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Abstract: Stress is a state that occurs when an individual's physical and mental resources are taxed in response to
demands, becoming especially evident under heavy mental exertion. Mental workload is a significant psychophysiological
metric that directly influences task performance and can also lead to mental diseases such as depression. Thus, the
objective evaluation of stress levels using physiological data is crucial for enhancing work productivity and assuring safety.
This work employed an integrated approach utilizing electrocardiography (ECG) and photoplethysmography (PPG)
signals for stress detection. The data were sourced from the publically accessible MAUS dataset and gathered from 22
healthy participants utilizing wearable sensors during N-back activities. The signals were segmented into epochs, and a
total of 50 features were extracted at both temporal and spectral levels. The features were examined utilizing diverse
machine learning algorithms. The models' performance is assessed using accuracy, specificity, F-score, and AUC criteria,
with the Bagged Trees method achieving the greatest accuracy of 98.6%. The results indicate that employing several
biosignals and sophisticated signal processing techniques provides excellent precision in stress detection. The device
provides a pragmatic option for real-time monitoring of individuals' stress levels in their daily lives, thanks to its portable

design.
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. INTRODUCTION

Stress is a psychological condition characterized by the
comprehensive array of coping mechanisms in reaction to a
perceived threat. It has garnered extensive scientific attention
owing to its influence on an individual's health and
performance. While acute stress is linked to numerous
physiological and psychological diseases, it may also yield
advantageous outcomes in certain instances. Consequently, it
is essential to empirically examine it using approved stressors
capable of eliciting various forms of stress. To diminish
reliance on subjective questionnaires for stress evaluation,
physiological signals offer more objective and individualized
input. Electrocardiography (ECG) data, utilized to evaluate
alterations in heart rate and rhythm, have proven to be
markedly successful in assessing the impacts of stress.
Photoplethysmography (PPG) signals are an excellent means
of assessing stress responses through vasodilation, blood
volume, and peripheral circulation.

In contemporary society, stress is a prevalent issue

jeopardizing both the physical and emotional well-being of
individuals. Stress is recognized as a precursor to severe
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diseases, including hypertension, cardiovascular disease,
depression, and anxiety over time. Consequently, the prompt
and precise identification of stress is crucial for preventive
healthcare services. Despite the plethora of strategies
presented in the literature for stress detection utilizing diverse
biophysical signals, many of these approaches concentrate on
singular signal sources, resulting in classification accuracy
rates typically confined to 70-85%. Utilization of individual
signals:  Electrodermal activity (GSR or EDA),
Electroencephalography (EEG), Heart rate variability (HRV),
Photoplethysmography (PPG), Electrocardiograms (ECG),
and respiration signals. This singular application is especially
susceptible to signal aberrations in mobile contexts or real-
world circumstances, rendering precise stress categorization
challenging [18]. Conversely, the integration of various
biosignal sources (e.g., PPG and ECG) facilitates more
reliable and precise stress detection [17],[18]. Moreover, a
notable deficiency in the literature is the lack of evaluation of
these signals by modern signal processing and feature
extraction techniques, resulting in suboptimal data quality
[19].
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Current methodologies for stress detection in the
literature predominantly rely on singular biosignal sources,
hence constraining their classification accuracy. Moreover,
several studies assess signals in their unprocessed state,
neglecting to fully utilize the advantages provided by
sophisticated feature extraction and signal processing
methodologies. This work will rectify these deficiencies by
integrating ECG and PPG signals, administering experimental
stress-inducing activities to participants, and conducting
feature extraction in both time and frequency domains by
segmenting the acquired signals into temporal epochs. The
collected features will be input into various machine learning
algorithms, and their performance will be assessed according
to accuracy, specificity, F-measure, and AUC metrics. A
unique methodology will be proposed to address the existing
limitations in the literature, facilitating the accurate
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categorization of stress through the integration of many
biosignals and advanced signal processing techniques.

1. MATERIAL AND METHOD

The technical sections of this study were encapsulated
in Figure 1. Thus, ECG and PPG signals were obtained from
the individuals. The acquired raw were filtered to eliminate
noise and artifacts and segmented into designated time
intervals (epochs). For each epoch, twenty-five features were
extracted from both the time and frequency domains,
resulting in a total of fifty features. Subsequently, various
machine learning algorithms were trained utilizing these
extracted features, and stress classification was conducted
employing these models.

FFPG Signal E—

Dividing into epochs — Labelling of signals
ECG Signal T
Classification --<— Machine Leaming - Features extraction

Fig 1 Flow Diagram

» Data Collection

The dataset included in the constructed model has been
the publicly available MAUS (Mental Workload Assessment
on N-back Task Using Wearable Sensor) dataset, which has
comprised various physiological signals acquired via wearable
devices [24]. The dataset has been methodically assembled for
the evaluation of mental effort (MW) and has comprised
ECG, fingertip PPG, wrist PPG, and GSR recordings. This
has facilitated analysis of both individual biosignal sources
and the combination of many signals.

The experimental technique has included the N-Back
test presented to participants. In this activity, participants have
monitored a sequence of rapidly displayed numbers and have
been required to determine if the current number matched the
nth preceding number. The activities have been arranged to
progressively elevate cognitive burden (0—2—3—2—3—0).
The 0-back test has indicated a low cognitive load, whereas
the 2- and 3-back tasks have imposed high cognitive load
conditions [23]. This configuration has guaranteed the
systematic generation of varying degrees of cognitive
demand.
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The participant group has comprised 22 healthy
volunteers (20 males, 2 females) with a mean age of 23+1.7
years. All subjects have provided informed consent prior to
the experiment. At the outset of the trial, a 5-minute rest
period has been observed, during which the Pittsburgh Sleep
Quality Index (PSQI) questionnaire has been administered.
Subsequent to each N-Back experiment, the NASA Task Load
Index (NASA-TLX) scale has been utilized to document
subjective assessments of cognitive workload. Consequently,
subjective evaluations have been gathered in conjunction with
physiological signs, enhancing the dataset [23], [25].

The recordings have been executed with two distinct
devices. The ProComp Infiniti system has delivered superior
reference data with a sampling frequency of 256 Hz, capturing
ECG, GSR, and fingertip PPG signals. ECG recordings have
been acquired in a single channel by electrodes affixed to the
body, while fingertip PPG has been recorded using a sensor
attached with an elastic band. A PixArt wrist-mounted PPG
watch has been utilized to replicate a wearable technology
scenario. This green LED sensor has operated at a frequency
of 100 Hz and has communicated data to a tablet computer
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using Bluetooth. Consequently, both reference recordings
exhibiting excellent accuracy in laboratory settings and data
acquired from portable devices suitable for everyday usage
have been consolidated into a single database.
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The MAUS dataset has comprised over 35 minutes of
physiological measurements, encompassing raw signals,
participant responses, N-Back task recordings, and subjective
guestionnaire outcomes. The dataset has been distinguished as
one of the most extensive open-access datasets utilized in
research on stress and mental workload classification.

Pre Task N-Back Tasks
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» Feature Extraction

ECG and PPG signals were segmented into 10-second
intervals. Following epoching, a total of 50 features were
extracted from the time domain, comprising 25 from the
ECG signal and 25 from the PPG signal. The extracted
features have been presented in Table 1 over three columns:
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feature number, feature, and formula. The variable x in the
equations denotes the signal. The equations demonstrate the
variances. S? indicates the variance of the x signals, S,
indicates the variances of first derivative of the x signal and
S;? indicates the variance of the second derivative of the x
signal.

Table 1 Equations for Features

No Feature Equation
1 Kurtosis Zn: .
(x(1) -X)
X = i=1
ur (n _ 1) S 4
2 Skewness n .
Z (Xi - X)
_ =1
Xske - (n . 1) S 3
3 IQR IQR =igr(x)
g cv CV =(S/X)100
5 Geometric Mean n
G= X +....+X,
6 Harmonic Mean 1
H=n/(—+...4+4—)
X n
7 Activity-Hjort parameters A=S 2
8 Mobility-Hjort parameters M = 312 /S?
9 Complexity-Hjort parameters C-= \/(322 / 512)2 _(512 _ 82)2
10 Maximum Xax = max(xi)
11 Median X, +1 « = odd
- 2
X= 1
—(x, +x, + Xx=even
2 2* E+1
12 Mean absolute deviation MAD = mad (X)
13 Minimum Xoin = min(xi)
14 Central moments CM = moment(x,10)
15 Mean 18, 1
X=—) =—(X+....+X
n IZ:: n( 1 n)
16 Avarage curve length 18
CL= EZ| Xi =Xy |
i=2
17 Avarage energy £ 1 zn: 2
na
18 Root mean squared 1 ,
Kims = HZ' X |
i=1
19 Standart error S, =S/+/n
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20 Standart deviation 1a
S= f— > (% —%)
)
21 Shape Factor 18
SF =Xrms/(=> /1% ])
N
22 Singular value decomposition SVD =svd (X)
23 25%trimmed mean T25 = trimmean (X 25)
24 50%trimmed mean T50 = trimmean (x,50)
25 Average Teager energy 1
TE= Ez (Xi-l2 =X Xi—z)
i=3

» Machine Learning

After the feature extraction phase, the data was
allocated into test and training datasets before classification,
with each task designated a label to facilitate classification.

Numerous supervised learning techniques for data
classification were employed, including Support Vector

» Performance Evaluation Criteria

To assess the efficacy of the classification models
employed in the study, the parameters of accuracy,
specificity, F-score, and AUC have been utilized [20], [21],
with these performance measures delineated by equations

1)-(6).

Accuracy= True Posmve(TP)+True_negatlve(TN) 1)
Total population
Specificity= ™ )

TN+FP(False Positive)

F1-Score=2x Prec_ls_loanecaII )
Precision+Recall

1
AUC = [TPR(FPR)d (FPR) @)
0
TPR=Sensitivity= ™ _ ®)
TP+FN(False Negative)
FPR=1-Specificity (6)
1. RESULTS

This work has involved the training and evaluation of
various machine learning algorithms  for  stress
categorization. The findings were compared according to
accuracy, specificity, F-measure, and AUC metrics. Table 2
encapsulates the performance characteristics of the
implemented model.
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Machine (SVM), Naive Bayes (NB), K-Nearest Neighbor
(KNN), Artificial Neural Networks (Medium NN and Wide
NN), Logistic Regression (LR), and Decision Tree (DT). The
outcomes derived from this model were delineated and
examined in the subsequent section. The MATLAB
Classification Learner application was utilized for
classification purposes.

The Bagged Trees model has the maximum efficacy,
achieving an accuracy rate of 98.6%, specificity of 99.3%,
an F1-score of 0.986, and an AUC of 0.999. This outcome
illustrates a strong equilibrium in differentiating between
positive and negative classes, indicating a high level of
classification reliability. The Bagged Trees method is
founded on the bootstrap aggregating (bagging)
methodology introduced by Breiman. This method involves
training several decision trees on bootstrap samples of the
training dataset, with the final predictions aggregated
through majority voting. This diminishes model variance
and enhances classification accuracy relative to an
individual decision tree [44].

Likewise, the Medium Neural Network and Wide
Neural Network models have garnered interest with F1-
measure scores above 98.5% and 0.985, indicating that
intricate correlations within signals can be proficiently
learned by artificial neural networks. Support Vector
Machines and Boosted Trees, a tree-based approach, have
attained accuracy rates of 97%, demonstrating their efficacy
as formidable alternatives in stress classification. Specificity
scores of 98% demonstrate that the models possess great
dependability in accurately categorizing non-stressful
circumstances. Likewise, the F1-measure indicates that the
model demonstrates equitable performance regarding both
sensitivity and accuracy in imbalanced classification
contexts. AUC values approaching or exceeding 0.99
indicate that all models exhibit robust discriminatory
capability across various threshold values and affirm the
system's stability.

In conclusion, the results indicate that employing
several biosignals and sophisticated machine learning
techniques yields excellent precision in stress detection. The
simplicity of recording ECG and PPG signals with wearable
sensors, along with their superior accessibility relative to
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other biosignals, facilitates the integration of this technology
into portable systems. This feature enables the established
approach to offer an architecture conducive to continuous
and real-time monitoring of stress levels in both laboratory
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settings and real-world scenarios. Consequently, the system
functions as an effective tool for monitoring individuals'
mental health condition in everyday life and facilitating
early interventions.

Table 2 Machine Learning Models and Accuracy, Specificity, F1-Score and AUC

Model Accuracy Specificity F1-Score AUC
Bagged Tress 0.986 0.993 0.986 0.999
Medium Neural Network 0.985 0.993 0.985 0.9976
Wide Neural Network 0.9854 0.9927 0.9853 0.9982
Cubic SVM 0.9828 0.9914 0.9827 0.9982
Quadratic SVM 0.9807 0.9903 0.9807 0.9984
Boosted Trees 0.9779 0.989 0.9779 0.999
Fine Tree 0.9778 0.9889 9.9778 0.9931
Medium Gaussian SVM 0.976 0.988 0.976 0.9989
SVM Kernel 0.972 0.986 0.9719 0.9993
Fine KNN 0.9694 0.9847 0.9694 0.9991
Weighted KNN 0.9694 0.9847 0.9694 0.9992
Medium Tree 0.9633 0.9816 0.9633 0.9896
Medium KNN 0.9630 0.9810 0.9630 0.9991
Cosine KNN 0.9628 0.9814 0.9627 0.9987
Logistic Regression Kernel 0.9593 0.9797 0.9593 0.9982
RUSBoosted Trees 0.9561 0.9780 0.9562 0.9904
Fine Gaussian SVM 0.9554 0.9777 0.9553 0.9992
Cubic KNN 0.9530 0.9760 0.9530 0.9987
Linear SVM 0.9256 0.9628 0.9258 0.9923
Table 3 Comparison with Existing Stress Detection Studies
Articles Method Accuracy F1-Score AUC
[31] KNN %76.67 - -
[32] SVM %68.7 - -
[33] Linear SVM %74 - -
[34] Hybrid CNN %75 0.64 -
[35] ResAttNett %80 0.87 -
[36] CNN %78.8 0.79 0.95
[37] SVM, KNN, DT %88.9 - -
[38] SVM,KNN,DT,ANN(Artificial Neural Network) %85.6 - -
[39] KNN,NB,RF,SVM %80.4 - -
[40] Deep Learning %89.9 0.90 0.89
[22] DNN (Deep Neural Network) %91.6 0.914 0.964
[41] RF(Random Forest) %92 - 0.96
[43] LightGBM, RF, Gaussian Naive Bayes %93 0.92 -
[42] SVM %94 - -
V. DISCUSSION concurrently evaluating sensitivity and specificity. Upon

The objective of the study is to create a functional,
artificial intelligence-driven system to assess individuals'
exposure to stress due to their everyday activities and
implement required interventions to safeguard them against
stress-related ailments.

For the developed diagnostic systems to be realistically
relevant, they must achieve a minimum accuracy rate of 0.8.
A Kappa coefficient between 0.81 and 1.00 indicates a very
good degree of agreement. The nearer other performance
metrics are to 1, the more effective the designed system
becomes. The F-measure is a metric that facilitates a
balanced and thorough assessment of model performance by
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evaluation of these performance metrics, the model exhibits
superior performance relative to the existing literature [26].

Table 3 presents studies from the literature about stress
under mental load utilizing MAUS and various datasets,
along with the machine learning methodologies employed,
accuracy rates, Fl-measures, and AUC values. Research
utilizing physiological markers in the literature has typically
demonstrated low accuracy rates. Kuttala et al. [29]
integrated EDA and ECG signals with a multimodal
hierarchical CNN-based feature fusion method, although the
accuracy rate was merely 76.1%. Beh et al. [30]
implemented outlier elimination and uncertainty estimating
techniques in PPG-based assessment, attaining an accuracy
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rate of 74.2%. Aydemir et al. [31] retrieved wavelet-based
characteristics from PPG signals, achieving an average
accuracy of 76.67%. These findings unequivocally illustrate
the constraints of single-signal methodologies.

Investigations on HRV in the literature have
consistently exhibited constrained accuracy levels. Quoy et
al. [27] documented an F1-score of about 80% using an
HRV-based CNN model; nevertheless, efficacy was
constrained by the absence of multi-signal integration.
Conversely, multimodal investigations utilizing the WESAD
dataset introduced by Reiss et al. [28] attained an accuracy
of up to 93%. Nonetheless, the diversity of sensors
employed and the challenges in data acquisition diminish the
system's practical utility.

Mozos et al. [42] identified stress by EDA, BVP, PPG,
and activity signals, attaining 94% accuracy; nonetheless,
the concurrent monitoring of four distinct biosignals
presents significant practical obstacles. Sadoun et al. [43]
attained 93% accuracy in a cognitive stress diagnosis
investigation utilizing EEG and ECG signals during physical
exercise, implementing the Light GBM machine learning
technique alongside the Limit Visibility Graph (LPVG).
Nonetheless, the implementation of LPVG prolongs
computational duration in real-time applications.

This work built a machine learning algorithm to assess
individuals' stress levels via ECG and PPG signals.
Numerous time- and frequency-domain statistical features
were derived from the acquired biosignals, and these data
were assessed utilizing various classification techniques.
The classification performance was evaluated using multiple
measures, including accuracy, specificity, Fl-score, and
AUC. Significantly, Bagged Trees and Neural Network-
based models exhibited exceptional performance. ECG and
PPG data, representing an individual's physiological
reactions from distinct perspectives, can more consistently
differentiate between stressed and non-stressed states when
utilized in conjunction.

This discovery corroborates the system's capability to
deliver equitable and dependable classification in
application. This study, however, possesses certain
drawbacks. The dataset, acquired under particular settings
and from a restricted participant pool, necessitates validation
for generalizability with more diverse demographic
groupings in future research. Future research is to convert
the proposed system into a viable and sustainable
monitoring solution that facilitates continuous and real-time
assessment of individuals' stress levels through integration
with mobile health technology and clinical monitoring
frameworks.
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