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Abstract: The rapid expansion of telecommunications services produces enormous quan- tities of Call Detail Records 

(CDRs), requiring real-time ingestion, storage, and analysis to support billing operations and fraud detection systems, 

and network op- timization. paper presents an end-to-end, containerized big data pipeline Call Detail Records (CDRs) 

are generated as high-volume event streams that require low-latency ingestion, durable storage, and dependable 

analytics. This paper presents an end-to- end, containerized big data pipeline that integrates Apache Kafka, Kafka 

Connect, Hadoop Distributed File System (HDFS), PySpark, and Apache Airflow within a reproducible Docker 

environment. Unlike conventional batch-oriented approaches, the proposed architecture demonstrates low-latency 

ingestion, fault-tolerant storage, and scalable processing of high-throughput CDR streams. Experimental results show 

zero delivery loss at 25 records per second (RPS), balanced partition throughput, and immediate analytical readiness, 

with roaming traffic analysis and cell-level usage statistics produced in seconds. The work contributes a practical 

reference model for telecom streaming pipelines, highlighting the advantages of containerized deployment, automated 

orchestration, and reproducible analytics, and it outlines directions for scaling and production integration.  
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I. INTRODUCTION 

 

The exponential growth of telecommunications services 

has led to the massive generation of Call Detail Records 

(CDRs)—metadata describing voice calls, SMS, mobile 

money transactions, and internet usage. These records are 

indispensable to operators and service providers, 
underpinning billing, customer behavior analysis, fraud 

detection, network optimization, and regulatory compliance. 

Given their volume, velocity, and variety, managing CDRs 

demands big data technologies that can capture, process, and 

analyze streams in near real time. 

Traditional enterprise data warehouses (e.g., Oracle, 

Teradata, IBM Netezza) were designed for structured, 

batch-oriented analytics. While effective for periodic 

reporting, they are ill-suited to the velocity and scale of 

modern telecom data streams due to high latency, limited 

scalability, and elevated infrastructure costs [2, 3, 4, 1]. To 

address these challenges, we propose a cost-effective, 
scalable streaming data pipeline built on open-source 

frameworks. In this architecture, Apache Kafka serves as 

the distributed messaging backbone to handle continuous 

CDR flows with high throughput and fault tolerance, while 

Kafka Connect provides a standardized integration layer that 
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lands records into the Hadoop Distributed File System 
(HDFS) for durable, scalable storage. 

 

Once raw data is available in HDFS, Apache Spark—

via PySpark—enables advanced transformations, 

enrichment, and aggregations over CDRs, supporting both 

batch and streaming analytics. This capability facilitates 

timely insights into network usage patterns, anomalies, and 

customer trends. To orchestrate, schedule, and monitor 

pipeline compo- nents, Apache Airflow supplies workflow 

automation, dependency management, and fault recovery, 

ensuring that each stage—from ingestion to processing and 
storage—operates reliably and transparently. 

 

To simplify deployment and ensure portability, all 

components are containerized using Docker. Containers 

eliminate environment-configuration drift and promote 

consistent behavior across development, testing, and 

production. By combining Kafka, HDFS, PySpark, 

Airflow, and Docker into a unified streaming pipeline, 

telecom operators can realize near-real-time analytics at 

scale to support decision-making and improve operational 

efficiency. 

 
This work presents the architecture, implementation, 

and empirical evaluation of the pipeline. We show how 

integrating modern big data frameworks within a 

containerized environment yields a practical platform for 

telecom data engineering and analytics, with applications 

extending beyond CDRs to other domains requiring high-

throughput, low- latency processing. 

 

 This Work is Designed to Provide a Practical, 

Reproducible Reference Architecture for Streaming 

CDR Data Pipelines. Specifically, it Offers: 
 

 A Docker Compose–based deployment designed for 

rapid setup, bundling Kafka, Kafka Connect (HDFS 

sink), Hadoop HDFS (NameNode, DataNodes, 

YARN), Airflow, and Kafka-UI into a single 

reproducible environment. 

 A Kafka Connect configuration designed to roll files 

deterministically (via flush.size) into HDFS 

directories partitioned by topic and Kafka partition, 

reducing small-file overhead and ensuring predictable 

storage layouts. 

 Airflow DAGs designed to automate key operational 

tasks including topic creation, connector 

(re)configuration, health and lag monitoring, and 

verification of successful data landing. 

 A PySpark/Jupyter workflow designed for schema 

discovery, data compaction, and baseline CDR 

analytics on landed files, enabling extensible analysis 

and downstream modeling. 

 

II. LITERATURE REVIEW 

 

 From Traditional Warehouses to Streaming 
Data Platforms 

For many years, enterprise analytics relied heavily on 

centralized data warehouses such as Oracle, Teradata, and 

IBM Netezza. These systems were optimized for 
structured data and batch-oriented Extract–Transform–

Load (ETL) processes, enabling robust business reporting. 

However, their architecture introduced high latency, as 

data was typically refreshed on hourly or daily schedules. 

In telecommunications, where Call Detail Records (CDRs) 

are produced continuously and at scale, such systems 

cannot meet near real-time requirements. This limitation 

motivated the transition toward distributed, log-centric, 

and horizontally scalable platforms capable of handling 

semi-structured streaming data. 

 
 Kafka as a High-Throughput Streaming 

Backbone 

Apache Kafka has emerged as a leading platform for 

large-scale event ingestion. Its de- sign—based on 

distributed commit logs and partitioned topics—provides 

high throughput, durability, and fault tolerance. Kafka 

allows producers and consumers to operate inde- 

pendently, making it suitable for telecom environments 

where CDRs need to be delivered simultaneously to billing 

systems, analytics engines, and fraud detection pipelines.  

Its offset management and replication features ensure 

reliability even in the presence of node failures. 
 

 Kafka Connect for Automated Ingestion into 

HDFS 

Kafka Connect provides a standardized framework 

for integrating Kafka with external systems through 

pluggable connectors. The HDFS Sink Connector enables 

partition-aware file writing directly into Hadoop 

Distributed File System (HDFS). This eliminates the 

need for custom ingestion scripts while ensuring reliability 

through mechanisms such as the write-ahead log (WAL) 

and recovery support. For telecom operators, this 
reduces operational complexity while ensuring CDRs are 

durably persisted for downstream analysis. 

 

 HDFS as a Scalable Data Lake Substrate 

HDFS was designed for storing and processing 

massive datasets by replicating blocks across clusters of 

commodity hardware. Its fault-tolerant architecture, based on 

NameN- ode–DataNode separation, provides both durability 

and scalability. For streaming telecom workloads, HDFS 

serves as a cost-effective landing zone for raw CDRs, 

enabling historical retention and compatibility with both 

batch and real-time processing frameworks. 
 

 Stream Processing in Apache Spark 

Apache Spark has evolved from Resilient Distributed 

Datasets (RDDs) to provide both batch and stream 

processing. Spark Streaming introduced micro-batch 

processing, while Structured Streaming unified batch and 

streaming workloads under a declarative API. 

 

Features such as event-time semantics, watermarks, and 

stateful aggregations allow telecom engineers to derive 

insights such as call durations, anomaly detection, and 
customer segmentation from CDR streams with minimal 

latency. 
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 Workflow Orchestration with Apache Airflow 
Apache Airflow is widely adopted for orchestrating 

data workflows through Directed Acyclic Graphs (DAGs). 

Its scheduling, retry, and monitoring capabilities make it 

well suited to telecom streaming pipelines, where ingestion 

failures or delays must be resolved quickly. Airflow provides 

transparency and reproducibility by allowing complex multi-

stage workflows (e.g., ingestion, compaction, validation) 

to be expressed programmatically. 

 

 Containerization with Docker 

Docker has revolutionized deployment by packaging 
applications and dependencies into portable containers. 

Unlike traditional virtual machines, containers are 

lightweight and provide consistent execution 

environments across development and production. In 

telecom streaming pipelines, Docker Compose allows 

complex stacks—Kafka, HDFS, Spark, and Airflow—to 

be deployed reproducibly, reducing operational overhead 

and ensuring portability. 

 

 Telecom CDR Analytics Patterns 

CDRs support key telecom processes including billing, 

fraud prevention, capacity planning, and customer analytics. 
A common architecture involves: (i) ingesting events into 

Kafka, (ii) persisting to HDFS through Kafka Connect, 

(iii) processing via Spark for enrichment and 

aggregation, (iv) orchestrating workflows with Airflow, 

and (v) serving curated datasets to BI dashboards or 

machine learning systems. This layered pipeline balances 

real-time responsiveness with long-term analytical 
flexibility. 

 

 Synthesis and Research Gaps 

The reviewed systems converge on a “lake-first” 

architecture where Kafka ensures scalable ingestion, HDFS 

provides durable storage, Spark enables unified 

processing, Airflow delivers orchestration, and Docker 

ensures reproducibility. Despite these advances, open 

challenges remain, such as achieving exactly-once guarantees 

across heterogeneous systems, managing late or out-of-order 

events, and handling evolving schemas in regulated telecom 
environments. Moreover, there is limited published work 

demonstrating containerized, telecom-specific streaming 

architectures. This gap motivates the present study, which 

integrates these technologies in a reproducible Docker-

based environment tailored for CDR analytics. 

 

III. METHODOLOGY 

 

 System Architecture 

The proposed pipeline is designed as an end-to-end 

streaming framework that ingests synthetic Call Detail 

Records (CDRs) into Apache Kafka, persists them in 
HDFS via Kafka Connect, performs compaction and query 

operations with PySpark, and orchestrates lifecycle tasks 

through Apache Airflow. All services are containerized 

with Docker and interconnected via a user-defined bridge 

network (hadoop net), ensuring reproducibility and 

portability. 

 

 
Fig 1 End-to-End CDR Streaming Pipeline with Kafka Ingestion, HDFS Landing, PySpark Analytics, and Airflow 

Orchestration. 

 

 Core Components 
 

 Kafka 3.7 (KRaft): single broker hosting the topic 

cdr-events with three partitions for parallelism. 

 Kafka Connect 7.6.1: distributed worker configured 

with the HDFS Sink plugin to land CDR data into 

HDFS. 

 HDFS 3.3.6: one NameNode and two DataNodes 
with a writable root directory (/topics) serving as the 

data lake. 

 Airflow 2.9.3: webserver and scheduler 

(LocalExecutor) managing orchestration, retries, and 

task dependencies. 

 PySpark 3.5: employed for data compaction (Parquet 
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conversion) and exploratory analytics, optionally 
accessed via a Jupyter UI. 

 

 Environment 

The system runs on a single Windows host with 

Docker Desktop (WSL2 backend). Con-tainer images are 

explicitly version-pinned: bitnami/kafka:3.7, 

confluentinc/cp-kafka-connect:7. local/hadoop:3.3.6, 

apache/airflow:2.9.3, and a PySpark/Jupyter image. 

Servicenames (e.g., namenode, kafka) resolve 

automatically via Docker DNS. 

 
 Data & Workload 

Synthetic JSON-based CDRs are generated using a 

Python producer at a configurable request rate (RPS). 

Records cover both: 

 

 Voice events: call id, caller, callee, duration 

seconds, call result. 

 Data events: app, bytes up, bytes down. 
 

All events share common fields such as event time, 

operator, cell id, tower id, roaming, and cost rwf. To 

evaluate robustness, the workload may also inject 

malformed records, which are redirected to a Dead Letter 

Queue (DLQ). 

 

 Messaging & Sink Configuration 

We ingest all CDRs to a single Kafka topic (cdr-

events) with three partitions (RF=1 for this single-host 

demo). Kafka Connect (HDFS Sink) consumes the topic 
and writes line-delimited JSON to HDFS, with 

tasks.max matched to partitions and size-only 

rotation. We sweep flush.size to study latency–file 

size trade-offs while keeping rotate.interval.ms=0. 

Schemaless JSON is used throughout, and a DLQ is 

enabled to quarantine malformed records. Table 1 

summarizes the exact settings used in all runs. 

 

Table 1 Core Connector & Topic Settings. 

Kafka topic: cdr-events 

Partitions 3 (balances producer load; enables up to three parallel sink tasks). Replication factor  1 

(single-host demo). 

Payload Line-delimited JSON. 

Kafka Connect: HDFS Sink 

Target hdfs.url=hdfs://namenode:9000, root topics.dir=/topics. Parallelism tasks.max=3 

(match number of Kafka partitions). 

Batching / rotation flush.size swept [200, 2000] to study latency 
vs. file size; 

rotate.interval.ms=0 (size-only rotation). 

Converters Schemaless JSON via value.converter=org.apache.kafka.connect.json.JsonConver 

and value.converter.schemas.enable=false. 

 

Format format.class=io.confluent.connect.hdfs.json.JsonFormat 

(line-delimited JSON files). 

Partitioning / layout Default partitioner ⇒ partition={i} directories per Kafka parti- tion; downstream 

PySpark compacts by event date. 

Error handling errors.tolerance=all; DLQ topic cdr-events-dlq with headers and logging enabled. 

 

 

 Operational Notes. 

 

 Throughput vs. Latency: Larger flush.size values 

reduce HDFS overhead but increase ingestion 
latency. 

 Scaling: tasks.max should not exceed the number of 

partitions; higher partition counts are needed for 

greater parallelism. 

 Permissions: write access to /topics must be granted to 

the Connect user inside the container to avoid task 

failures. 

 Monitoring: connector/task status is tracked via 

Connect REST APIs, while consumer lag is observed 

in Kafka UI. Lag stability indicates balanced 

flush/rotation thresholds. 

 

 Orchestration with Airflow 

Pipeline execution is orchestrated by a single 
idempotent DAG, cdr delivery check, composed of four 

PythonOperator tasks (Fig. ??): 

 

 check connector running — validates that the Kafka 

Connect HDFS sink (hdfs-sink-cdr) exists and is 

running, reconfiguring if needed. 

 Count kafka produced — computes record counts and 

consumer lag for the cdr-events topic, storing results in 

XCom. 
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Fig 2 Airflow DAG Schematic for CDR Delivery Check. 

 

 wait for hdfs commits — waits until committed, 

non-empty files appear in HDFS under /topics/cdr-

events/partition={i}, confirming successful flush. 

 summary — compiles metrics including throughput 

(records/s), file counts and sizes, and latency estimates 

(p50, p95), saving outputs for visualization. 

 

IV. RESULTS 

 

 Operational 

Connector health. The HDFS sink (hdfs-sink-

CDR) consistently reported RUNNING. The consumer 

group maintained three members (matching the three 

Kafka partitions) in a stable state throughout the runs. 

 

Ingestion behavior. With tasks.max=3 and size-

only rotation (rotate.interval.ms=0), consumer lag 

remained at or near zero for a producer rate of 
approximately 25 RPS. Committed files appeared 

continuously per partition with monotonically increasing 

offset ranges, indicating steady ingestion and deterministic 

rotation. 

 

 
Fig 3 Consumer Lag Over Time. 

 

Interpretation of Fig. 3. Consumer lag remains at 0 

messages throughout the run, indicating the HDFS Sink 

keeps pace with production at ∼25 RPS. The absence of 

spikes or drift shows no backlog accumulation, steady per-

partition commits, and that the pipeline is ingestion-bound 

(not consumer-limited) at this load. 
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 Storage. 
The HDFS NameNode UI indicated 2.00 healthy 

DataNodes (Hadoop 3.3.6) with low utilization. A 

recursive listing (hdfs dfs -ls -R /topics/cdr-events) 

showed steady growth of the per-partition directories and no 

orphaned +tmp artifacts, indicating clean file closure and 

commit behavior by the HDFS Sink. The aggregate 

footprint from hdfs dfs-count -v /topics/cdr-events is 
summarized in Table 2: 31,420.00 committed objects 

totaling 110.18 MiB (115,528,793.00 B), with an average 

object size of 3,676.92 B and approximately 10,473.33 files 

per partition. Because this demonstration uses a replication 

factor of 1, reported bytes reflect single-replica storage. 

 

Table 2 Storage Footprint Under /Topics/CDR-Events. 

Path Files Total [B] Total [MiB] Avg [B] Files/part. 

/topics/cdr-events 31,420.00115,528,793.00 110.18 3,676.92 10,473.33 

 

 Per-Partition Throughput Balance 

We aggregated committed records per Kafka partition 

over the last 6 hours to check for distribution skew with 

tasks.max=3. Ideally the three bars are similar; large gaps 

indicate partition skew or uneven task capacity. Figure 4 

shows near-uniform throughput across partitions. 
 

 
Fig 4 Per-Partition Throughput Balance (Records Committed in the Last 6 Hours). Over the last 6 h the Committed 

Records Per Partition Were p0 = 972, p1 = 881, p2 = 979 (Fig. 4).  Throughput is Nearly Even; p1 is ∼ 9% 

Below p0/p2, which is Typical Short-Window Variance (Timing, Retries, Message size) and does not Indicate Skew or 

Backpressure. We Would Only Investigate if an Imbalance Persisted Above 20%. 
 

 Delivery Integrity (Produced vs. Landed) 

Table 3 summarizes recent runs of cdr delivery 

check. In each run, the number of records produced 

matched those landed in HDFS (delivery gap = 0.00%), 

demonstrating lossless end-to-end ingestion. These results 

indicate that the Kafka → Kafka Connect (HDFS Sink) → 

HDFS path is keeping pace with the producer at the tested 

loads, and that the configured three-way parallelism (three 

topic partitions) prevents file commit anomalies. 

 

Table 3: Produced vs. landed counts for the latest DAG runs of cdr delivery check. 

Run Id Produced Landed Diff Gap (%) 

manual ___ 2025-09-25T22:52:17.769125+00:00 1,611 1,611 0 0.00% 

manual ___ 2025-09-25T14:37:22.639462+00:00 7,122 7,122 0 0.00% 

 

 Analytical Samples 

We computed light-weight aggregates in PySpark to 

validate downstream usability. Table 4 shows that roaming 
traffic is stable at about 3.2–3.3% of total CDRs across 

the three study days. Table 5 lists the most active cells by 

event volume together with distinct-caller estimates, 

illustrating how the landed data can support capacity or 
anomaly analyses at the cell level. 
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Table 4 Daily Roaming Share Computed as Roaming Events/total. The Spark Output Included a NULL Date Row with Zero 
Counts; it is Omitted Here. 

Date Roaming Events Total Events Roaming Share 

2025-09-22 3,124 94,803 3.30% 

2025-09-24 1,523 47,455 3.21% 

2025-09-25 2,667 80,116 3.33% 

 

Table 5 Most Active Cells by Event Count with Distinct-Caller Estimates. 

cell id events unique callers 

cell-0308 717 264 

cell-0366 678 262 

cell-0228 674 262 

cell-0312 667 252 

cell-0053 660 241 

 

V. CONCLUSION 

 

We implemented an end-to-end CDR streaming 

pipeline using a Python producer (Kafka), a Kafka Connect 

HDFS sink, HDFS storage, PySpark analytics, and Apache 

Airflow orchestration. At a target load of ∼25 RPS, the 

consumer lag remained effectively zero, the connector 

stayed healthy, and recent runs showed a 0% delivery gap 
between produced and landed records. Partition throughput 

was well balanced across the three topic partitions, 

confirming parallelism end-to-end. With flush.size=10 the 

system performs deterministic, size-only rotation; this yields 

many small files (≈ 31k files, ≈ 110 MiB total, ≈ 3.7 KiB 

average) that are still read interactively by PySpark. 

Illustrative aggregates— including daily roaming share (≈ 

3.2–3.3%) and top-cell activity—were computed within 

seconds, indicating that the landing layout is immediately 

queryable. 

 
 Future Work 

 

 Integrate Schema Registry; adopt Avro/Parquet at 

ingestion and enforce schema contracts. 

 Scale to multi-broker Kafka and replication factor ≥ 

2; benchmark higher RPS and larger partition counts. 

 Enable authentication/authorization (SASL/SSL; 

Kerberos) and RBAC for production parity. 

 Replace raw folders with a table format (Delta 

Lake/Iceberg/Hudi) to gain ACID properties and 

time travel. 

 Introduce near-real-time transforms (Spark Structured 

Streaming or Flink) and formal- ize DLQ 

monitoring/alerting. 

 Automate compaction and file-sizing policies; add 

latency/throughput dashboards in Airflow. 
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