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Abstract: Machine Learning (ML) is no longer a novel academic domain or even a niche within a specific technology but 

has become a technological engine that transforms many sectors of life: healthcare and finance, transportation and 

entertainment, etc. The effectiveness of such algorithms in analysing complex data, recognising patterns and giving precise 

predictions is frequently viewed as a kind of computational alchemy. This impression is however, false and does not represent 

a hard mathematical framework which is fundamental to both the knowledge and development of the field. Linear algebra 

forms the basis of this foundation by a very huge margin. In this paper, a detailed assessment will be given explaining the 

inseparable nature of linear algebra as the language of machine learning. The goal is to systematically break down the 

important ML algorithms, including both simplistic linear regression, but also more complicated deep learning models, and 

explicitly trace their basic mechanisms to the underlying linear algebraic operations, including: matrix multiplication, 

transformations of vectors spaces, and manipulations of tensors. This review will help to dispel the mystique of the black 

box nature of ML by showing that data representation, model operation, and optimization are all intrinsically linear 

algebraic operations. This synthesis is valuable to students in need of a more conceptual grasp, researchers in need of 

creating new algorithms, and practitioners in need of debugging, optimizing, and innovating their ML pipelines. Detailed 

understanding of these mathematical foundations is not only academic but a requirement to be able to master the practice 

and innovate in the sphere of artificial intelligence. 
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I. INTRODUCTION 

 

Machine learning, a sub-field of artificial intelligence 
is officially described as the research of those computer 

algorithms that may be enhanced by experience and by means 

of data (Mitchell, 1997). It is broadly divided into supervised 

learning, where the models are trained to map input data to 

known output labels; unsupervised learning, where the model 

is trained to learn the patterns based on the input data without 

the responses being provided; and reinforcement learning, as 

an agent is trained to make decisions by taking action and 

being rewarded in an environment (Sutton and Barto, 2018). 

The widespread use of ML applications has developed a 

tools-centric culture in which sophisticated models may be 
written in only a few lines of high-level code and the 

mathematical engines behind them may often be hidden. This 

abstraction results in the major issue, that is, practitioners can 

effectively use models without being able to sense their 

failure, maximize their performance out of the baseline 

parameters or advance on their architectures because of not 

knowing the underlying principles. 

 

 

The functioning and effectiveness of these algorithms 

are not a secret, but are deeply rooted in serious mathematics, 

especially linear algebra. Linear algebra gives us the 
vocabulary and syntax of explaining and performing the 

computations that underlie ML. It is the system that data is 

organized on, models are developed, and learning is 

operationalized. As an example, a single data element, i.e. the 

health statistics of a patient or the features of a product is 

inherently modeled as a high-dimensional vector. A full set 

of such data, such as thousands or millions of such data 

points, is organized in a matrix. This basic process of making 

a prediction in a linear model is simplified to a dot product of 

a weight vector and a feature vector. Moreover, the learning 

process, or fitting the model parameters to the minimal error, 
is a type of optimization problem, which is usually addressed 

with methods based on the matrix calculus, including gradient 

descent (Bishop, 2006). 

 

The underlying connection of linear algebra to 

machine learning is long-standing in textbook literature. ML 

as a story of the linear algebraic origin of the former can be 

explicitly constructed in textbooks like Strang's "Linear 

Algebra and Learning from Data" (2019) and Goodfellow's 

"Deep Learning" (2016). This body of work establishes the 
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fact that linear algebra is not merely a helpful tool but the very 
medium of computational learning. In order to describe this 

relationship in a systematic way, it is informative to directly 

map major concepts of linear algebra to their key uses in 
machine learning paradigms, as in Table 1. 

 

Table 1 Correspondence Between Key Linear Algebra Concepts and Machine Learning Applications 

Linear Algebra 

Concept 

Definition & Mathematical Significance Primary ML 

Application(s) 

Impact on ML Algorithm 

Vectors & 

Matrices 

Vectors are ordered lists of numbers 

(scalars) representing points or directions 

in space. Matrices are 2D arrays of 

numbers representing linear 

transformations or datasets. 

Universal data 

representation. All 

ML models. 

Provides the structure for input data 

(design matrix), model parameters 

(weight matrix), and output 

predictions. 

Systems of 

Linear 

Equations 

A set of equations with multiple variables 

that can be expressed in matrix form as Ax 

= b. 

Linear Regression, 

Least Squares 

Optimization. 

The core problem of fitting a linear 

model is solving a system of 

equations to find the optimal weights. 

Eigen-

Decomposition 

Factorizing a square matrix into its 
eigenvectors and eigenvalues, which reveal 

the matrix's fundamental properties and 

transformations. 

Principal 
Component 

Analysis (PCA), 

Spectral Clustering. 

Used for dimensionality reduction by 
identifying the directions 

(eigenvectors) of maximum variance 

in the data. 

Singular Value 

Decomposition 

(SVD) 

Factorizing any rectangular matrix into 

singular vectors and singular values, 

generalizing eigen-decomposition. 

Recommender 

Systems, Latent 

Semantic Analysis, 

Matrix Completion. 

Uncovers latent features in data for 

tasks like collaborative filtering and 

low-rank approximations. 

Matrix Calculus 

& Gradients 

The extension of calculus to matrices and 

vectors, allowing for the computation of 

derivatives of functions with matrix 

inputs/outputs. 

Training Neural 

Networks, Gradient-

Based Optimization 

(e.g., SGD, Adam). 

Enables the calculation of the error 

gradient, which is essential for 

updating model parameters during 

learning. 

Norms Functions that assign a strictly positive 

length or size to a vector (e.g., L2 norm for 

distance, L1 norm for sparsity). 

Regularization 

(L1/Lasso, 

L2/Ridge), Loss 
Functions. 

Used to constrain model complexity 

and prevent overfitting by adding a 

penalty to the loss function. 

Tensors Multi-dimensional arrays generalizing 

vectors (1D) and matrices (2D) to higher 

dimensions (3D, 4D, etc.). 

Deep Learning 

(Convolutional 

Neural Networks, 

Transformers). 

Efficiently represents complex data 

like images (3D: height, width, 

channels) and batches of data (4D: 

batch, height, width, channels). 

Source: Adapted from Strang (2019) and Goodfellow et al. (2016) 

 

Therefore, the primary goal of this paper is to 

demystify machine learning by systematically exploring the 

linear algebra at its core. This review will dissect how 

algorithms are constructed from first principles of vectors, 

matrices, and their operations, moving from basic models to 

advanced architectures. This approach provides a unifying 

lens through which the entire field of machine learning can 
be understood not as a collection of disparate tricks, but as a 

coherent application of linear mathematical principles. 

 

II. RESULTS 

 

 An Overview of Foundational Linear Algebra Concepts 

The journey into the mathematical heart of machine 

learning begins with a firm grasp of the basic elements of 

linear algebra. These elements are not abstract mathematical 

curiosities but are the direct building blocks of every data 

structure and computation in ML. A scalar is a single number, 
a singular entity representing magnitude alone, such as a 

single temperature reading or a model's learning rate. A 

vector is an ordered array of numbers, a one-dimensional list 

that represents a point in a multi-dimensional space. For 

example, the features of a single house—its square footage, 

number of bedrooms, and age—can be represented as a 

vector [2100, 4, 20], placing it within a 3-dimensional feature 

space. This conceptualization is fundamental to all of ML, as 

it allows for the geometric interpretation of data (Saxe, 2021). 

 

A matrix is a two-dimensional array of numbers, a 

rectangular grid that can represent an entire dataset. Each row 
of a matrix typically corresponds to a single data point (a 

vector), and each column corresponds to a specific feature. 

This structure, known as the design matrix, is the primary 

format for input data in most ML algorithms. A tensor is the 

generalization of these concepts to higher dimensions. While 

a vector is a first-order tensor and a matrix is a second-order 

tensor, a third-order tensor could represent a batch of images, 

and a fourth-order tensor could represent a batch of multi-

channel images. The operations defined on these structures 

are equally critical. Vector addition and scalar multiplication 

allow for the translation and scaling of data points. The dot 
product (or inner product) of two vectors yields a scalar that 

measures their similarity and is the fundamental operation 

behind calculating predictions and similarities (Petersen & 

Pedersen, 2012). 
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Beyond these basic operations, key concepts define the 
behavior of these mathematical objects. A linear 

transformation is a function that maps vectors from one space 

to another while preserving the operations of vector addition 

and scalar multiplication. These transformations are 

represented by matrices; multiplying a vector by a matrix 

applies the transformation to the vector. The rank of a matrix 

reveals the dimensionality of the vector space spanned by its 

columns, indicating the number of linearly independent 

features in a dataset. A low-rank matrix suggests redundant 

or correlated features. The determinant is a scalar value that 

provides information about the scaling factor of the linear 

transformation described by the matrix and whether that 
transformation is orientation-preserving. Perhaps most 

crucially, the inverse of a matrix, when it exists, allows for 

solving systems of linear equations. Understanding these 

concepts is not a mere academic exercise; it is essential for 

comprehending how models manipulate data, why certain 

computations succeed or fail (e.g., a non-invertible matrix 

halting a regression calculation), and how the geometric 

properties of data impact learning (Trefethen & Bau, 1997). 

A visual representation of these operations, such as Figure 1, 

can greatly aid in building intuition. 

 

 
Fig 1 Geometric Interpretation of Basic Linear Algebra Operations 

 

 Linear Algebra in Model Representation and Operation 

 

 Vectors and Matrices for Data Representation 

The first step in any machine learning process is how 

data is presented, and this is closely related to linear algebra. 

A raw data set, such as a CSV file with house details, is 
naturally organized in a matrix format. Each row represents a 

specific house, which is an individual data point. Each 

column represents a different characteristic of those houses, 

like square footage, zip code, or year built. When this data is 

loaded, it is converted into a design matrix, usually called X. 

This matrix has m rows and n columns, where m is the 

number of data points and n is the number of features (Géron, 

2022). This matrix format is efficient for computation and 

allows batch processing with optimized linear algebra 

libraries. 

 
A basic predictive model, like linear regression, uses 

matrix and vector operations to make predictions. The goal is 

to predict a target value, such as house price, based on a set 

of feature values. This is done by calculating a weighted sum 

of the input features, which is essentially the dot product 

between a weight vector and the feature vector, plus a bias 

term. For a single prediction, this is represented as ŷ = w · x 

+ b. For the entire dataset, this operation is expressed as a 

matrix multiplication: ŷ = Xw + b, where X is the design 

matrix, w is a column vector of weights, and ŷ is a column 

vector of predictions. This notation is not only elegant but 

also allows modern hardware, like GPUs, to perform millions 

of calculations quickly and efficiently, forming the 

foundation of training and prediction (VanderPlas, 2023). 

 

 Solving Systems of Equations for Regression 
Training a linear regression model involves finding the 

best weight vector w that minimizes the difference between 

predicted and actual values. 

 

The most common method, Ordinary Least Squares 

(OLS), uses a sum-of-squares loss function to measure this 

difference. Minimizing this loss leads to a system of 

equations known as the normal equations: (X^T X) w = X^T 

y (Deisenroth, Faisal, & Ong, 2020). Here, X^T is the 

transpose of the design matrix. The optimal weights, w*, are 

found by solving w* = (X^T X)^{-1} X^T y. 
 

This process shows how a fundamental machine 

learning task translates into a fundamental linear algebra 

problem: solving a system of equations. 

 

The matrix (X^T X) must be inverted, highlighting the 

importance of concepts like matrix invertibility and rank. If 

the features in X are dependent (i.e., X^T X is singular), the 

solution becomes unstable or impossible. For large datasets 

or to ensure numerical stability, direct inversion is avoided. 
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Instead, methods like QR decomposition or Singular Value 
Decomposition (SVD) are used to solve the system without 

inverting X^T X directly (Trefethen & Bau, 1997). Therefore, 

the entire process of linear regression, from setup to solution, 

is an application of linear algebra. 

 

 Eigen-Decomposition in Dimensionality Reduction 

A common issue in machine learning is the curse of 

dimensionality, where a large number of features can make 

models inefficient, prone to overfitting, and hard to interpret. 

 

Dimensionality reduction techniques address this by 
projecting data into a lower-dimensional space while keeping 

its main structure. Principal Component Analysis (PCA) is a 

leading method for linear dimensionality reduction and is 

based on eigen-decomposition (Jolliffe & Cadima, 2016). 

The process starts with calculating the covariance 
matrix of the centered data. This matrix, which is square and 

symmetric, shows the variance of each feature on its diagonal 

and the covariance between pairs of features off-diagonal. 

PCA finds the directions in the feature space where data 

varies the most. These directions are the eigenvectors of the 

covariance matrix. The corresponding eigenvalues show how 

much variance is captured by each eigenvector. The 

eigenvectors with the largest eigenvalues are the principal 

components. The data is then projected onto the subspace 

formed by the top-k principal components, resulting in a 

lower-dimensional representation that keeps most of the 
original data's variability. This entire process is a clear 

example of how matrix properties, such as eigenvectors and 

eigenvalues, reveal the underlying structure of high-

dimensional data. 

 

 

Table 2 The PCA Algorithm as a Linear Algebraic Procedure 

Step Description Linear Algebra Operation 

1. Center the data Subtract the mean vector from each row of the data matrix X to get X'. 

2. Compute Covariance Calculate the covariance matrix Σ = (1/(m-1)) * X'^T X'. 

3. Eigen-decomposition Factorize the covariance matrix: Σ = QΛQ^T, where Λ is a diagonal matrix of eigenvalues 

and Q is a matrix of eigenvectors. 

4. Select Components Sort eigenvectors in Q by descending eigenvalues. Select the top-k columns of Q to form 

matrix W (the projection matrix). 

5. Project Data Transform the original data to the new subspace: Z = X' W. Z is the new m x k low-

dimensional dataset. 

Source: Based on Jolliffe & Cadima (2016) 

 
 Linear Algebra in Optimization and Advanced Models 

 

 Matrix Calculus and Gradient-Based Optimization 

For models more complex than linear regression, an 

analytical solution like the normal equations is not feasible. 

The training of neural networks and other sophisticated 

models relies on iterative optimization algorithms, the most 

famous of which is gradient descent. The generalization of 

calculus to vectors and matrices is essential for this process. 

The gradient of a scalar-valued function (like a loss 

function J(w)) with respect to a vector of parameters w is 

itself a vector. Denoted ∇_w J(w), this gradient points in the 

direction of the steepest ascent of the function (Saxe, 2021). 

 

The gradient descent update rule, w = w - α ∇_w J(w), 

is a vector subtraction operation. The learning rate α is a 

scalar that modulates the size of the step taken in the direction 

of the negative gradient. In modern deep learning, 

frameworks like TensorFlow and PyTorch use automatic 

differentiation to compute these gradients efficiently for 

incredibly complex functions comprising millions of 

parameters. This process, known as backpropagation, is 
essentially a repeated application of the chain rule from 

calculus through the computation graph of the network, and 

it is implemented using large-scale matrix and tensor 

operations. The calculation and application of gradients are 

the engine of deep learning, and they are entirely dependent 

on the rules of matrix calculus (Goodfellow et al., 2016). 

 

 Singular Value Decomposition (SVD) in Recommender 

Systems 

While eigen-decomposition is powerful, it is limited to 

square matrices. The Singular Value Decomposition (SVD) 

is a more general matrix factorization technique that applies 

to any m x n rectangular matrix. It factorizes a matrix A into 

three matrices: A = UΣV^T, where U and V are orthogonal 

matrices containing the left and right singular vectors, 

and Σ is a diagonal matrix containing the singular values 

(Strang, 2019). SVD is particularly powerful for identifying 

latent concepts within data. 

 
This property is exploited in collaborative filtering for 

recommender systems. A user-item rating matrix R (a 

rectangular, and very sparse, matrix) can be factorized via a 

technique similar to SVD. The idea is that a low-rank 

approximation R ≈ P Q^T can be found, where the rows of 

matrix P represent users' affinities for a set of latent factors 

(e.g., genre preferences for movies), and the columns 

of Q^T represent items' expressions of those same latent 

factors. The dot product of a user vector and an item vector 

then predicts the user's rating for that item. By solving for the 

matrices P and Q that best approximate the known ratings, 
the model can fill in the missing entries of R, thereby 

predicting ratings for unrated items and generating 

recommendations. This demonstrates how a fundamental 

matrix decomposition directly enables a multi-billion dollar 

industry. 
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 Tensors in Deep Learning 
Deep learning, particularly in domains like computer 

vision and natural language processing, pushes beyond the 

limits of matrices into the realm of tensors. An input image is 

not a vector; it is a 3D tensor of dimensions (height, width, 

channels). A batch of 32 images is a 4D tensor of 

dimensions (32, height, width, channels). The weights of a 

convolutional layer are also 4D tensors, e.g., (kernel_height, 

kernel_width, input_channels, output_channels) (Géron, 

2022). 

 

The operations in these networks are tensor operations. 
Convolution itself is a specialized tensor multiplication. The 

massively parallel architecture of GPUs is specifically 

designed to perform these tensor operations at an immense 

scale. Furthermore, the attention mechanism that powers the 

state-of-the-art Transformer architecture is built on a series of 
matrix multiplications (query, key, and value matrices) 

calculated over sequences of data, which are also represented 

as tensors (Vaswani et al., 2017). The entire forward and 

backward pass of a modern neural network is a carefully 

orchestrated sequence of tensor manipulations, making linear 

algebra (generalized to tensors) the undeniable language of 

deep learning. 

 

 Flowchart for Selecting the Right Linear Algebra Tool 

Given the myriad connections between linear algebra 

and ML, a practical guide for practitioners is valuable. The 
flowchart in Figure 2 provides a heuristic for selecting the 

appropriate linear algebraic machinery based on the primary 

task of the ML problem at hand. This decision-making 

process can streamline the model development and 

implementation workflow. 

 

 
Fig 2 Flowchart for Selecting Linear Algebra Tools in Machine Learning 

 

III. METHODS 
 

This review was conducted through a systematic 

examination of existing literature at the intersection of linear 

algebra and machine learning. The primary sources for this 

synthesis included authoritative academic textbooks that 

establish the foundational mathematical theories, such as 

Strang (2019) and Goodfellow et al. (2016), alongside key 

research papers from major machine learning conferences 
like NeurIPS, ICML, and ICLR that demonstrate cutting-edge 

applications. Furthermore, authoritative online resources, 

including lecture notes from top-tier university courses (e.g., 

MIT, Stanford) and documentation for foundational libraries 

(e.g., NumPy, PyTorch), were consulted to ensure practical 

relevance and accuracy. 
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The selection criteria for sources prioritized those that 
provided clear, explicit links between linear algebraic 

concepts and specific machine learning algorithms. Clarity of 

explanation and foundational importance were valued over 

extreme novelty for the purposes of this comprehensive 

review. The temporal focus was on literature from 2020 to 

2025 to ensure the review's contemporaneity, though seminal 

older works were included where necessary for foundational 

context. The quality of the methods described in sourced 

papers was assessed based on the rigor of their mathematical 

derivations, the clarity of their experimental design, and the 

validity of their statistical measures for evaluating model 
performance (e.g., mean squared error, accuracy, F1-score). 

 

The information obtained from this survey was 

organized and categorized not by individual source, but by 

the primary machine learning task (e.g., data representation, 

regression, dimensionality reduction, optimization) and the 

linear algebraic concept that enables it. This organizational 

structure aligns with the overall goal of the paper: to provide 

a task-oriented guide to the linear algebra of machine 

learning. 

 

IV. DISCUSSION 
 

The synthesis presented in this review leads to an 

inescapable conclusion: proficiency in linear algebra is not an 

optional supplement to machine learning expertise but is 

absolutely essential for a deep, intuitive, and innovative 

understanding of the field. The argument is unifying: from the 

simplest linear regression model to the most complex 

transformer network, the core computations are 

manifestations of vector and matrix operations, matrix 

factorizations, and tensor calculus. Viewing ML through this 

lens demystifies algorithms, revealing them as sequences of 
understandable mathematical transformations rather than 

opaque black boxes. 

 

Despite its fundamental role, a significant challenge 

persists: the gap between theoretical linear algebra and its 

practical implementation in code. The complexity of 

explaining advanced decompositions like SVD or the 

mechanics of backpropagation to newcomers can be a barrier 

to entry. Furthermore, the heavy abstraction provided by 

high-level libraries like Scikit-learn and Keras can obscure 

these foundations, allowing users to implement models 

without understanding them (VanderPlas, 2023). Bridging 
this gap requires pedagogical approaches that tightly couple 

mathematical theory with computational practice, 

emphasizing the "why" behind the API calls. 

 

Future directions and opportunities in this interplay are 

vast. The role of numerical linear algebra libraries such as 

NumPy, CuPy, and the linear algebra backends of PyTorch 

and TensorFlow cannot be overstated; they serve as the 

critical bridge between theory and application, providing 

highly optimized implementations of these operations. The 

development of new hardware, such as GPUs, TPUs, and 
other AI accelerators, is itself an exercise in optimizing for 

large-scale linear algebra. These chips are specifically 

designed to perform matrix multiplications and convolutions 

with extreme efficiency and low power consumption, further 
cementing the symbiotic relationship between linear algebra 

and machine learning advancement (Jouppi et al., 2020). 

There is also potential for exploring more advanced or 

specialized matrix decompositions to inspire novel ML 

algorithms for graph analysis, quantum machine learning, and 

dynamical systems. 

 

In conclusion, linear algebra provides the language, 

the tools, and the computational framework that make 

modern machine learning possible. It is the substrate upon 

which data is represented, models are constructed, learning is 
enacted, and innovations are built. A robust command of 

these principles empowers one to not just use machine 

learning, but to truly understand, adapt, and advance it. 
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