The Role of Socio-Economic Factors in Shaping Neural Development and Learning Abilities of Students

Archana Hajong¹; V. Ambedkar²

¹PhD Research Scholar, Department of Education. ²Professor & Dean, Faculty of Education.

^{1,2}Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, India.

Publication Date: 2025/10/03

Abstract: This study synthesises current evidence on how socio-economic status (SES) influences neural development and learning in children and adolescents. Using a content analysis approach, we reviewed peer-reviewed studies across developmental neuroscience, psychology, and education to map pathways linking SES with brain structure and function, executive processes, and academic achievement. Throughout the corpus, low SES is consistently linked to altered maturation in cortico-limbic and frontoparietal networks, reduced volumes related to language and memory, and weaker functional segregation; these differences often coincide with diminished executive function, lower working memory, and poorer academic performance. Mechanisms include early-life nutrition and health, cumulative stress, cognitive stimulation at home and school, and neighbourhood resources. The evidence also highlights protective factors—such as scaffolding and enriched learning environments, strong teacher-student relationships, parental support, preschool attendance, and nutrition literacy—that mediate or moderate risk. Theoretically, the findings align with Maslow's hierarchy (unmet deficiency needs, limiting growth needs) and Vygotsky's sociocultural theory (development through guided participation within the zone of proximal development). Notably, some students show academic resilience: higher cognitive ability and robust executive skills buffer the effects of socioeconomic disadvantages. The synthesis indicates that SES impacts learning through interconnected biological, mental, and environmental pathways rather than a single causal route. We conclude that multi-level interventions integrating early nutrition and health support, executive-function training, cognitively rich instruction, and community investments are most promising for reducing SES-related disparities. Future research should include longitudinal, culturally diverse cohorts to clarify sensitive periods and optimise cost-effective, equity-focused policies and practices. The review also emphasises ethical and policy implications for equitable education.

Keywords: Neural Development; Socio-Economic Status; Learning Abilities; Adolescent Brain Development.

How to Cite: Archana Hajong; V. Ambedkar (2025) The Role of Socio-Economic Factors in Shaping Neural Development and Learning Abilities of Students. *International Journal of Innovative Science and Research Technology*, 10(9), 2225-2230. https://doi.org/10.38124/ijisrt/25sep1424

I. INTRODUCTION

> Understanding Neural Development

The human brain stands as one of the most complex biological systems, consisting of more than 100 billion neurons in its mature form.[1]. Neurons serve as the brain's primary information-processing cells. They come in various shapes, sizes, and functions. By forming connections with one another, neurons create complex networks that enable all of our thoughts, sensations, emotions, and actions. Each neuron can connect with over 1,000 others, leading to an estimated 60 trillion synaptic connections in the adult brain. These connections occur at junctions known as synapses.[2]. Beginning as a tiny neural tube, brain development rapidly

produces neurons—about 250,000 per minute during pregnancy—culminating in 100 billion neurons and 100 trillion connections. Shaped by genetic and environmental factors, it progresses through stages like cell growth, migration, and pruning. Neuron formation essentially finishes by 18 months, though pruning extends into later years.[3]. New neurons in the adult hippocampus are integrated into brain circuits involved in learning and memory. Their survival depends on effortful learning—focused, sustained mental activity—which activates and connects them to existing networks. Without such knowledge, most new cells die. This integration helps link current experiences with past memories, supporting prediction and adaptive thinking. Thus, neurogenesis and learning work together to keep the brain fit and responsive.[4]. While it is well

https://doi.org/10.38124/ijisrt/25sep1424

known that new neurons are added to the adult brain (especially in the olfactory bulb and hippocampus), their exact function is still not fully understood. These neurons can form synapses with existing ones without disrupting brain circuits, suggesting a role in learning and memory. Thanks to new genetic and imaging tools, researchers are now observing how these neurons integrate into brain networks, revealing that they bring flexibility and adaptability to mature circuits—helping the brain adjust to new experiences and environmental changes.[5].

> Adolescent Brain Development

The brain is not fully developed at birth; its maturation continues throughout childhood and adolescence, with certain age-related changes in brain structure and function—such as the limited generation of new brain cells—persisting into adulthood.[6] Adolescence is a time of rapid growth marked by significant and dynamic changes in brain structure and function.[7]. Recent neuroscience has shifted the focus from simply blaming "raging hormones" to recognising the major transformations that occur in the brain during adolescence. These changes—shaped by genetics, hormonal fluctuations, environmental factors, and stress—significantly influence how adolescents think, feel, and behave. They contribute to increased risk-taking, heightened emotional responses, and greater vulnerability to mental health issues such as depression and substance abuse. Adolescent brain development also plays a crucial role in shaping cognitive growth, self-control, and overall behavioral patterns.[8].

> Interplay of Biology and Environment in Learning

Recent neurobiological research shows that brain development and learning are strongly shaped by social-emotional experiences. Factors like sleep, toxin exposure, and puberty also influence brain function, affecting cognition and emotional well-being. These findings highlight the need for a "whole child" approach in education, recognizing that learning is deeply connected to both biological and social-emotional factors. In short, learning depends on how nurture influences nature. [9].

> Socio-Economic Status and Cognitive Development

Socioeconomic status is linked to variations in adolescents' social, cognitive, and behavioral development.[10]. Children from lower socioeconomic backgrounds show reduced brain volume in areas related to memory, emotion, and language. These differences grow with age and are likely due to factors like stress and limited language exposure, not gender, race, or IQ—highlighting the need for early intervention.[11].

THEORETICAL PERSPECTIVES ON LEARNING AND DEVELOPMENT

➤ Maslow's Hierarchy of Needs

According to Maslow, human needs are structured in a hierarchy, beginning with basic physiological (survival) needs at the foundation and culminating in self-actualisation needs at the top, which are more creative and intellectually driven. He asserted that individuals must first fulfil their survival needs before they can address higher-level needs. As one moves up the hierarchy, these needs become more challenging due to various interpersonal and environmental obstacles. Moreover,

the needs at higher levels tend to be psychological and longterm, unlike the lower-level needs, which are primarily physiological and immediate.[12] In alignment with Maslow's theory, participants reported significant difficulties fulfilling their basic needs. Physiological challenges included food insecurity, lack of adequate sleep, and poor mental health. Safety-related issues encompassed unreliable transportation, unsafe housing, and financial instability stemming from debt and the inability to cover both academic and living expenses. Belongingness was compromised due to challenges in forming peer relationships and exclusion from social activities due to financial limitations. Experiences of bias and discrimination from peers, faculty, and institutions negatively impacted selfesteem. Although self-actualisation needs were met mainly, some participants expressed that ongoing financial hardship hindered their ability to fully realise their potential, despite feeling a sense of pride in their medical education journey.[13]. Supporting this perspective, Maslow's theory suggests that children must first meet basic "deficiency needs" like safety and belonging before pursuing "growth needs" such as academic achievement. A study of 390 low-income students from over 40 schools in the Midwestern United States explored this connection. Parent surveys measured deficiency needs, and academic performance was assessed using both surveys and standardised test scores. The findings revealed a significant positive relationship between the fulfilment of basic needs and educational success, with access to health and dental care emerging as the most influential factor. These results further emphasise the crucial role of meeting foundational needs to enhance student learning outcomes.[14].

Vygotsky's Sociocultural Theory

Vygotsky's Sociocultural Theory views learning as a deeply social and cultural process. He believed that children first learn through interaction with others (like parents or teachers) and later internalize this knowledge. A key concept is the Zone of Proximal Development (ZPD)—the range of tasks a child can perform with guidance but not alone. Through scaffolding, or support from more knowledgeable others, learners gradually become independent. Vygotsky emphasized that social interaction, cultural tools, and language play a vital role in shaping thinking and development. Learning, in this view, is not isolated—it's shaped by society relationships.[15]. Supporting this view, a study examined resting-state fMRI data from 1,012 children and adolescents (ages 8-22) to investigate the impact of neighborhood socioeconomic status (SES) on brain development. The findings revealed that individuals from higher backgrounds showed more rapid maturation in the segregation of brain networks—especially in regions related to emotion (limbic system), motor control (somatomotor), and attention. These results suggest that enriched socio-cultural environments promote faster neural specialisation, which supports advanced cognitive functions such as language, self-regulation, and complex reasoning. This aligns with Vygotsky's perspective that the social and cultural environment fundamentally shapes cognitive development.[16].

> Empirical Evidence Linking SES, Brain, and Learning

Adding to this growing body of evidence, a recent study in [17] examined the influence of socioeconomic status on executive function in kindergarten children. Utilizing a

quantitative causal-associative approach through a survey method and path analysis, the study involved 102 children selected via multistage cluster random sampling. Executive function was measured using a modified BRIEF-P instrument, while socioeconomic status was assessed through questionnaires. The analysis revealed a significant positive effect of socioeconomic status on executive function, with a path coefficient of 0.358 and a t-value of 5.47. Children from higher SES backgrounds demonstrated stronger executive functioning. These findings highlight the need for targeted interventions to support executive development in children from lower-income families and contribute to the formulation of more inclusive and equitable early childhood education policies. At the neurological level, the role of brain structure in supporting advanced cognitive processes is exemplified by findings from the study of Albert Einstein's brain. When neuron-to-glia ratios in Einstein's cortex were compared with those of 11 male controls, a significantly lower ratio was observed in the left area 39 (t = 2.62, df = 9, p < 0.05), indicating a higher density of glial cells. Since glial cells support neuronal communication and metabolic activity, this structural difference may have enhanced Einstein's capacity for abstract thinking and imaginative reasoning. While this represents a single case, it aligns with the broader argument that enriched neural environments-whether through SES, social interaction, or educational opportunity—can enhance higherorder cognitive functioning.[18]

> Rationale for the Present Study

Neural development is shaped by biological and environmental influences, with socio-economic conditions strongly affecting students' learning abilities. However, limited work has synthesised how socio-economic status, motivation, and constructivist approaches jointly influence academic achievement. This study applies a content analysis approach to integrate existing evidence and provide a clearer understanding of these relationships.

> Scope of the Study

This study analyses existing literature that explores the relationship between socio-economic status, neural development, and students' learning outcomes. The scope is limited to secondary data sources such as peer-reviewed articles, books, and reports, to synthesise key patterns and themes rather than collect primary data. By applying content analysis, the study seeks to generate an integrated understanding of how socio-economic and psychological factors collectively influence student learning.

> Significance of Study

This study shows that socio-economic status plays a significant role in shaping students' brain development and learning. Higher SES is linked with better working memory, stronger brain connectivity, and richer home learning environments, all of which improve academic outcomes. Using content analysis, the study highlights patterns across existing research, offering insights to help educators and policymakers design more inclusive practices to support disadvantaged learners.[19]

- > Objectives of the Study
- To examine the influence of socio-economic status on students' neural development, cognitive abilities, nutrition, executive function, and academic achievement.

https://doi.org/10.38124/ijisrt/25sep1424

• To provide an integrated perspective on how socioeconomic status interacts with biological, cognitive, and environmental factors to shape learning outcomes.

II. RESEARCH METHODOLOGY AND ANALYSIS.

The present study employed a content analysis approach to synthesize existing research on how socio-economic status (SES) influences neural development, cognitive functioning, executive function, nutrition, and academic achievement in students. Six relevant studies were selected based on their focus on SES, academic performance, cognitive and executive skills, and nutrition. Each study was systematically coded, categorized, and analyzed to identify patterns, mediating and moderating factors, and gaps in the current research. The analysis aimed to provide an integrated framework linking SES with neural, cognitive, and academic outcomes.

➤ Theme A: Influence of Early Nutrition, Brain Development, and IQ on Academic Achievement

Early-life nutritional status, brain development, and IQ are closely interconnected. In a study of Chilean high-school graduates, students with similar IQs had comparable nutritional status, brain development, and scholastic achievement regardless of SES. Maternal IQ, brain volume, and severe undernutrition during the first year of life were the strongest predictors of child IQ. Child IQ, in turn, explained most of the variance in academic achievement and aptitude, highlighting the critical role of early nutrition and maternal factors in shaping learning outcomes.[20]

➤ Theme B: Mediators and Protective Factors in SES-Related Cognitive and Academic Outcomes

Low socioeconomic status (SES) is strongly associated with poorer executive function (EF), language abilities, and academic achievement in children and adolescents. This theme highlights the mechanisms that mediate or buffer these associations. Studies indicate that cognitive stimulation, parental support, home learning activities, and stress reduction mediate the impact of SES on cognitive and academic outcomes. Additionally, school- and neighbourhood-level factors—such as classroom environment, teacher—student relationships, educational expectations, and preschool attendance—serve as protective moderators, reducing the negative effects of low SES. These findings underscore the importance of targeted interventions at home, school, and community levels to mitigate SES-related disparities and promote equitable learning outcomes.[21]

https://doi.org/10.38124/ijisrt/25sep1424

➤ Theme C: Neural and Behavioural Impacts of Poverty and Low Socioeconomic Status

Low socioeconomic status (SES) and poverty have profound effects on both brain development and behaviour. Children from low-SES backgrounds often experience poor nutrition, high stress, and exposure to environmental hazards, which negatively affect critical brain regions such as the cortex, hippocampus, and amygdala. These neural changes can result in delayed learning, language difficulties, poor academic performance, and increased risk of psychological disorders. The interplay between neural impairments and behavioural outcomes perpetuates a cycle of poverty and developmental disadvantage. Interventions targeting early childhood neural and cognitive development, alongside economic support, are essential to break this cycle and promote equity in education and health.[22]

> Theme D: Academic Resilience and the Role of Cognitive Ability and SES

Children from disadvantaged backgrounds may face challenges in school, but some show academic resilience, performing well despite low socioeconomic status (SES). This study analyzed data from 5,001 participants in the ABCD Study to examine whether cognitive abilities and SES interact to influence grades. Results show that parental education and household income consistently predict grades, while neighborhood deprivation only predicts grades when cognitive ability is not considered. Cognitive abilities interact with parental education, suggesting they can help buffer the negative effects of low SES on academic performance. [23]

Theme E: Executive Function as a Mediator and Moderator between SES and Academic Achievement

Executive function (EF) plays a key role in linking family socioeconomic status (SES) and academic achievement. In a study of 236 Chinese fifth graders, parental SES predicted academic performance, and children's EF both mediated and moderated this relationship. Specifically, low SES negatively affected academic achievement only for children with lower EF, while those with higher EF were protected. These findings highlight the importance of supporting executive function development to reduce SES-related disparities in learning outcomes.[24]

➤ Theme F: Nutrition, SES, and Intelligence Development

Children's nutrition influences not only health but also intelligence and academic performance. This study examined how food and nutrition literacy (FNLIT) and dietary diversity (DDS) mediate the impact of socioeconomic status (SES) on children's cognitive development. Findings suggest that better nutrition and dietary diversity can help mitigate the negative effects of low SES on intelligence, highlighting the importance of improving childhood nutrition for learning outcomes. [25]

> Synthesis Across Themes

The analysis of these six themes highlights that SES interacts with early nutrition, maternal factors, cognitive and executive abilities, and environmental support to shape learning and academic outcomes. Interventions targeting nutrition, executive function, cognitive stimulation, and educational resources can collectively help reduce SES-related

disparities, supporting equitable academic achievement for all students.

III. DISCUSSION

The present study synthesizes evidence on the influence of socio-economic status (SES) on neural development, cognitive functioning, executive skills, nutrition, and academic achievement, revealing several key insights. Earlylife nutrition and maternal factors strongly shape neural development and IQ, which in turn affect academic performance, highlighting the importance of interventions targeting nutrition and health in the first years of life. Cognitive stimulation, parental support, home learning enriched school activities. and and neighborhood environments serve as mediating and protective mechanisms, offering opportunities for targeted interventions at multiple levels. Children from low-SES backgrounds often face environmental stressors that negatively impact critical brain regions, leading to learning difficulties and psychological vulnerability, emphasizing the need to address these neural and behavioral effects early to break the cycle of poverty and educational disadvantage. Some children demonstrate academic resilience despite low SES, with cognitive abilities interacting with parental education to buffer the negative effects of socioeconomic disadvantage. Executive function plays a dual role in mediating and moderating the relationship between SES and academic achievement, suggesting that interventions to strengthen executive skills can reduce SESrelated disparities. Additionally, dietary diversity and food and nutrition literacy mediate the impact of SES on intelligence, indicating that improving childhood nutrition can positively influence cognitive development and learning outcomes. Overall, SES shapes educational outcomes through complex pathways involving nutrition, neural development, cognitive skills, and environmental factors, underscoring the need for a holistic approach to enhance educational equity.

IV. CONCLUSION

This content analysis highlights the multifaceted influence of socio-economic status on students' neural, cognitive, and academic development. Early nutrition, maternal factors, executive function, mental stimulation, and supportive environments mediate and moderate the relationship between SES and learning outcomes. Interventions integrating health, cognitive, and educational strategies can reduce disparities and promote academic equity, particularly for children from socioeconomically disadvantaged backgrounds. Future research should focus on longitudinal studies, multi-level interventions, and culturally diverse populations to further refine the understanding of SES-related influences on learning and brain development.

REFERENCES

- [1]. B. Pakkenberg and H. J. G. Gundersen, 'Neocortical neuron number in humans: Effect of sex and age', *J. Comp. Neurol.*, vol. 384, no. 2, pp. 312–320, 1997, doi: 10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-K.
- [2]. J. Stiles and T. L. Jernigan, 'The Basics of Brain Development', *Neuropsychol. Rev.*, vol. 20, no. 4, pp. 327–348, 2010, doi: 10.1007/s11065-010-9148-4.
- [3]. S. Ackerman, 'The Development and Shaping of the Brain', in *Discovering the Brain*, National Academies Press (US), 1992. Accessed: Jul. 17, 2025. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK234146/
- [4]. T. J. Shors, L. Anderson, D. M. Curlik, and S. Nokia, 'Use it or lose it: How neurogenesis keeps the brain fit for learning', *Behav. Brain Res.*, vol. 227, no. 2, pp. 450–458, Feb. 2012, doi: 10.1016/j.bbr.2011.04.023.
- [5]. W. Kelsch, S. Sim, and C. Lois, 'Watching Synaptogenesis in the Adult Brain', *Annu. Rev. Neurosci.*, vol. 33, no. Volume 33, 2010, pp. 131–149, Jul. 2010, doi: 10.1146/annurev-neuro-060909-153252.
- [6]. V. B. de Graaf-Peters and M. Hadders-Algra, 'Ontogeny of the human central nervous system: What is happening when?', *Early Hum. Dev.*, vol. 82, no. 4, pp. 257–266, Apr. 2006, doi: 10.1016/j.earlhumdev.2005.10.013.
- [7]. R. A. I. Bethlehem *et al.*, 'Brain charts for the human lifespan', *Nature*, vol. 604, no. 7906, pp. 525–533, Apr. 2022, doi: 10.1038/s41586-022-04554-y.
- [8]. L. P. Spear, *The behavioral neuroscience of adolescence*. in The behavioral neuroscience of adolescence. New York, NY, US: W. W. Norton & Company, 2010, pp. xvii, 391.
- [9]. M. H. Immordino-Yang, L. Darling-Hammond, and C. R. Krone, 'Nurturing Nature: How Brain Development Is Inherently Social and Emotional, and What This Means for Education', *Educ. Psychol.*, vol. 54, no. 3, pp. 185–204, Jul. 2019, doi: 10.1080/00461520.2019.1633924.
- [10]. L. Buckley, M. Broadley, and C. N. Cascio, 'Socio-economic status and the developing brain in adolescence: A systematic review', *Child Neuropsychol.*, vol. 25, no. 7, pp. 859–884, Oct. 2019, doi: 10.1080/09297049.2018.1549209.
- [11]. K. G. Noble, S. M. Houston, E. Kan, and E. R. Sowell, 'Neural correlates of socioeconomic status in the developing human brain', *Dev. Sci.*, vol. 15, no. 4, pp. 516–527, Jul. 2012, doi: 10.1111/j.1467-7687.2012.01147.x.
- [12]. Saul McLeod, '(PDF) Maslow's Hierarchy of Needs', ResearchGate. Accessed: Jul. 20, 2025. [Online]. Available: https://www.researchgate.net/publication/383241976_ Maslow's_Hierarchy_of_Needs
- [13]. H. R. C. Mason *et al.*, 'Understanding the Medical Education Experiences of Low-Income Students Through a Maslow's Hierarchy of Needs Lens: An Exploratory Qualitative Study', *J. Gen. Intern. Med.*, vol. 40, no. 6, pp. 1367–1377, May 2025, doi: 10.1007/s11606-024-09161-3.

- [14]. A. Noltemeyer, K. Bush, J. Patton, and D. Bergen, 'The relationship among deficiency needs and growth needs: An empirical investigation of Maslow's theory', *Child. Youth Serv. Rev.*, vol. 34, no. 9, pp. 1862–1867, Sep. 2012, doi: 10.1016/j.childyouth.2012.05.021.
- [15]. I. A. Panhwar, M. Usman, F. Panhwar, and T. A. Surahio*, 'Exploring the Impact of Zone of Proximal Development and Scaffolding in Second Language Acquisition: A Comparative Study of Vygotskian and Freirean Approaches', *Soc. Sci. Rev. Arch.*, vol. 3, no. 1, Art. no. 1, Feb. 2025, doi: 10.70670/sra.v3i1.416.
- [16]. R. D. S. Raizada and M. M. Kishiyama, 'Effects of Socioeconomic Status on Brain Development, and How Cognitive Neuroscience May Contribute to Levelling the Playing Field', *Front. Hum. Neurosci.*, vol. 4, p. 3, Feb. 2010, doi: 10.3389/neuro.09.003.2010.
- [17]. D. Susanti, 'The Influence of Socioeconomic Status on Executive Functions: Causal Study in Kindergarten Group B DKI Jakarta Province in 2024', *JPUD J. Pendidik. Usia Dini*, vol. 18, no. 2, Art. no. 2, Dec. 2024, doi: 10.21009/jpud.v18i2.50298.
- [18]. M. C. Diamond, A. B. Scheibel, G. M. Murphy, and T. Harvey, 'On the brain of a scientist: Albert Einstein', *Exp. Neurol.*, vol. 88, no. 1, pp. 198–204, Apr. 1985, doi: 10.1016/0014-4886(85)90123-2.
- [19]. M. L. Rosen, M. A. Sheridan, K. A. Sambrook, A. N. Meltzoff, and K. A. McLaughlin, 'Socioeconomic disparities in academic achievement: A multi-modal investigation of neural mechanisms in children and adolescents', *NeuroImage*, vol. 173, pp. 298–310, Jun. 2018, doi: 10.1016/j.neuroimage.2018.02.043.
- [20]. D. M. Ivanovic *et al.*, 'Nutritional status, brain development and scholastic achievement of Chilean high-school graduates from high and low intellectual quotient and socio-economic status', *Br. J. Nutr.*, vol. 87, no. 1, pp. 81–92, Jan. 2002, doi: 10.1079/BJN2001485.
- [21]. D. Rakesh, P. A. Lee, A. Gaikwad, and K. A. McLaughlin, 'Annual Research Review: Associations of socioeconomic status with cognitive function, language ability, and academic achievement in youth: a systematic review of mechanisms and protective factors', *J. Child Psychol. Psychiatry*, vol. 66, no. 4, pp. 417–439, Apr. 2025, doi: 10.1111/jcpp.14082.
- [22]. E. A. Hamza, R. Tindle, S. Pawlak, D. Bedewy, and A. A. Moustafa, 'The impact of poverty and socioeconomic status on brain, behaviour, and development: a unified framework', *Rev. Neurosci.*, vol. 35, no. 6, pp. 597–617, Aug. 2024, doi: 10.1515/revneuro-2023-0163.
- [23]. L. Langensee, T. Rumetshofer, and J. Mårtensson, 'Interplay of socioeconomic status, cognition, and school performance in the ABCD sample', *Npj Sci. Learn.*, vol. 9, no. 1, p. 17, Mar. 2024, doi: 10.1038/s41539-024-00233-x.
- [24]. Q. Hu *et al.*, 'The Relationship between Socioeconomic Status and Academic Achievement is Mediated and Moderated by Executive Functions', *J. Youth Adolesc.*, vol. 53, no. 7, pp. 1593–1604, Jul. 2024, doi: 10.1007/s10964-024-01941-8.

ISSN No:-2456-2165

https://doi.org/10.38124/ijisrt/25sep1424

[25]. Y. Qian, Q. Su, W. Liu, L. Ma, M. Ma, and L. Ma, 'The influence of socioeconomic status on intelligence in school-age children in Xuyong County: a mediation analysis of nutrition literacy and dietary diversity', *Eur. J. Nutr.*, vol. 64, no. 2, p. 100, Feb. 2025, doi: 10.1007/s00394-025-03599-9.