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Abstract: The rapid expansion of telecommunications services produces enormous quan- tities of Call Detail Records
(CDRs), requiring real-time ingestion, storage, and analysis to support billing operations and fraud detection systems,
and network op- timization. paper presents an end-to-end, containerized big data pipeline Call Detail Records (CDRs)
are generated as high-volume event streams that require low-latency ingestion, durable storage, and dependable
analytics. This paper presents an end-to- end, containerized big data pipeline that integrates Apache Kafka, Kafka
Connect, Hadoop Distributed File System (HDFS), PySpark, and Apache Airflow within a reproducible Docker
environment. Unlike conventional batch-oriented approaches, the proposed architecture demonstrates low-latency
ingestion, fault-tolerant storage, and scalable processing of high-throughput CDR streams. Experimental results show
zero delivery loss at 25 records per second (RPS), balanced partition throughput, and immediate analytical readiness,
with roaming traffic analysis and cell-level usage statistics produced in seconds. The work contributes a practical
reference model for telecom streaming pipelines, highlighting the advantages of containerized deployment, automated
orchestration, and reproducible analytics, and it outlines directions for scaling and production integration.
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. INTRODUCTION Traditional enterprise data warehouses (e.g., Oracle,
Teradata, IBM Netezza) were designed for structured,

The exponential growth of telecommunications services
has led to the massive generation of Call Detail Records
(CDRs)—metadata describing voice calls, SMS, mobile
money transactions, and internet usage. These records are
indispensable to operators and service providers,
underpinning billing, customer behavior analysis, fraud
detection, network optimization, and regulatory compliance.
Given their volume, velocity, and variety, managing CDRs
demands big data technologies that can capture, process, and
analyze streams in near real time.
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batch-oriented analytics. While effective for periodic
reporting, they are ill-suited to the velocity and scale of
modern telecom data streams due to high latency, limited
scalability, and elevated infrastructure costs [2, 3, 4, 1]. To
address these challenges, we propose a cost-effective,
scalable streaming data pipeline built on open-source
frameworks. In this architecture, Apache Kafka serves as
the distributed messaging backbone to handle continuous
CDR flows with high throughput and fault tolerance, while
Kafka Connect provides a standardized integration layer that
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lands records into the Hadoop Distributed File System
(HDFES) for durable, scalable storage.

Once raw data is available in HDFS, Apache Spark—
via  PySpark—enables advanced transformations,
enrichment, and aggregations over CDRs, supporting both
batch and streaming analytics. This capability facilitates
timely insights into network usage patterns, anomalies, and
customer trends. To orchestrate, schedule, and monitor
pipeline compo- nents, Apache Airflow supplies workflow
automation, dependency management, and fault recovery,
ensuring that each stage—from ingestion to processing and
storage—operates reliably and transparently.

To simplify deployment and ensure portability, all
components are containerized using Docker. Containers
eliminate environment-configuration drift and promote
consistent behavior across development, testing, and
production. By combining Kafka, HDFS, PySpark,
Airflow, and Docker into a unified streaming pipeline,
telecom operators can realize near-real-time analytics at
scale to support decision-making and improve operational
efficiency.

This work presents the architecture, implementation,
and empirical evaluation of the pipeline. We show how
integrating modern big data frameworks within a
containerized environment yields a practical platform for
telecom data engineering and analytics, with applications
extending beyond CDRs to other domains requiring high-
throughput, low- latency processing.

» This Work is Designed to Provide a Practical,
Reproducible Reference Architecture for Streaming
CDR Data Pipelines. Specifically, it Offers:

e A Docker Compose-hased deployment designed for
rapid setup, bundling Kafka, Kafka Connect (HDFS
sink), Hadoop HDFS (NameNode, DataNodes,
YARN), Airflow, and Kafka-Ul into a single
reproducible environment.

o A Kafka Connect configuration designed to roll files
deterministically (via flush.size) into HDFS
directories partitioned by topic and Kafka partition,
reducing small-file overhead and ensuring predictable
storage layouts.

o Airflow DAGs designed to automate key operational
tasks  including  topic  creation,  connector
(re)configuration, health and lag monitoring, and
verification of successful data landing.

e A PySpark/Jupyter workflow designed for schema
discovery, data compaction, and baseline CDR
analytics on landed files, enabling extensible analysis
and downstream modeling.

1. LITERATURE REVIEW
» From Traditional Warehouses to Streaming
Data Platforms

For many years, enterprise analytics relied heavily on
centralized data warehouses such as Oracle, Teradata, and
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IBM Netezza. These systems were optimized for
structured data and batch-oriented Extract—Transform—
Load (ETL) processes, enabling robust business reporting.
However, their architecture introduced high latency, as
data was typically refreshed on hourly or daily schedules.
In telecommunications, where Call Detail Records (CDRS)
are produced continuously and at scale, such systems
cannot meet near real-time requirements. This limitation
motivated the transition toward distributed, log-centric,
and horizontally scalable platforms capable of handling
semi-structured streaming data.

» Kafka as a High-Throughput Streaming
Backbone

Apache Kafka has emerged as a leading platform for
large-scale event ingestion. Its de- sign—based on
distributed commit logs and partitioned topics—provides
high throughput, durability, and fault tolerance. Kafka
allows producers and consumers to operate inde-
pendently, making it suitable for telecom environments
where CDRs need to be delivered simultaneously to billing
systems, analytics engines, and fraud detection pipelines.
Its offset management and replication features ensure
reliability even in the presence of node failures.

» Kafka Connect for Automated Ingestion into
HDFS

Kafka Connect provides a standardized framework
for integrating Kafka with external systems through
pluggable connectors. The HDFS Sink Connector enables
partition-aware file writing directly into Hadoop
Distributed File System (HDFS). This eliminates the
need for custom ingestion scripts while ensuring reliability
through mechanisms such as the write-ahead log (WAL)
and recovery support. For telecom operators, this
reduces operational complexity while ensuring CDRs are
durably persisted for downstream analysis.

» HDFS as a Scalable Data Lake Substrate

HDFS was designed for storing and processing
massive datasets by replicating blocks across clusters of
commaodity hardware. Its fault-tolerant architecture, based on
NameN- ode—-DataNode separation, provides both durability
and scalability. For streaming telecom workloads, HDFS
serves as a cost-effective landing zone for raw CDRs,
enabling historical retention and compatibility with both
batch and real-time processing frameworks.

» Stream Processing in Apache Spark

Apache Spark has evolved from Resilient Distributed
Datasets (RDDs) to provide both batch and stream
processing. Spark Streaming introduced micro-batch
processing, while Structured Streaming unified batch and
streaming workloads under a declarative API.

Features such as event-time semantics, watermarks, and
stateful aggregations allow telecom engineers to derive
insights such as call durations, anomaly detection, and
customer segmentation from CDR streams with minimal
latency.
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» Workflow Orchestration with Apache Airflow

Apache Airflow is widely adopted for orchestrating
data workflows through Directed Acyclic Graphs (DAGS).
Its scheduling, retry, and monitoring capabilities make it
well suited to telecom streaming pipelines, where ingestion
failures or delays must be resolved quickly. Airflow provides
transparency and reproducibility by allowing complex multi-
stage workflows (e.g., ingestion, compaction, validation)
to be expressed programmatically.

» Containerization with Docker

Docker has revolutionized deployment by packaging
applications and dependencies into portable containers.
Unlike traditional virtual machines, containers are
lightweight and  provide consistent  execution
environments across development and production. In
telecom streaming pipelines, Docker Compose allows
complex stacks—Kafka, HDFS, Spark, and Airflow—to
be deployed reproducibly, reducing operational overhead
and ensuring portability.

» Telecom CDR Analytics Patterns

CDRs support key telecom processes including billing,
fraud prevention, capacity planning, and customer analytics.
A common architecture involves: (i) ingesting events into
Kafka, (ii) persisting to HDFS through Kafka Connect,
(iii) processing via Spark for enrichment and
aggregation, (iv) orchestrating workflows with Airflow,
and (v) serving curated datasets to Bl dashboards or
machine learning systems. This layered pipeline balances
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real-time with

flexibility.

responsiveness long-term  analytical

» Synthesis and Research Gaps

The reviewed systems converge on a “lake-first”
architecture where Kafka ensures scalable ingestion, HDFS
provides durable storage, Spark enables unified
processing, Airflow delivers orchestration, and Docker
ensures reproducibility. Despite these advances, open
challenges remain, such as achieving exactly-once guarantees
across heterogeneous systems, managing late or out-of-order
events, and handling evolving schemas in regulated telecom
environments. Moreover, there is limited published work
demonstrating containerized, telecom-specific streaming
architectures. This gap motivates the present study, which
integrates these technologies in a reproducible Docker-
based environment tailored for CDR analytics.

. METHODOLOGY

» System Architecture

The proposed pipeline is designed as an end-to-end
streaming framework that ingests synthetic Call Detail
Records (CDRs) into Apache Kafka, persists them in
HDFS via Kafka Connect, performs compaction and query
operations with PySpark, and orchestrates lifecycle tasks
through Apache Airflow. All services are containerized
with Docker and interconnected via a user-defined bridge
network (hadoop net), ensuring reproducibility and
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Fig 1 End-to-End CDR Streaming Pipeline with Kafka Ingestion, HDFS Landing, PySpark Analytics, and Airflow
Orchestration.

» Core Components
o Kafka 3.7 (KRaft): single broker hosting the topic
cdr-events with three partitions for parallelism.
Kafka Connect 7.6.1: distributed worker configured
with the HDFS Sink plugin to land CDR data into
HDFS.
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HDFS 3.3.6: one NameNode and two DataNodes
with a writable root directory (/topics) serving as the
data lake.

Airflow 2.9.3: webserver  and  scheduler
(LocalExecutor) managing orchestration, retries, and
task dependencies.

PySpark 3.5: employed for data compaction (Parquet
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conversion) and exploratory analytics, optionally
accessed via a Jupyter UI.

» Environment

The system runs on a single Windows host with
Docker Desktop (WSL2 backend). Con-tainer images are
explicitly version-pinned: bitnami/kafka:3.7,
confluentinc/cp-kafka-connect:7.  local/hadoop:3.3.6,
apache/airflow:2.9.3, and a PySpark/Jupyter image.
Servicenames  (e.g., namenode, kafka) resolve
automatically via Docker DNS.

» Data & Workload

Synthetic JSON-based CDRs are generated using a
Python producer at a configurable request rate (RPS).
Records cover both:

e Voice events: call id, caller, callee, duration
seconds, call result.
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e Data events: app, bytes up, bytes down.

All events share common fields such as eventtime,
operator, cell id, tower id, roaming, and cost rwf. To
evaluate robustness, the workload may also inject
malformed records, which are redirected to a Dead Letter

Queue (DLQ).

» Messaging & Sink Configuration

We ingest all CDRs to a single Kafka topic (cdr-
events) with three partitions (RF=1 for this single-host
demo). Kafka Connect (HDFS Sink) consumes the topic
and writes line-delimited JSON to HDFS, with
tasks.max matched to partitions and size-only
rotation. We sweep flush.size to study latency—file
size trade-offs while keeping rotate.interval.ms=0.
Schemaless JSON is used throughout, and a DLQ is
enabled to quarantine malformed records. Table 1
summarizes the exact settings used in all runs.

Table 1 Core Connector & Topic Settings.

Kafka topic: cdr-events
Partitions 3 (balances producer load; enables up to three parallel sink tasks). Replication factor 1
(single-host demo).
Payload Line-delimited JSON.
Kafka Connect: HDEFES Sink
Target hdfs.url=hdfs://namenode:9000, root topics.dir=/topics. Parallelism  tasks.max=3

(match number of Kafka partitions).

Batching / rotation
Vs.

flush.size swept [200, 2000] to study latency

rotate.interval.ms=0 (size-only rotation).

file size;

Converters Schemaless JSON via value.converter=org.apache.kafka.connect.json.JsonConver
and value.converter.schemas.enable=false.
Format format.class=io.confluent.connect.hdfs.json.JsonFormat

(line-delimited JSON files).

Partitioning / layout

Default partitioner = partition={i}directories per Kafka parti- tion; downstream
PySpark compacts by event date.

Error handling

errors.tolerance=all; DLQ topic cdr-events-dlg with headers and logging enabled.

» Operational Notes.

Throughput vs. Latency: Larger flush.size values
reduce HDFS overhead but increase ingestion
latency.

Scaling: tasks.max should not exceed the number of
partitions; higher partition counts are needed for
greater parallelism.

Permissions: write access to /topics must be granted to
the Connect user inside the container to avoid task
failures.

Monitoring: connector/task status is tracked via
Connect REST APIs, while consumer lag is observed
in Kafka Ul. Lag stability indicates balanced

NISRT25SEP1309
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flush/rotation thresholds.

» Orchestration with Airflow

Pipeline execution is orchestrated by a single
idempotent DAG, cdr delivery check, composed of four
PythonOperator tasks (Fig. ??):

e check connector running — validates that the Kafka
Connect HDFS sink (hdfs-sink-cdr) exists and is
running, reconfiguring if needed.

e Count kafka produced — computes record counts and
consumer lag for the cdr-events topic, storing results in
XCom.

2067


https://doi.org/10.38124/ijisrt/25sep1309
http://www.ijisrt.com/

Volume 10, Issue 9, September — 2025 International Journal of Innovative Science and Research Technology
ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25sep1309

*Airﬁow DAGs Cluster Activity Datasets Security Browse Admin Docs 20:26 UTC AU

cdr_delivery check ' »2025-09-25, 14:37:22 UTC m

A\ Details *2 Graph [ Gantt <> Code B Audit Log

Layout:
Left -> Right v
ge

check_connector_running ases
count_kafka_produced aees
wait_for_hdfs_commits aees
estimate_records_in_hdfs aee
summary aees

count_kafka_produced ’

‘ ‘estimate_records_in_hdfs
o

summary
® success

+
= ) ) )
Fig 2 Airflow DAG Schematic for CDR Delivery Check.

e wait for hdfs_commits — waits until committed, CDR) consistently reported RUNNING. The consumer
non-empty files appear in HDFS under /topics/cdr- group maintained three members (matching the three
events/partition={i}, confirming successful flush. Kafka partitions) in a stable state throughout the runs.

e summary — compiles metrics including throughput ) ) ) )
(records/s), file counts and sizes, and latency estimates Ingestion behavior. With tasks.max=3 and size-
(50, p95), saving outputs for visualization. only rotation (rotate.interval.ms=0), consumer lag

remained at or near zero for a producer rate of
V. RESULTS approximately 25 RPS. Committed files appeared
continuously per partition with monotonically increasing
> Operational offset ranges, indicating steady ingestion and deterministic
Connector health. The HDFS sink (hdfs-sink- rotation.
Consumer lag over time
10 H
0.8 k)
0.6 :
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0.0 | | |
‘}h-,xﬁ Ea \.h-f.“l i
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Fig 3 Consumer Lag Over Time.
Interpretation of Fig. 3. Consumer lag remains at 0 spikes or drift shows no backlog accumulation, steady per-
messages throughout the run, indicating the HDFS Sink partition commits, and that the pipeline is ingestion-bound
keeps pace with production at ~25 RPS. The absence of (not consumer-limited) at this load.
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» Storage.

The HDFS NameNode Ul indicated 2.00 healthy
DataNodes (Hadoop 3.3.6) with low utilization. A
recursive listing (hdfs dfs -Is -R /topics/cdr-events)
showed steady growth of the per-partition directories and no
orphaned +tmp artifacts, indicating clean file closure and
commit behavior by the HDFS Sink. The aggregate
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footprint from hdfs dfs-count -v /topics/cdr-events is
summarized in Table 2: 31,420.00 committed objects
totaling 110.18 MiB (115,528,793.00 B), with an average
object size of 3,676.92 B and approximately 10,473.33 files
per partition. Because this demonstration uses a replication
factor of 1, reported bytes reflect single-replica storage.

Table 2 Storage Footprint Under /Topics/CDR-Events.

Path Files Total [B]

Total [MiB]

Avg [B] Files/part.

/topics/cdr-events 31,420.00115,528,793.00

110.18 3,676.92

10,473.33

» Per-Partition Throughput Balance
We aggregated committed records per Kafka partition
over the last 6 hours to check for distribution skew with

tasks.max=3. ldeally the three bars are similar; large gaps
indicate partition skew or uneven task capacity. Figure 4
shows near-uniform throughput across partitions.

Per-partition throughput balance (last 6h)
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Fig 4 Per-Partition Throughput Balance (Records Committed in the Last 6 Hours). Over the last 6 h the Committed

Records Per Partition Were p0 = 972, p1 = 881, p2 = 979 (Fig. 4). Throughput is Nearly Even; pl is ~9%

Below p0/p2, which is Typical Short-Window Variance (Timing, Retries, Message size) and does not Indicate Skew or
Backpressure. We Would Only Investigate if an Imbalance Persisted Above 20%.

» Delivery Integrity (Produced vs. Landed)
Table 3 summarizes recent runs of cdr delivery

check. In each run, the number of records produced-

matched those landed in HDFS (delivery gap = 0.00%),
demonstrating lossless end-to-end ingestion. These results

indicate that the Kafka — Kafka Connect (HDFS Sink) —
HDFS path is keeping pace with the producer at the tested
loads, and that the configured three-way parallelism (three
topic partitions) prevents file commit anomalies.

Table 3: Produced vs. landed counts for the latest DAG runs of cdr delivery check.

Run Id Produced Landed Diff Gap (%)
manual___ 2025-09-25T22:52:17.769125+00:00 1,611 1,611 0 0.00%
manual___ 2025-09-25T14:37:22.639462+00:00 7,122 7,122 0 0.00%

» Analytical Samples

We computed light-weight aggregates in PySpark to
validate downstream usability. Table 4 shows that roaming
traffic is stable at about 3.2-3.3% of total CDRs across

IJISRT25SEP1309

the three study days. Table 5 lists the most active cells by
event volume together with distinct-caller estimates,
illustrating how the landed data can support capacity or
anomaly analyses at the cell level.
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Table 4 Daily Roaming Share Computed as Roaming Events/total. The Spark Output Included a NULL Date Row with Zero
Counts; it is Omitted Here.

Date Roaming Events Total Events Roaming Share
2025-09-22 3,124 94,803 3.30%
2025-09-24 1,523 47,455 3.21%
2025-09-25 2,667 80,116 3.33%

Table 5 Most Active Cells by Event Count with Distinct-Caller Estimates.
cell id events unique_callers
cell-0308 717 264
cell-0366 678 262
cell-0228 674 262
cell-0312 667 252
cell-0053 660 241
V. CONCLUSION I also thank the lecturers of the Master’s in Big Data

We implemented an end-to-end CDR streaming
pipeline using a Python producer (Kafka), a Kafka Connect
HDFS sink, HDFS storage, PySpark analytics, and Apache
Airflow orchestration. At a target load of ~25 RPS, the
consumer lag remained effectively zero, the connector
stayed healthy, and recent runs showed a 0% delivery gap
between produced and landed records. Partition throughput
was well balanced across the three topic partitions,
confirming parallelism end-to-end. With flush.size=10 the
system performs deterministic, size-only rotation; this yields
many small files (=31k files, =110 MiB total, ~3.7 KiB
average) that are still read interactively by PySpark.
Illustrative aggregates— including daily roaming share (=
3.2-3.3%) and top-cell activity—were computed within
seconds, indicating that the landing layout is immediately
queryable.

» Future Work

e Integrate Schema Registry; adopt Avro/Parquet at
ingestion and enforce schema contracts.

e Scale to multi-broker Kafka and replication factor >
2; benchmark higher RPS and larger partition counts.

e Enable authentication/authorization = (SASL/SSL;
Kerberos) and RBAC for production parity.

e Replace raw folders with a table format™ (Delta
Lake/lceberg/Hudi) to gain ACID properties and
time travel.

e Introduce near-real-time transforms (Spark Structured
Streaming or Flink) and formal- ize DLQ
monitoring/alerting.

e Automate compaction and file-sizing policies; add
latency/throughput dashboards in Airflow.
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