD)

singular vectors and singular values,
generalizing eigen-decomposition.

Systems, Latent
Semantic Analysis,
Matrix Completion.

Concept Application(s)
Vectors & Vectors are ordered lists of numbers Universal data Provides the structure for input data
Matrices (scalars) representing points or directions representation. All (design matrix), model parameters
in space. Matrices are 2D arrays of ML models. (weight matrix), and output
numbers representing linear predictions.
transformations or datasets.
Systems of A set of equations with multiple variables Linear Regression, The core problem of fitting a linear
Linear that can be expressed in matrix form as Ax Least Squares model is solving a system of
Equations =b. Optimization. equations to find the optimal weights.
Eigen- Factorizing a square matrix into its Principal Used for dimensionality reduction by
Decomposition | eigenvectors and eigenvalues, which reveal Component identifying the directions
the matrix's fundamental properties and Analysis (PCA), (eigenvectors) of maximum variance
transformations. Spectral Clustering. in the data.
Singular Value Factorizing any rectangular matrix into Recommender Uncovers latent features in data for

tasks like collaborative filtering and
low-rank approximations.

Matrix Calculus

The extension of calculus to matrices and

Training Neural

Enables the calculation of the error

vectors (1D) and matrices (2D) to higher
dimensions (3D, 4D, etc.).

(Convolutional
Neural Networks,
Transformers).

& Gradients vectors, allowing for the computation of | Networks, Gradient- gradient, which is essential for
derivatives of functions with matrix Based Optimization updating model parameters during
inputs/outputs. (e.g., SGD, Adam). learning.
Norms Functions that assign a strictly positive Regularization Used to constrain model complexity
length or size to a vector (e.g., L2 norm for (L1/Lasso, and prevent overfitting by adding a
distance, L1 norm for sparsity). L2/Ridge), Loss penalty to the loss function.
Functions.
Tensors Multi-dimensional arrays generalizing Deep Learning Efficiently represents complex data

like images (3D: height, width,
channels) and batches of data (4D:
batch, height, width, channels).

Source: Adapted from Strang (2019) and Goodfellow et al. (2016)

Therefore, the primary goal of this paper is to
demystify machine learning by systematically exploring the
linear algebra at its core. This review will dissect how
algorithms are constructed from first principles of vectors,
matrices, and their operations, moving from basic models to
advanced architectures. This approach provides a unifying
lens through which the entire field of machine learning can
be understood not as a collection of disparate tricks, but as a
coherent application of linear mathematical principles.

1. RESULTS

» An Overview of Foundational Linear Algebra Concepts
The journey into the mathematical heart of machine
learning begins with a firm grasp of the basic elements of
linear algebra. These elements are not abstract mathematical
curiosities but are the direct building blocks of every data
structure and computation in ML. A scalar is a single number,
a singular entity representing magnitude alone, such as a
single temperature reading or a model's learning rate. A
vector is an ordered array of numbers, a one-dimensional list
that represents a point in a multi-dimensional space. For
example, the features of a single house—its square footage,
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number of bedrooms, and age—can be represented as a
vector [2100, 4, 20], placing it within a 3-dimensional feature
space. This conceptualization is fundamental to all of ML, as
it allows for the geometric interpretation of data (Saxe, 2021).

A matrix is a two-dimensional array of numbers, a
rectangular grid that can represent an entire dataset. Each row
of a matrix typically corresponds to a single data point (a
vector), and each column corresponds to a specific feature.
This structure, known as the design matrix, is the primary
format for input data in most ML algorithms. A tensor is the
generalization of these concepts to higher dimensions. While
a vector is a first-order tensor and a matrix is a second-order
tensor, a third-order tensor could represent a batch of images,
and a fourth-order tensor could represent a batch of multi-
channel images. The operations defined on these structures
are equally critical. Vector addition and scalar multiplication
allow for the translation and scaling of data points. The dot
product (or inner product) of two vectors yields a scalar that
measures their similarity and is the fundamental operation
behind calculating predictions and similarities (Petersen &
Pedersen, 2012).
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Beyond these basic operations, key concepts define the
behavior of these mathematical objects. A linear
transformation is a function that maps vectors from one space
to another while preserving the operations of vector addition
and scalar multiplication. These transformations are
represented by matrices; multiplying a vector by a matrix
applies the transformation to the vector. The rank of a matrix
reveals the dimensionality of the vector space spanned by its
columns, indicating the number of linearly independent
features in a dataset. A low-rank matrix suggests redundant
or correlated features. The determinant is a scalar value that
provides information about the scaling factor of the linear
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transformation described by the matrix and whether that
transformation is orientation-preserving. Perhaps most
crucially, the inverse of a matrix, when it exists, allows for
solving systems of linear equations. Understanding these
concepts is not a mere academic exercise; it is essential for
comprehending how models manipulate data, why certain
computations succeed or fail (e.g., a non-invertible matrix
halting a regression calculation), and how the geometric
properties of data impact learning (Trefethen & Bau, 1997).
A visual representation of these operations, such as Figure 1,
can greatly aid in building intuition.

U+,
2u
—1
A=
11 3
=3 —p U
Scaling Vector Addition -

Matrix Multiplication

Fig 1 Geometric Interpretation of Basic Linear Algebra Operations

» Linear Algebra in Model Representation and Operation

e Vectors and Matrices for Data Representation

The first step in any machine learning process is how
data is presented, and this is closely related to linear algebra.
A raw data set, such as a CSV file with house details, is
naturally organized in a matrix format. Each row represents a
specific house, which is an individual data point. Each
column represents a different characteristic of those houses,
like square footage, zip code, or year built. When this data is
loaded, it is converted into a design matrix, usually called X.
This matrix has m rows and n columns, where m is the
number of data points and n is the number of features (Géron,
2022). This matrix format is efficient for computation and
allows batch processing with optimized linear algebra
libraries.

A basic predictive model, like linear regression, uses
matrix and vector operations to make predictions. The goal is
to predict a target value, such as house price, based on a set
of feature values. This is done by calculating a weighted sum
of the input features, which is essentially the dot product
between a weight vector and the feature vector, plus a bias
term. For a single prediction, this is represented as § = w - x
+ b. For the entire dataset, this operation is expressed as a
matrix multiplication: § = Xw + b, where X is the design
matrix, w is a column vector of weights, and § is a column
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vector of predictions. This notation is not only elegant but
also allows modern hardware, like GPUSs, to perform millions
of calculations quickly and efficiently, forming the
foundation of training and prediction (VanderPlas, 2023).

¢ Solving Systems of Equations for Regression

Training a linear regression model involves finding the
best weight vector w that minimizes the difference between
predicted and actual values.

The most common method, Ordinary Least Squares
(OLS), uses a sum-of-squares loss function to measure this
difference. Minimizing this loss leads to a system of
equations known as the normal equations: (X T X) w = XAT
y (Deisenroth, Faisal, & Ong, 2020). Here, X"T is the
transpose of the design matrix. The optimal weights, w*, are
found by solving w* = (X T X)"{-1} X"Ty.

This process shows how a fundamental machine
learning task translates into a fundamental linear algebra
problem: solving a system of equations.

The matrix (X*T X) must be inverted, highlighting the
importance of concepts like matrix invertibility and rank. If
the features in X are dependent (i.e., X*T X is singular), the
solution becomes unstable or impossible. For large datasets
or to ensure numerical stability, direct inversion is avoided.
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Instead, methods like QR decomposition or Singular Value
Decomposition (SVD) are used to solve the system without
inverting X*T X directly (Trefethen & Bau, 1997). Therefore,
the entire process of linear regression, from setup to solution,
is an application of linear algebra.

¢ Eigen-Decomposition in Dimensionality Reduction

A common issue in machine learning is the curse of
dimensionality, where a large number of features can make
models inefficient, prone to overfitting, and hard to interpret.

Dimensionality reduction techniques address this by
projecting data into a lower-dimensional space while keeping
its main structure. Principal Component Analysis (PCA) is a
leading method for linear dimensionality reduction and is
based on eigen-decomposition (Jolliffe & Cadima, 2016).
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The process starts with calculating the covariance
matrix of the centered data. This matrix, which is square and
symmetric, shows the variance of each feature on its diagonal
and the covariance between pairs of features off-diagonal.
PCA finds the directions in the feature space where data
varies the most. These directions are the eigenvectors of the
covariance matrix. The corresponding eigenvalues show how
much variance is captured by each eigenvector. The
eigenvectors with the largest eigenvalues are the principal
components. The data is then projected onto the subspace
formed by the top-k principal components, resulting in a
lower-dimensional representation that keeps most of the
original data's variability. This entire process is a clear
example of how matrix properties, such as eigenvectors and
eigenvalues, reveal the underlying structure of high-
dimensional data.

Table 2 The PCA Algorithm as a Linear Algebraic Procedure

Step Description Linear Algebra Operation
1. Center the data Subtract the mean vector from each row of the data matrix X to get X".
2. Compute Covariance Calculate the covariance matrix X = (1/(m-1)) * X'*T X'\
3. Eigen-decomposition Factorize the covariance matrix: X = QAQ"T, where A is a diagonal matrix of eigenvalues

and Q is a matrix of eigenvectors.

4. Select Components Sort eigenvectors in Q by descending eigenvalues. Select the top-k columns of Q to form
matrix W (the projection matrix).
5. Project Data Transform the original data to the new subspace: Z = X' W. Z is the new m x k low-

dimensional dataset.

Source: Based on Jolliffe & Cadima (2016)

» Linear Algebra in Optimization and Advanced Models

e Matrix Calculus and Gradient-Based Optimization

For models more complex than linear regression, an
analytical solution like the normal equations is not feasible.
The training of neural networks and other sophisticated
models relies on iterative optimization algorithms, the most
famous of which is gradient descent. The generalization of
calculus to vectors and matrices is essential for this process.
The gradient of a scalar-valued function (like a loss
function J(w)) with respect to a vector of parameters w is
itself a vector. Denoted V_w J(w), this gradient points in the
direction of the steepest ascent of the function (Saxe, 2021).

The gradient descent update rule, w=w - o V_w J(w),
is a vector subtraction operation. The learning rate o is a
scalar that modulates the size of the step taken in the direction
of the negative gradient. In modern deep learning,
frameworks like TensorFlow and PyTorch use automatic
differentiation to compute these gradients efficiently for
incredibly complex functions comprising millions of
parameters. This process, known as backpropagation, is
essentially a repeated application of the chain rule from
calculus through the computation graph of the network, and
it is implemented using large-scale matrix and tensor
operations. The calculation and application of gradients are
the engine of deep learning, and they are entirely dependent
on the rules of matrix calculus (Goodfellow et al., 2016).
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e Singular Value Decomposition (SVD) in Recommender
Systems

While eigen-decomposition is powerful, it is limited to
square matrices. The Singular Value Decomposition (SVD)
is a more general matrix factorization technique that applies
to any m x n rectangular matrix. It factorizes a matrix A into
three matrices: A = UELVAT, where U and V are orthogonal
matrices containing the left and right singular vectors,
and X is a diagonal matrix containing the singular values
(Strang, 2019). SVD is particularly powerful for identifying
latent concepts within data.

This property is exploited in collaborative filtering for
recommender systems. A user-item rating matrix R (a
rectangular, and very sparse, matrix) can be factorized via a
technique similar to SVD. The idea is that a low-rank
approximation R = P Q*T can be found, where the rows of
matrix P represent users' affinities for a set of latent factors
(e.g., genre preferences for movies), and the columns
of QAT represent items' expressions of those same latent
factors. The dot product of a user vector and an item vector
then predicts the user's rating for that item. By solving for the
matrices P and Q that best approximate the known ratings,
the model can fill in the missing entries of R, thereby
predicting ratings for unrated items and generating
recommendations. This demonstrates how a fundamental
matrix decomposition directly enables a multi-billion dollar
industry.
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e Tensors in Deep Learning

Deep learning, particularly in domains like computer
vision and natural language processing, pushes beyond the
limits of matrices into the realm of tensors. An input image is
not a vector; it is a 3D tensor of dimensions (height, width,
channels). A batch of 32 images is a 4D tensor of
dimensions (32, height, width, channels). The weights of a
convolutional layer are also 4D tensors, e.g., (kernel_height,
kernel_width, input_channels, output_channels) (Géron,
2022).

The operations in these networks are tensor operations.
Convolution itself is a specialized tensor multiplication. The
massively parallel architecture of GPUs is specifically
designed to perform these tensor operations at an immense
scale. Furthermore, the attention mechanism that powers the
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state-of-the-art Transformer architecture is built on a series of
matrix multiplications (query, key, and value matrices)
calculated over sequences of data, which are also represented
as tensors (Vaswani et al., 2017). The entire forward and
backward pass of a modern neural network is a carefully
orchestrated sequence of tensor manipulations, making linear
algebra (generalized to tensors) the undeniable language of
deep learning.

» Flowchart for Selecting the Right Linear Algebra Tool

Given the myriad connections between linear algebra
and ML, a practical guide for practitioners is valuable. The
flowchart in Figure 2 provides a heuristic for selecting the
appropriate linear algebraic machinery based on the primary
task of the ML problem at hand. This decision-making
process can streamline the model development and
implementation workflow.

What is the primary task?

e

/

—

Regression / Fitting

Clustering / Strycture Discovery

(OLS, QR Defomposition)

\ 4 =N

Singular Value Decomposition
(Latent Factors, Noise Reduction)

~
[ Solve Systemp of Equations

—

\

Dimensionality Reduction

Optim|zation

(PCA, Spectfal Methods)

y

Gradient Methods
(Matrix Calculus, Jacobians)

y
Eigen-Decpmposition J

G (R (R

Fig 2 Flowchart for Selecting Linear Algebra Tools in Machine Learning

1. METHODS

This review was conducted through a systematic
examination of existing literature at the intersection of linear
algebra and machine learning. The primary sources for this
synthesis included authoritative academic textbooks that
establish the foundational mathematical theories, such as
Strang (2019) and Goodfellow et al. (2016), alongside key

DISRT25SEP829

research papers from major machine learning conferences
like NeurIPS, ICML, and ICLR that demonstrate cutting-edge
applications. Furthermore, authoritative online resources,
including lecture notes from top-tier university courses (e.g.,
MIT, Stanford) and documentation for foundational libraries
(e.g., NumPy, PyTorch), were consulted to ensure practical
relevance and accuracy.
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The selection criteria for sources prioritized those that
provided clear, explicit links between linear algebraic
concepts and specific machine learning algorithms. Clarity of
explanation and foundational importance were valued over
extreme novelty for the purposes of this comprehensive
review. The temporal focus was on literature from 2020 to
2025 to ensure the review's contemporaneity, though seminal
older works were included where necessary for foundational
context. The quality of the methods described in sourced
papers was assessed based on the rigor of their mathematical
derivations, the clarity of their experimental design, and the
validity of their statistical measures for evaluating model
performance (e.g., mean squared error, accuracy, F1-score).

The information obtained from this survey was
organized and categorized not by individual source, but by
the primary machine learning task (e.g., data representation,
regression, dimensionality reduction, optimization) and the
linear algebraic concept that enables it. This organizational
structure aligns with the overall goal of the paper: to provide
a task-oriented guide to the linear algebra of machine
learning.

Iv. DISCUSSION

The synthesis presented in this review leads to an
inescapable conclusion: proficiency in linear algebra is not an
optional supplement to machine learning expertise but is
absolutely essential for a deep, intuitive, and innovative
understanding of the field. The argument is unifying: from the
simplest linear regression model to the most complex
transformer network, the core computations are
manifestations of vector and matrix operations, matrix
factorizations, and tensor calculus. Viewing ML through this
lens demystifies algorithms, revealing them as sequences of
understandable mathematical transformations rather than
opaque black boxes.

Despite its fundamental role, a significant challenge
persists: the gap between theoretical linear algebra and its
practical implementation in code. The complexity of
explaining advanced decompositions like SVD or the
mechanics of backpropagation to newcomers can be a barrier
to entry. Furthermore, the heavy abstraction provided by
high-level libraries like Scikit-learn and Keras can obscure
these foundations, allowing users to implement models
without understanding them (VanderPlas, 2023). Bridging
this gap requires pedagogical approaches that tightly couple
mathematical theory with  computational practice,
emphasizing the "why" behind the API calls.

Future directions and opportunities in this interplay are
vast. The role of numerical linear algebra libraries such as
NumPy, CuPy, and the linear algebra backends of PyTorch
and TensorFlow cannot be overstated; they serve as the
critical bridge between theory and application, providing
highly optimized implementations of these operations. The
development of new hardware, such as GPUs, TPUs, and
other Al accelerators, is itself an exercise in optimizing for
large-scale linear algebra. These chips are specifically
designed to perform matrix multiplications and convolutions
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with extreme efficiency and low power consumption, further
cementing the symbiotic relationship between linear algebra
and machine learning advancement (Jouppi et al., 2020).
There is also potential for exploring more advanced or
specialized matrix decompositions to inspire novel ML
algorithms for graph analysis, quantum machine learning, and
dynamical systems.

In conclusion, linear algebra provides the language,
the tools, and the computational framework that make
modern machine learning possible. It is the substrate upon
which data is represented, models are constructed, learning is
enacted, and innovations are built. A robust command of
these principles empowers one to not just use machine
learning, but to truly understand, adapt, and advance it.
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