
Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25sep1309

IJISRT25SEP1309 www.ijisrt.com 2064

Real-Time Streaming of Call Detail Records to

HDFS: An End-to-End Big Data Pipeline Using

Kafka Connect, Apache Airflow, and Apache

Spark

Germain Uwiringiyedata1

1Master’s in Big Data Analytics Adventist University of Central Africa

Publication Date: 2025/09/29

Abstract: The rapid expansion of telecommunications services produces enormous quan- tities of Call Detail Records

(CDRs), requiring real-time ingestion, storage, and analysis to support billing operations and fraud detection systems,

and network op- timization. paper presents an end-to-end, containerized big data pipeline Call Detail Records (CDRs)

are generated as high-volume event streams that require low-latency ingestion, durable storage, and dependable

analytics. This paper presents an end-to- end, containerized big data pipeline that integrates Apache Kafka, Kafka

Connect, Hadoop Distributed File System (HDFS), PySpark, and Apache Airflow within a reproducible Docker

environment. Unlike conventional batch-oriented approaches, the proposed architecture demonstrates low-latency

ingestion, fault-tolerant storage, and scalable processing of high-throughput CDR streams. Experimental results show

zero delivery loss at 25 records per second (RPS), balanced partition throughput, and immediate analytical readiness,

with roaming traffic analysis and cell-level usage statistics produced in seconds. The work contributes a practical

reference model for telecom streaming pipelines, highlighting the advantages of containerized deployment, automated

orchestration, and reproducible analytics, and it outlines directions for scaling and production integration.

Keywords: Kafka; Kafka Connect; HDFS; PySpark; Airflow; Docker; Streaming; CDR.

List of Acronyms

CDR Call Detail Record

HDFS Hadoop Distributed File System

RPS Records Per Second

DAG Directed Acyclic Graph

API Application Programming Interface

SQL Structured Query Language

IoT Internet of Things

How to Cite: Germain Uwiringiyedata (2025) Real-Time Streaming of Call Detail Records to HDFS: An End-to-End Big

Data Pipeline Using Kafka Connect, Apache Airflow, and Apache Spark. International Journal of Innovative Science and

Research Technology, 10 (9), 2064-2071. https://doi.org/10.38124/ijisrt/25sep1309

I. INTRODUCTION

The exponential growth of telecommunications services

has led to the massive generation of Call Detail Records

(CDRs)—metadata describing voice calls, SMS, mobile

money transactions, and internet usage. These records are

indispensable to operators and service providers,
underpinning billing, customer behavior analysis, fraud

detection, network optimization, and regulatory compliance.

Given their volume, velocity, and variety, managing CDRs

demands big data technologies that can capture, process, and

analyze streams in near real time.

Traditional enterprise data warehouses (e.g., Oracle,

Teradata, IBM Netezza) were designed for structured,

batch-oriented analytics. While effective for periodic

reporting, they are ill-suited to the velocity and scale of

modern telecom data streams due to high latency, limited

scalability, and elevated infrastructure costs [2, 3, 4, 1]. To

address these challenges, we propose a cost-effective,
scalable streaming data pipeline built on open-source

frameworks. In this architecture, Apache Kafka serves as

the distributed messaging backbone to handle continuous

CDR flows with high throughput and fault tolerance, while

Kafka Connect provides a standardized integration layer that

https://doi.org/10.38124/ijisrt/25sep1309
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25sep1309

Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25sep1309

IJISRT25SEP1309 www.ijisrt.com 2065

lands records into the Hadoop Distributed File System
(HDFS) for durable, scalable storage.

Once raw data is available in HDFS, Apache Spark—

via PySpark—enables advanced transformations,

enrichment, and aggregations over CDRs, supporting both

batch and streaming analytics. This capability facilitates

timely insights into network usage patterns, anomalies, and

customer trends. To orchestrate, schedule, and monitor

pipeline compo- nents, Apache Airflow supplies workflow

automation, dependency management, and fault recovery,

ensuring that each stage—from ingestion to processing and
storage—operates reliably and transparently.

To simplify deployment and ensure portability, all

components are containerized using Docker. Containers

eliminate environment-configuration drift and promote

consistent behavior across development, testing, and

production. By combining Kafka, HDFS, PySpark,

Airflow, and Docker into a unified streaming pipeline,

telecom operators can realize near-real-time analytics at

scale to support decision-making and improve operational

efficiency.

This work presents the architecture, implementation,

and empirical evaluation of the pipeline. We show how

integrating modern big data frameworks within a

containerized environment yields a practical platform for

telecom data engineering and analytics, with applications

extending beyond CDRs to other domains requiring high-

throughput, low- latency processing.

 This Work is Designed to Provide a Practical,

Reproducible Reference Architecture for Streaming

CDR Data Pipelines. Specifically, it Offers:

 A Docker Compose–based deployment designed for

rapid setup, bundling Kafka, Kafka Connect (HDFS

sink), Hadoop HDFS (NameNode, DataNodes,

YARN), Airflow, and Kafka-UI into a single

reproducible environment.

 A Kafka Connect configuration designed to roll files

deterministically (via flush.size) into HDFS

directories partitioned by topic and Kafka partition,

reducing small-file overhead and ensuring predictable

storage layouts.

 Airflow DAGs designed to automate key operational

tasks including topic creation, connector

(re)configuration, health and lag monitoring, and

verification of successful data landing.

 A PySpark/Jupyter workflow designed for schema

discovery, data compaction, and baseline CDR

analytics on landed files, enabling extensible analysis

and downstream modeling.

II. LITERATURE REVIEW

 From Traditional Warehouses to Streaming
Data Platforms

For many years, enterprise analytics relied heavily on

centralized data warehouses such as Oracle, Teradata, and

IBM Netezza. These systems were optimized for
structured data and batch-oriented Extract–Transform–

Load (ETL) processes, enabling robust business reporting.

However, their architecture introduced high latency, as

data was typically refreshed on hourly or daily schedules.

In telecommunications, where Call Detail Records (CDRs)

are produced continuously and at scale, such systems

cannot meet near real-time requirements. This limitation

motivated the transition toward distributed, log-centric,

and horizontally scalable platforms capable of handling

semi-structured streaming data.

 Kafka as a High-Throughput Streaming

Backbone

Apache Kafka has emerged as a leading platform for

large-scale event ingestion. Its de- sign—based on

distributed commit logs and partitioned topics—provides

high throughput, durability, and fault tolerance. Kafka

allows producers and consumers to operate inde-

pendently, making it suitable for telecom environments

where CDRs need to be delivered simultaneously to billing

systems, analytics engines, and fraud detection pipelines.

Its offset management and replication features ensure

reliability even in the presence of node failures.

 Kafka Connect for Automated Ingestion into

HDFS

Kafka Connect provides a standardized framework

for integrating Kafka with external systems through

pluggable connectors. The HDFS Sink Connector enables

partition-aware file writing directly into Hadoop

Distributed File System (HDFS). This eliminates the

need for custom ingestion scripts while ensuring reliability

through mechanisms such as the write-ahead log (WAL)

and recovery support. For telecom operators, this
reduces operational complexity while ensuring CDRs are

durably persisted for downstream analysis.

 HDFS as a Scalable Data Lake Substrate

HDFS was designed for storing and processing

massive datasets by replicating blocks across clusters of

commodity hardware. Its fault-tolerant architecture, based on

NameN- ode–DataNode separation, provides both durability

and scalability. For streaming telecom workloads, HDFS

serves as a cost-effective landing zone for raw CDRs,

enabling historical retention and compatibility with both

batch and real-time processing frameworks.

 Stream Processing in Apache Spark

Apache Spark has evolved from Resilient Distributed

Datasets (RDDs) to provide both batch and stream

processing. Spark Streaming introduced micro-batch

processing, while Structured Streaming unified batch and

streaming workloads under a declarative API.

Features such as event-time semantics, watermarks, and

stateful aggregations allow telecom engineers to derive

insights such as call durations, anomaly detection, and
customer segmentation from CDR streams with minimal

latency.

https://doi.org/10.38124/ijisrt/25sep1309
http://www.ijisrt.com/

Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25sep1309

IJISRT25SEP1309 www.ijisrt.com 2066

 Workflow Orchestration with Apache Airflow
Apache Airflow is widely adopted for orchestrating

data workflows through Directed Acyclic Graphs (DAGs).

Its scheduling, retry, and monitoring capabilities make it

well suited to telecom streaming pipelines, where ingestion

failures or delays must be resolved quickly. Airflow provides

transparency and reproducibility by allowing complex multi-

stage workflows (e.g., ingestion, compaction, validation)

to be expressed programmatically.

 Containerization with Docker

Docker has revolutionized deployment by packaging
applications and dependencies into portable containers.

Unlike traditional virtual machines, containers are

lightweight and provide consistent execution

environments across development and production. In

telecom streaming pipelines, Docker Compose allows

complex stacks—Kafka, HDFS, Spark, and Airflow—to

be deployed reproducibly, reducing operational overhead

and ensuring portability.

 Telecom CDR Analytics Patterns

CDRs support key telecom processes including billing,

fraud prevention, capacity planning, and customer analytics.
A common architecture involves: (i) ingesting events into

Kafka, (ii) persisting to HDFS through Kafka Connect,

(iii) processing via Spark for enrichment and

aggregation, (iv) orchestrating workflows with Airflow,

and (v) serving curated datasets to BI dashboards or

machine learning systems. This layered pipeline balances

real-time responsiveness with long-term analytical
flexibility.

 Synthesis and Research Gaps

The reviewed systems converge on a “lake-first”

architecture where Kafka ensures scalable ingestion, HDFS

provides durable storage, Spark enables unified

processing, Airflow delivers orchestration, and Docker

ensures reproducibility. Despite these advances, open

challenges remain, such as achieving exactly-once guarantees

across heterogeneous systems, managing late or out-of-order

events, and handling evolving schemas in regulated telecom
environments. Moreover, there is limited published work

demonstrating containerized, telecom-specific streaming

architectures. This gap motivates the present study, which

integrates these technologies in a reproducible Docker-

based environment tailored for CDR analytics.

III. METHODOLOGY

 System Architecture

The proposed pipeline is designed as an end-to-end

streaming framework that ingests synthetic Call Detail

Records (CDRs) into Apache Kafka, persists them in
HDFS via Kafka Connect, performs compaction and query

operations with PySpark, and orchestrates lifecycle tasks

through Apache Airflow. All services are containerized

with Docker and interconnected via a user-defined bridge

network (hadoop net), ensuring reproducibility and

portability.

Fig 1 End-to-End CDR Streaming Pipeline with Kafka Ingestion, HDFS Landing, PySpark Analytics, and Airflow

Orchestration.

 Core Components

 Kafka 3.7 (KRaft): single broker hosting the topic

cdr-events with three partitions for parallelism.

 Kafka Connect 7.6.1: distributed worker configured

with the HDFS Sink plugin to land CDR data into

HDFS.

 HDFS 3.3.6: one NameNode and two DataNodes
with a writable root directory (/topics) serving as the

data lake.

 Airflow 2.9.3: webserver and scheduler

(LocalExecutor) managing orchestration, retries, and

task dependencies.

 PySpark 3.5: employed for data compaction (Parquet

https://doi.org/10.38124/ijisrt/25sep1309
http://www.ijisrt.com/

Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25sep1309

IJISRT25SEP1309 www.ijisrt.com 2067

conversion) and exploratory analytics, optionally
accessed via a Jupyter UI.

 Environment

The system runs on a single Windows host with

Docker Desktop (WSL2 backend). Con-tainer images are

explicitly version-pinned: bitnami/kafka:3.7,

confluentinc/cp-kafka-connect:7. local/hadoop:3.3.6,

apache/airflow:2.9.3, and a PySpark/Jupyter image.

Servicenames (e.g., namenode, kafka) resolve

automatically via Docker DNS.

 Data & Workload

Synthetic JSON-based CDRs are generated using a

Python producer at a configurable request rate (RPS).

Records cover both:

 Voice events: call id, caller, callee, duration

seconds, call result.

 Data events: app, bytes up, bytes down.

All events share common fields such as event time,

operator, cell id, tower id, roaming, and cost rwf. To

evaluate robustness, the workload may also inject

malformed records, which are redirected to a Dead Letter

Queue (DLQ).

 Messaging & Sink Configuration

We ingest all CDRs to a single Kafka topic (cdr-

events) with three partitions (RF=1 for this single-host

demo). Kafka Connect (HDFS Sink) consumes the topic
and writes line-delimited JSON to HDFS, with

tasks.max matched to partitions and size-only

rotation. We sweep flush.size to study latency–file

size trade-offs while keeping rotate.interval.ms=0.

Schemaless JSON is used throughout, and a DLQ is

enabled to quarantine malformed records. Table 1

summarizes the exact settings used in all runs.

Table 1 Core Connector & Topic Settings.

Kafka topic: cdr-events

Partitions 3 (balances producer load; enables up to three parallel sink tasks). Replication factor 1

(single-host demo).

Payload Line-delimited JSON.

Kafka Connect: HDFS Sink

Target hdfs.url=hdfs://namenode:9000, root topics.dir=/topics. Parallelism tasks.max=3

(match number of Kafka partitions).

Batching / rotation flush.size swept [200, 2000] to study latency
vs. file size;

rotate.interval.ms=0 (size-only rotation).

Converters Schemaless JSON via value.converter=org.apache.kafka.connect.json.JsonConver

and value.converter.schemas.enable=false.

Format format.class=io.confluent.connect.hdfs.json.JsonFormat

(line-delimited JSON files).

Partitioning / layout Default partitioner ⇒ partition={i} directories per Kafka parti- tion; downstream

PySpark compacts by event date.

Error handling errors.tolerance=all; DLQ topic cdr-events-dlq with headers and logging enabled.

 Operational Notes.

 Throughput vs. Latency: Larger flush.size values

reduce HDFS overhead but increase ingestion
latency.

 Scaling: tasks.max should not exceed the number of

partitions; higher partition counts are needed for

greater parallelism.

 Permissions: write access to /topics must be granted to

the Connect user inside the container to avoid task

failures.

 Monitoring: connector/task status is tracked via

Connect REST APIs, while consumer lag is observed

in Kafka UI. Lag stability indicates balanced

flush/rotation thresholds.

 Orchestration with Airflow

Pipeline execution is orchestrated by a single
idempotent DAG, cdr delivery check, composed of four

PythonOperator tasks (Fig. ??):

 check connector running — validates that the Kafka

Connect HDFS sink (hdfs-sink-cdr) exists and is

running, reconfiguring if needed.

 Count kafka produced — computes record counts and

consumer lag for the cdr-events topic, storing results in

XCom.

https://doi.org/10.38124/ijisrt/25sep1309
http://www.ijisrt.com/

Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25sep1309

IJISRT25SEP1309 www.ijisrt.com 2068

Fig 2 Airflow DAG Schematic for CDR Delivery Check.

 wait for hdfs commits — waits until committed,

non-empty files appear in HDFS under /topics/cdr-

events/partition={i}, confirming successful flush.

 summary — compiles metrics including throughput

(records/s), file counts and sizes, and latency estimates

(p50, p95), saving outputs for visualization.

IV. RESULTS

 Operational

Connector health. The HDFS sink (hdfs-sink-

CDR) consistently reported RUNNING. The consumer

group maintained three members (matching the three

Kafka partitions) in a stable state throughout the runs.

Ingestion behavior. With tasks.max=3 and size-

only rotation (rotate.interval.ms=0), consumer lag

remained at or near zero for a producer rate of
approximately 25 RPS. Committed files appeared

continuously per partition with monotonically increasing

offset ranges, indicating steady ingestion and deterministic

rotation.

Fig 3 Consumer Lag Over Time.

Interpretation of Fig. 3. Consumer lag remains at 0

messages throughout the run, indicating the HDFS Sink

keeps pace with production at ∼25 RPS. The absence of

spikes or drift shows no backlog accumulation, steady per-

partition commits, and that the pipeline is ingestion-bound

(not consumer-limited) at this load.

https://doi.org/10.38124/ijisrt/25sep1309
http://www.ijisrt.com/

Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25sep1309

IJISRT25SEP1309 www.ijisrt.com 2069

 Storage.
The HDFS NameNode UI indicated 2.00 healthy

DataNodes (Hadoop 3.3.6) with low utilization. A

recursive listing (hdfs dfs -ls -R /topics/cdr-events)

showed steady growth of the per-partition directories and no

orphaned +tmp artifacts, indicating clean file closure and

commit behavior by the HDFS Sink. The aggregate

footprint from hdfs dfs-count -v /topics/cdr-events is
summarized in Table 2: 31,420.00 committed objects

totaling 110.18 MiB (115,528,793.00 B), with an average

object size of 3,676.92 B and approximately 10,473.33 files

per partition. Because this demonstration uses a replication

factor of 1, reported bytes reflect single-replica storage.

Table 2 Storage Footprint Under /Topics/CDR-Events.

Path Files Total [B] Total [MiB] Avg [B] Files/part.

/topics/cdr-events 31,420.00115,528,793.00 110.18 3,676.92 10,473.33

 Per-Partition Throughput Balance

We aggregated committed records per Kafka partition

over the last 6 hours to check for distribution skew with

tasks.max=3. Ideally the three bars are similar; large gaps

indicate partition skew or uneven task capacity. Figure 4

shows near-uniform throughput across partitions.

Fig 4 Per-Partition Throughput Balance (Records Committed in the Last 6 Hours). Over the last 6 h the Committed

Records Per Partition Were p0 = 972, p1 = 881, p2 = 979 (Fig. 4). Throughput is Nearly Even; p1 is ∼ 9%

Below p0/p2, which is Typical Short-Window Variance (Timing, Retries, Message size) and does not Indicate Skew or

Backpressure. We Would Only Investigate if an Imbalance Persisted Above 20%.

 Delivery Integrity (Produced vs. Landed)

Table 3 summarizes recent runs of cdr delivery

check. In each run, the number of records produced

matched those landed in HDFS (delivery gap = 0.00%),

demonstrating lossless end-to-end ingestion. These results

indicate that the Kafka → Kafka Connect (HDFS Sink) →

HDFS path is keeping pace with the producer at the tested

loads, and that the configured three-way parallelism (three

topic partitions) prevents file commit anomalies.

Table 3: Produced vs. landed counts for the latest DAG runs of cdr delivery check.

Run Id Produced Landed Diff Gap (%)

manual ___ 2025-09-25T22:52:17.769125+00:00 1,611 1,611 0 0.00%

manual ___ 2025-09-25T14:37:22.639462+00:00 7,122 7,122 0 0.00%

 Analytical Samples

We computed light-weight aggregates in PySpark to

validate downstream usability. Table 4 shows that roaming
traffic is stable at about 3.2–3.3% of total CDRs across

the three study days. Table 5 lists the most active cells by

event volume together with distinct-caller estimates,

illustrating how the landed data can support capacity or
anomaly analyses at the cell level.

https://doi.org/10.38124/ijisrt/25sep1309
http://www.ijisrt.com/

Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25sep1309

IJISRT25SEP1309 www.ijisrt.com 2070

Table 4 Daily Roaming Share Computed as Roaming Events/total. The Spark Output Included a NULL Date Row with Zero
Counts; it is Omitted Here.

Date Roaming Events Total Events Roaming Share

2025-09-22 3,124 94,803 3.30%

2025-09-24 1,523 47,455 3.21%

2025-09-25 2,667 80,116 3.33%

Table 5 Most Active Cells by Event Count with Distinct-Caller Estimates.

cell id events unique callers

cell-0308 717 264

cell-0366 678 262

cell-0228 674 262

cell-0312 667 252

cell-0053 660 241

V. CONCLUSION

We implemented an end-to-end CDR streaming

pipeline using a Python producer (Kafka), a Kafka Connect

HDFS sink, HDFS storage, PySpark analytics, and Apache

Airflow orchestration. At a target load of ∼25 RPS, the

consumer lag remained effectively zero, the connector

stayed healthy, and recent runs showed a 0% delivery gap
between produced and landed records. Partition throughput

was well balanced across the three topic partitions,

confirming parallelism end-to-end. With flush.size=10 the

system performs deterministic, size-only rotation; this yields

many small files (≈ 31k files, ≈ 110 MiB total, ≈ 3.7 KiB

average) that are still read interactively by PySpark.

Illustrative aggregates— including daily roaming share (≈

3.2–3.3%) and top-cell activity—were computed within

seconds, indicating that the landing layout is immediately

queryable.

 Future Work

 Integrate Schema Registry; adopt Avro/Parquet at

ingestion and enforce schema contracts.

 Scale to multi-broker Kafka and replication factor ≥

2; benchmark higher RPS and larger partition counts.

 Enable authentication/authorization (SASL/SSL;

Kerberos) and RBAC for production parity.

 Replace raw folders with a table format (Delta

Lake/Iceberg/Hudi) to gain ACID properties and

time travel.

 Introduce near-real-time transforms (Spark Structured

Streaming or Flink) and formal- ize DLQ

monitoring/alerting.

 Automate compaction and file-sizing policies; add

latency/throughput dashboards in Airflow.

ACKNOWLEDGMENT

First, I thank the Almighty God for the gift of life,

strength, and guidance throughout this work. I am

deeply grateful to my supervisor, Dr. Thulani Nyandeni,

for clear direction, timely reviews, and constant
encouragement from design to final writing.

I also thank the lecturers of the Master’s in Big Data

Analytics at Adventist University of Central Africa. Your

courses, labs, and feedback provided the skills and

confidence to build and evaluate this pipeline.

My heartfelt thanks go to my family for their love,

prayers, patience, and practical support. You’re

understanding during long hours of study made this project

possible.

REFERENCES

[1]. J. Kreps, N. Narkhede, and J. Rao, “Kafka: A

Distributed Messaging System for Log

Processing,” in NetDB (co-located with

SIGMOD), 2011. [Online]. Available:

https://notes.stephenholiday.com/Kafka.pdf

[2]. K. Shvachko, H. Kuang, S. Radia, and R.

Chansler, “The Hadoop Distributed File

System,” in MSST, IEEE, 2010. [Online].
Available:

https://pages.cs.wisc.edu/∼akella/CS838/F15/838

-CloudPapers/hdfs.pdf

[3]. M. Zaharia, T. Das, H. Li, et al., “Discretized

Streams: Fault-Tolerant Streaming Computation at

Scale,” in SOSP, 2013. [Online]. Available:

https://people.csail.mit. edu/matei/papers/2013/sosp

spark streaming.pdf

[4]. M. Armbrust, T. Das, J. Torres, et al.,

“Structured Streaming: A Declara- tive API for

Real-Time Applications in Apache Spark,” in

SIGMOD, 2018. doi: 10.1145/3183713.3190664.

[Online]. Available:
https://people.eecs.berkeley.edu/

∼matei/papers/2018/sigmod structured

streaming.pdf

[5]. Apache Software Foundation, “Apache Airflow

Documentation (Stable),” 2025. [On- line].

Available: https://airflow.apache.org/docs/apache-

airflow/stable/index.html

[6]. Apache Software Foundation, “Airflow Scheduler,”

2025. [Online]. Available: https:

//airflow.apache.org/docs/apache-

airflow/stable/administration-and-deployment/

scheduler.html

https://doi.org/10.38124/ijisrt/25sep1309
http://www.ijisrt.com/
https://notes.stephenholiday.com/Kafka.pdf
https://pages.cs.wisc.edu/~akella/CS838/F15/838-CloudPapers/hdfs.pdf
https://pages.cs.wisc.edu/~akella/CS838/F15/838-CloudPapers/hdfs.pdf
https://pages.cs.wisc.edu/~akella/CS838/F15/838-CloudPapers/hdfs.pdf
https://people.csail.mit.edu/matei/papers/2013/sosp_spark_streaming.pdf
https://people.csail.mit.edu/matei/papers/2013/sosp_spark_streaming.pdf
https://people.csail.mit.edu/matei/papers/2013/sosp_spark_streaming.pdf
https://doi.org/10.1145/3183713.3190664
https://people.eecs.berkeley.edu/~matei/papers/2018/sigmod_structured_streaming.pdf
https://people.eecs.berkeley.edu/~matei/papers/2018/sigmod_structured_streaming.pdf
https://people.eecs.berkeley.edu/~matei/papers/2018/sigmod_structured_streaming.pdf
https://airflow.apache.org/docs/apache-airflow/stable/index.html
https://airflow.apache.org/docs/apache-airflow/stable/index.html
https://airflow.apache.org/docs/apache-airflow/stable/administration-and-deployment/scheduler.html
https://airflow.apache.org/docs/apache-airflow/stable/administration-and-deployment/scheduler.html
https://airflow.apache.org/docs/apache-airflow/stable/administration-and-deployment/scheduler.html
https://airflow.apache.org/docs/apache-airflow/stable/administration-and-deployment/scheduler.html

Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25sep1309

IJISRT25SEP1309 www.ijisrt.com 2071

[7]. Docker, Inc., “Docker Overview,” 2024. [Online].
Available: https://docs.docker.com/ get-

started/docker-overview/

[8]. Docker, Inc., “What is a container?” 2025. [Online].

Available: https://docs.docker. com/get-

started/docker-concepts/the-basics/what-is-a-

container/

[9]. Confluent, Inc., “HDFS 3 Sink Connector for

Confluent Platform,” 2025. [Online]. Available:

https://docs.confluent.io/kafka-connectors/hdfs3-

sink/current/overview. html

[10]. Cloudera, “ HDFS Sink Connector (Cloudera
Runtime 7.3.1),” 2 0 2 3 . [On- line]. Available:

https://docs.cloudera.com/runtime/7.3.1/kafka-

connect/topics/ kafka-connect-connector-hdfs-

sink.html

[11]. W. H. Inmon, Building the Data Warehouse, 4th

ed. Wiley, 2005.

[12]. R. Kimball and M. Ross, The Data Warehouse

Toolkit: The Definitive Guide to Dimensional

Modeling, 3rd ed. Wiley, 2013.

[13]. N. Marz and J. Warren, Big Data: Principles and

Best Practices of Scalable Real-Time Data Systems.

Manning Publications, 2015.
[14]. M. Chen, S. Mao, and Y. Zhang, “Big Data:

A Survey,” Mobile Networks and Applications,

vol. 19, no. 2, pp. 171–209, 2014. Springer.

https://doi.org/10.38124/ijisrt/25sep1309
http://www.ijisrt.com/
https://docs.docker.com/get-started/docker-overview/
https://docs.docker.com/get-started/docker-overview/
https://docs.docker.com/get-started/docker-overview/
https://docs.docker.com/get-started/docker-concepts/the-basics/what-is-a-container/
https://docs.docker.com/get-started/docker-concepts/the-basics/what-is-a-container/
https://docs.docker.com/get-started/docker-concepts/the-basics/what-is-a-container/
https://docs.docker.com/get-started/docker-concepts/the-basics/what-is-a-container/
https://docs.confluent.io/kafka-connectors/hdfs3-sink/current/overview.html
https://docs.confluent.io/kafka-connectors/hdfs3-sink/current/overview.html
https://docs.confluent.io/kafka-connectors/hdfs3-sink/current/overview.html
https://docs.cloudera.com/runtime/7.3.1/kafka-connect/topics/kafka-connect-connector-hdfs-sink.html
https://docs.cloudera.com/runtime/7.3.1/kafka-connect/topics/kafka-connect-connector-hdfs-sink.html
https://docs.cloudera.com/runtime/7.3.1/kafka-connect/topics/kafka-connect-connector-hdfs-sink.html
https://docs.cloudera.com/runtime/7.3.1/kafka-connect/topics/kafka-connect-connector-hdfs-sink.html

	List of Acronyms
	I. INTRODUCTION
	II. LITERATURE REVIEW
	 From Traditional Warehouses to Streaming Data Platforms
	 Kafka as a High-Throughput Streaming Backbone
	 Kafka Connect for Automated Ingestion into HDFS
	 HDFS as a Scalable Data Lake Substrate
	 Stream Processing in Apache Spark
	 Workflow Orchestration with Apache Airflow
	 Containerization with Docker
	 Telecom CDR Analytics Patterns
	 Synthesis and Research Gaps

	III. METHODOLOGY
	 System Architecture
	 Core Components
	 Environment
	 Data & Workload
	 Messaging & Sink Configuration
	 Operational Notes.
	 Orchestration with Airflow

	IV. RESULTS
	 Operational
	 Storage.
	 Per-Partition Throughput Balance
	 Delivery Integrity (Produced vs. Landed)
	 Analytical Samples

	V. CONCLUSION
	 Future Work

	ACKNOWLEDGMENT
	REFERENCES

