
Volume 10, Issue 9, September – 2025                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                             https://doi.org/10.38124/ijisrt/25sep1252 

 

 

IJISRT25SEP1252                                                             www.ijisrt.com                                                                                     2178  

Detection of Stress Levels Using Biomedical 

Signals and Artificial Intelligence 
 

 

Oğuzhan Hasar1; Muhammed Kürşad Uçar1,2 

 
1Faculty of Engineering, Electrical-Electronics Engineering, Sakarya, Turkey 

2MKU Technology, Sakarya University Technopolis, Serdivan, Sakarya, Turkey 

 

Publication Date: 2025/09/30 
 

 

Abstract: Stress is a state that occurs when an individual's physical and mental resources are taxed in response to 

demands, becoming especially evident under heavy mental exertion. Mental workload is a significant psychophysiological 

metric that directly influences task performance and can also lead to mental diseases such as depression. Thus, the 

objective evaluation of stress levels using physiological data is crucial for enhancing work productivity and assuring safety. 

This work employed an integrated approach utilizing electrocardiography (ECG) and photoplethysmography (PPG) 

signals for stress detection. The data were sourced from the publically accessible MAUS dataset and gathered from 22 

healthy participants utilizing wearable sensors during N-back activities. The signals were segmented into epochs, and a 

total of 50 features were extracted at both temporal and spectral levels. The features were examined utilizing diverse 

machine learning algorithms. The models' performance is assessed using accuracy, specificity, F-score, and AUC criteria, 

with the Bagged Trees method achieving the greatest accuracy of 98.6%. The results indicate that employing several 

biosignals and sophisticated signal processing techniques provides excellent precision in stress detection. The device 

provides a pragmatic option for real-time monitoring of individuals' stress levels in their daily lives, thanks to its portable 

design. 
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I. INTRODUCTION 

 

Stress is a psychological condition characterized by the 

comprehensive array of coping mechanisms in reaction to a 

perceived threat. It has garnered extensive scientific attention 

owing to its influence on an individual's health and 

performance. While acute stress is linked to numerous 
physiological and psychological diseases, it may also yield 

advantageous outcomes in certain instances. Consequently, it 

is essential to empirically examine it using approved stressors 

capable of eliciting various forms of stress. To diminish 

reliance on subjective questionnaires for stress evaluation, 

physiological signals offer more objective and individualized 

input. Electrocardiography (ECG) data, utilized to evaluate 

alterations in heart rate and rhythm, have proven to be 

markedly successful in assessing the impacts of stress. 

Photoplethysmography (PPG) signals are an excellent means 

of assessing stress responses through vasodilation, blood 

volume, and peripheral circulation. 
 

In contemporary society, stress is a prevalent issue 

jeopardizing both the physical and emotional well-being of 

individuals. Stress is recognized as a precursor to severe 

diseases, including hypertension, cardiovascular disease, 

depression, and anxiety over time. Consequently, the prompt 

and precise identification of stress is crucial for preventive 

healthcare services. Despite the plethora of strategies 

presented in the literature for stress detection utilizing diverse 

biophysical signals, many of these approaches concentrate on 

singular signal sources, resulting in classification accuracy 
rates typically confined to 70–85%. Utilization of individual 

signals: Electrodermal activity (GSR or EDA), 

Electroencephalography (EEG), Heart rate variability (HRV), 

Photoplethysmography (PPG), Electrocardiograms (ECG), 

and respiration signals. This singular application is especially 

susceptible to signal aberrations in mobile contexts or real-

world circumstances, rendering precise stress categorization 

challenging [18]. Conversely, the integration of various 

biosignal sources (e.g., PPG and ECG) facilitates more 

reliable and precise stress detection [17],[18]. Moreover, a 

notable deficiency in the literature is the lack of evaluation of 

these signals by modern signal processing and feature 
extraction techniques, resulting in suboptimal data quality 

[19]. 
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Current methodologies for stress detection in the 

literature predominantly rely on singular biosignal sources, 

hence constraining their classification accuracy. Moreover, 

several studies assess signals in their unprocessed state, 

neglecting to fully utilize the advantages provided by 

sophisticated feature extraction and signal processing 

methodologies. This work will rectify these deficiencies by 

integrating ECG and PPG signals, administering experimental 
stress-inducing activities to participants, and conducting 

feature extraction in both time and frequency domains by 

segmenting the acquired signals into temporal epochs. The 

collected features will be input into various machine learning 

algorithms, and their performance will be assessed according 

to accuracy, specificity, F-measure, and AUC metrics. A 

unique methodology will be proposed to address the existing 

limitations in the literature, facilitating the accurate 

categorization of stress through the integration of many 

biosignals and advanced signal processing techniques. 

 

II. MATERIAL AND METHOD 

 

The technical sections of this study were encapsulated 

in Figure 1. Thus, ECG and PPG signals were obtained from 

the individuals. The acquired raw were filtered to eliminate 
noise and artifacts and segmented into designated time 

intervals (epochs). For each epoch, twenty-five features were 

extracted from both the time and frequency domains, 

resulting in a total of fifty features. Subsequently, various 

machine learning algorithms were trained utilizing these 

extracted features, and stress classification was conducted 

employing these models. 

 

 
Fig 1 Flow Diagram 

 

 Data Collection 

The dataset included in the constructed model has been 

the publicly available MAUS (Mental Workload Assessment 
on N-back Task Using Wearable Sensor) dataset, which has 

comprised various physiological signals acquired via wearable 

devices [24]. The dataset has been methodically assembled for 

the evaluation of mental effort (MW) and has comprised 

ECG, fingertip PPG, wrist PPG, and GSR recordings. This 

has facilitated analysis of both individual biosignal sources 

and the combination of many signals. 

 

The experimental technique has included the N-Back 

test presented to participants. In this activity, participants have 

monitored a sequence of rapidly displayed numbers and have 
been required to determine if the current number matched the 

nth preceding number. The activities have been arranged to 

progressively elevate cognitive burden (0→2→3→2→3→0). 

The 0-back test has indicated a low cognitive load, whereas 

the 2- and 3-back tasks have imposed high cognitive load 

conditions [23]. This configuration has guaranteed the 

systematic generation of varying degrees of cognitive 

demand. 

The participant group has comprised 22 healthy 

volunteers (20 males, 2 females) with a mean age of 23±1.7 

years. All subjects have provided informed consent prior to 
the experiment. At the outset of the trial, a 5-minute rest 

period has been observed, during which the Pittsburgh Sleep 

Quality Index (PSQI) questionnaire has been administered. 

Subsequent to each N-Back experiment, the NASA Task Load 

Index (NASA-TLX) scale has been utilized to document 

subjective assessments of cognitive workload. Consequently, 

subjective evaluations have been gathered in conjunction with 

physiological signs, enhancing the dataset [23], [25]. 

 

The recordings have been executed with two distinct 

devices. The ProComp Infiniti system has delivered superior 
reference data with a sampling frequency of 256 Hz, capturing 

ECG, GSR, and fingertip PPG signals. ECG recordings have 

been acquired in a single channel by electrodes affixed to the 

body, while fingertip PPG has been recorded using a sensor 

attached with an elastic band. A PixArt wrist-mounted PPG 

watch has been utilized to replicate a wearable technology 

scenario. This green LED sensor has operated at a frequency 

of 100 Hz and has communicated data to a tablet computer 
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using Bluetooth. Consequently, both reference recordings 

exhibiting excellent accuracy in laboratory settings and data 

acquired from portable devices suitable for everyday usage 

have been consolidated into a single database. 

 

The MAUS dataset has comprised over 35 minutes of 

physiological measurements, encompassing raw signals, 

participant responses, N-Back task recordings, and subjective 

questionnaire outcomes. The dataset has been distinguished as 

one of the most extensive open-access datasets utilized in 

research on stress and mental workload classification. 

 

 
Fig 2 Dataset Tasks 

 

 
Fig 3 Plot of 30 Sec ECG High Mental Workload 
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Fig 4 Plot of 30 Sec ECG Low Mental Workload 

 

 
Fig 5 Plot of 30 Sec PPG High Mental Workload 

 

 
Fig 6 Plot of 30 Sec PPG Low Mental Workload 
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 Feature Extraction 

ECG and PPG signals were segmented into 10-second 

intervals. Following epoching, a total of 50 features were 

extracted from the time domain, comprising 25 from the 

ECG signal and 25 from the PPG signal. The extracted 

features have been presented in Table 1 over three columns: 

feature number, feature, and formula. The variable x in the 

equations denotes the signal. The equations demonstrate the 

variances. S2 indicates the variance of the x signals, S1
2 

indicates the variances of first derivative of the x signal and 

S2
2 indicates the variance of the second derivative of the x 

signal. 

 

Table 1 Equations for Features 
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1 Kurtosis 
4

1

4

( ( ) )

( 1)

n

i
kur

x i x

x
n S










 
2 Skewness 

3

1

3

( )

( 1)

n

i

i
ske

x x

x
n S










 
3 IQR  IQR iqr x  

4 CV ( / )100CV S x
 

5 Geometric Mean 

1 .....
n

nG x x  
 

6 Harmonic Mean 

1

1 1
/ ( ..... )

n

H n
x x

  

 
7 Activity-Hjort parameters 2A S  
8 Mobility-Hjort parameters 2 2

1 /M S S  

9 Complexity-Hjort parameters 2 2 2 2 2 2

2 1 1( / ) ( )C S S S S    

10 Maximum 
max max( )ix x  

11 Median 

1
2 2

1

2

1
(

2

n

n n

x
x odd

x

x x x even
 

 
 

 
    
 

 

12 Mean absolute deviation  MAD mad x  

13 Minimum 
min min( )ix x  

14 Central moments ( ,10)CM moment x  

15 Mean 

1

1

1 1
( ..... )

n

n

i

x x x
n n

     

16 Avarage curve length 

1

2

1
| |

n

i i

i

CL x x
n





   

17 Avarage energy 
2

1

1 n

i

i

E x
n 

   

18 Root mean squared 
2

1

1
| |

n

rms i

i

x x
n 

   

19 Standart error /xS S n  

https://doi.org/10.38124/ijisrt/25sep1252
http://www.ijisrt.com/


Volume 10, Issue 9, September – 2025                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                             https://doi.org/10.38124/ijisrt/25sep1252 

 

 

IJISRT25SEP1252                                                             www.ijisrt.com                                                                                     2183  

20 Standart deviation 

1

1
( )

n

i

i

S x x
n 

   

21 Shape Factor 

1

1
/ ( | |)

n

i

i

SF Xrms x
n 

   

22 Singular value decomposition  SVD svd x  

23 25%trimmed mean  T25 trimmean x,25  

24 50%trimmed mean  T50 trimmean x,50  

25 Average Teager energy 
2

1 2

3

1
( )

n

i i i

i

TE x x x
n

 



   

 

 Machine Learning 

After the feature extraction phase, the data was 

allocated into test and training datasets before classification, 

with each task designated a label to facilitate classification. 

 

Numerous supervised learning techniques for data 

classification were employed, including Support Vector 

Machine (SVM), Naive Bayes (NB), K-Nearest Neighbor 

(KNN), Artificial Neural Networks (Medium NN and Wide 

NN), Logistic Regression (LR), and Decision Tree (DT). The 

outcomes derived from this model were delineated and 

examined in the subsequent section. The MATLAB 

Classification Learner application was utilized for 

classification purposes. 

 

 Performance Evaluation Criteria 

To assess the efficacy of the classification models 
employed in the study, the parameters of accuracy, 

specificity, F-score, and AUC have been utilized [20], [21], 

with these performance measures delineated by equations 

(1)-(6). 

 

 

True Positive(TP)+True negative(TN)
Accuracy=

Total population
       (1) 

 

TN
Specificity=

TN+FP(False Positive)
        (2) 

 

PrecisionxRecall
F1-Score=2x

Precision+Recall
        (3) 

 
1

0

( ) ( )AUC TPR FPR d FPR           (4) 

 

TP
TPR=Sensitivity=

TP+FN(False Negative)
       (5) 

 

FPR=1-Specificity                        (6) 

 

III. RESULTS 

 

This work has involved the training and evaluation of 

various machine learning algorithms for stress 

categorization. The findings were compared according to 

accuracy, specificity, F-measure, and AUC metrics. Table 2 

encapsulates the performance characteristics of the 
implemented model. 

 

The Bagged Trees model has the maximum efficacy, 

achieving an accuracy rate of 98.6%, specificity of 99.3%, 
an F1-score of 0.986, and an AUC of 0.999. This outcome 

illustrates a strong equilibrium in differentiating between 

positive and negative classes, indicating a high level of 

classification reliability. The Bagged Trees method is 

founded on the bootstrap aggregating (bagging) 

methodology introduced by Breiman. This method involves 

training several decision trees on bootstrap samples of the 

training dataset, with the final predictions aggregated 

through majority voting. This diminishes model variance 

and enhances classification accuracy relative to an 

individual decision tree [44]. 
 

Likewise, the Medium Neural Network and Wide 

Neural Network models have garnered interest with F1-

measure scores above 98.5% and 0.985, indicating that 

intricate correlations within signals can be proficiently 

learned by artificial neural networks. Support Vector 

Machines and Boosted Trees, a tree-based approach, have 

attained accuracy rates of 97%, demonstrating their efficacy 

as formidable alternatives in stress classification. Specificity 

scores of 98% demonstrate that the models possess great 

dependability in accurately categorizing non-stressful 

circumstances. Likewise, the F1-measure indicates that the 
model demonstrates equitable performance regarding both 

sensitivity and accuracy in imbalanced classification 

contexts. AUC values approaching or exceeding 0.99 

indicate that all models exhibit robust discriminatory 

capability across various threshold values and affirm the 

system's stability. 

 

In conclusion, the results indicate that employing 

several biosignals and sophisticated machine learning 

techniques yields excellent precision in stress detection. The 

simplicity of recording ECG and PPG signals with wearable 
sensors, along with their superior accessibility relative to 
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other biosignals, facilitates the integration of this technology 

into portable systems. This feature enables the established 

approach to offer an architecture conducive to continuous 

and real-time monitoring of stress levels in both laboratory 

settings and real-world scenarios. Consequently, the system 

functions as an effective tool for monitoring individuals' 

mental health condition in everyday life and facilitating 

early interventions. 

 

Table 2 Machine Learning Models and Accuracy, Specificity, F1-Score and AUC 

Model Accuracy Specificity F1-Score AUC 

Bagged Tress 0.986 0.993 0.986 0.999 

Medium Neural Network 0.985 0.993 0.985 0.9976 

Wide Neural Network 0.9854 0.9927 0.9853 0.9982 

Cubic SVM 0.9828 0.9914 0.9827 0.9982 

Quadratic SVM 0.9807 0.9903 0.9807 0.9984 

Boosted Trees 0.9779 0.989 0.9779 0.999 

Fine Tree 0.9778 0.9889 9.9778 0.9931 

Medium Gaussian SVM 0.976 0.988 0.976 0.9989 

SVM Kernel 0.972 0.986 0.9719 0.9993 

Fine KNN 0.9694 0.9847 0.9694 0.9991 

Weighted KNN 0.9694 0.9847 0.9694 0.9992 

Medium Tree 0.9633 0.9816 0.9633 0.9896 

Medium KNN 0.9630 0.9810 0.9630 0.9991 

Cosine KNN 0.9628 0.9814 0.9627 0.9987 

Logistic Regression Kernel 0.9593 0.9797 0.9593 0.9982 

RUSBoosted Trees 0.9561 0.9780 0.9562 0.9904 

Fine Gaussian SVM 0.9554 0.9777 0.9553 0.9992 

Cubic KNN 0.9530 0.9760 0.9530 0.9987 

Linear SVM 0.9256 0.9628 0.9258 0.9923 

 

Table 3 Comparison with Existing Stress Detection Studies 

Articles Method Accuracy F1-Score AUC 

[31] KNN %76.67 - - 

[32] SVM %68.7 - - 

[33] Linear SVM %74 - - 

[34] Hybrid CNN %75 0.64 - 

[35] ResAttNett %80 0.87 - 

[36] CNN %78.8 0.79 0.95 

[37] SVM, KNN, DT %88.9 - - 

[38] SVM,KNN,DT,ANN(Artificial Neural Network) %85.6 - - 

[39] KNN,NB,RF,SVM %80.4 - - 

[40] Deep Learning %89.9 0.90 0.89 

[22] DNN (Deep Neural Network) %91.6 0.914 0.964 

[41] RF(Random Forest) %92 - 0.96 

[43] LightGBM, RF, Gaussian Naive Bayes %93 0.92 - 

[42] SVM %94 - - 

 

IV. DISCUSSION 

 

The objective of the study is to create a functional, 

artificial intelligence-driven system to assess individuals' 

exposure to stress due to their everyday activities and 

implement required interventions to safeguard them against 

stress-related ailments. 

 

For the developed diagnostic systems to be realistically 

relevant, they must achieve a minimum accuracy rate of 0.8. 

A Kappa coefficient between 0.81 and 1.00 indicates a very 
good degree of agreement. The nearer other performance 

metrics are to 1, the more effective the designed system 

becomes. The F-measure is a metric that facilitates a 

balanced and thorough assessment of model performance by 

concurrently evaluating sensitivity and specificity. Upon 

evaluation of these performance metrics, the model exhibits 

superior performance relative to the existing literature [26]. 

 

Table 3 presents studies from the literature about stress 

under mental load utilizing MAUS and various datasets, 

along with the machine learning methodologies employed, 

accuracy rates, F1-measures, and AUC values. Research 

utilizing physiological markers in the literature has typically 

demonstrated low accuracy rates. Kuttala et al. [29] 

integrated EDA and ECG signals with a multimodal 
hierarchical CNN-based feature fusion method, although the 

accuracy rate was merely 76.1%. Beh et al. [30] 

implemented outlier elimination and uncertainty estimating 

techniques in PPG-based assessment, attaining an accuracy 
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rate of 74.2%. Aydemir et al. [31] retrieved wavelet-based 

characteristics from PPG signals, achieving an average 

accuracy of 76.67%. These findings unequivocally illustrate 
the constraints of single-signal methodologies. 

 

Investigations on HRV in the literature have 

consistently exhibited constrained accuracy levels. Quoy et 

al. [27] documented an F1-score of about 80% using an 

HRV-based CNN model; nevertheless, efficacy was 

constrained by the absence of multi-signal integration. 

Conversely, multimodal investigations utilizing the WESAD 

dataset introduced by Reiss et al. [28] attained an accuracy 

of up to 93%. Nonetheless, the diversity of sensors 

employed and the challenges in data acquisition diminish the 

system's practical utility. 
 

Mozos et al. [42] identified stress by EDA, BVP, PPG, 

and activity signals, attaining 94% accuracy; nonetheless, 

the concurrent monitoring of four distinct biosignals 

presents significant practical obstacles. Sadoun et al. [43] 

attained 93% accuracy in a cognitive stress diagnosis 

investigation utilizing EEG and ECG signals during physical 

exercise, implementing the Light GBM machine learning 

technique alongside the Limit Visibility Graph (LPVG). 

Nonetheless, the implementation of LPVG prolongs 

computational duration in real-time applications. 
 

This work built a machine learning algorithm to assess 

individuals' stress levels via ECG and PPG signals. 

Numerous time- and frequency-domain statistical features 

were derived from the acquired biosignals, and these data 

were assessed utilizing various classification techniques. 

The classification performance was evaluated using multiple 

measures, including accuracy, specificity, F1-score, and 

AUC. Significantly, Bagged Trees and Neural Network-

based models exhibited exceptional performance. ECG and 

PPG data, representing an individual's physiological 
reactions from distinct perspectives, can more consistently 

differentiate between stressed and non-stressed states when 

utilized in conjunction.  

 

This discovery corroborates the system's capability to 

deliver equitable and dependable classification in 

application. This study, however, possesses certain 

drawbacks. The dataset, acquired under particular settings 

and from a restricted participant pool, necessitates validation 

for generalizability with more diverse demographic 

groupings in future research. Future research is to convert 

the proposed system into a viable and sustainable 
monitoring solution that facilitates continuous and real-time 

assessment of individuals' stress levels through integration 

with mobile health technology and clinical monitoring 

frameworks. 
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