Biology of Inflammation: Molecular Mechanisms, Systemic Impact, and Therapeutic Frontiers

Tadikonda Rama Rao^{1*}; Afshaan Tabassum²; Hafsa Sharmeen²; Sena Jessy Jasmine²

¹ Professor and Principal, Department of Pharm. D, CMR College of Pharmacy, Kandlakoya, Hyderabad, Telangana, India-501401

² Student, Department of Pharm. D, CMR College of Pharmacy, Kandlakoya, Hyderabad, Telangana, India-501401

Publication Date: 2025/09/29

Abstract: Inflammation is a crucial biological process for defending the body and promoting tissue healing. However, when it becomes chronic, it contributes to the development of various contemporary diseases such as diabetes, heart conditions, neurodegenerative disorders, and cancer. This article delves into inflammation's cellular and molecular foundations, emphasizing the involvement of immune cells, cytokines, and critical signaling pathways like NF-kB and JAK-STAT. A range of endogenous and exogenous triggers—from infections and allergens to diet, stress, and environmental pollutants—are examined for their roles in initiating and sustaining inflammation. The systemic health impacts of unresolved inflammation are discussed, with emphasis on metabolic dysfunction, vascular pathology, and neuroimmune dysregulation. The article reviews diagnostic approaches, including biomarkers like CRP and IL-6 and imaging modalities such as PET and MRI. Management strategies encompass pharmacologic agents, lifestyle interventions, and emerging therapies including microbiome-based and personalized approaches. Early detection and integrated therapeutic strategies are critical to mitigating inflammation-related morbidity and advancing precision medicine.

Keywords: Inflammation, Inflammatory Biomarkers, Anti-Inflammatory Therapy.

How to Cite: Tadikonda Rama Rao; Afshaan Tabassum; Hafsa Sharmeen; Sena Jessy Jasmine (2025) Biology of Inflammation: Molecular Mechanisms, Systemic Impact, and Therapeutic Frontiers. *International Journal of Innovative Science and Research Technology*, 10(9), 1919-1925. https://doi.org/10.38124/ijisrt/25sep1247

I. INTRODUCTION

Inflammation is a complex biological response of the body's immune system to harmful stimuli, such as pathogens, damaged cells, or irritants. It plays a critical role in defending the body and initiating healing. Inflammation is generally categorized into two main types: acute and chronic. Acute

inflammation occurs quickly and lasts for a short duration, usually subsiding once the root cause is addressed. On the other hand, chronic inflammation is a sustained, low-intensity response that can continue for extended periods, ranging from months to years, and is frequently linked to the onset of numerous non-communicable diseases [1–2].

https://doi.org/10.38124/ijisrt/25sep1247

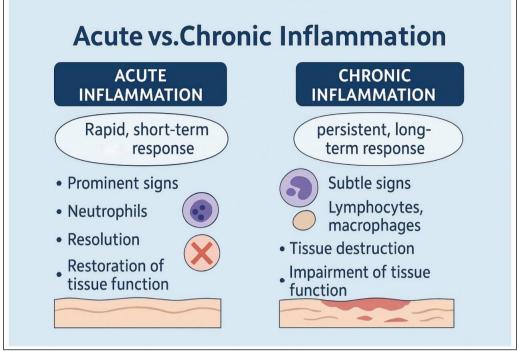


Fig 1 Acute Vs. Chronic Inflammation [3]

The classical signs of inflammation were initially identified by the Roman physician, who described them as rubor (redness), tumor (swelling), calor (heat), and dolor (pain). Subsequently, the Greek physician introduced a fifth hallmark—functio laesa (loss of function)—which is now regarded as a key aspect of the inflammatory response. In modern medicine, inflammation is no longer viewed merely as a symptom but is recognized as a core biological process that contributes to the development of numerous diseases [3 – 4].

Understanding the science of inflammation has become crucial in modern medicine, not only for disease treatment but also for prevention and lifestyle interventions. With the rise in chronic diseases globally, exploring the triggers and mechanisms of inflammation provides valuable insight into improving public health outcomes.

This article aims to explore the multifaceted nature of inflammation—from cellular mechanisms and triggers to its wide-ranging impact on health—and provide an overview of current strategies for its management through both pharmacological and lifestyle approaches.

II. THE BIOLOGY OF INFLAMMATION

Inflammation is a carefully controlled immune reaction aimed at defending the body against harm and infection. It is initiated when immune cells detect signals of tissue damage or invading pathogens through pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs). These receptors detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), activating signaling pathways that lead to the onset of inflammation [5].

Inflammation involves various immune cells. Neutrophils arrive first, releasing reactive oxygen species and proteases to combat pathogens. Macrophages clear debris and release cytokines like TNF- α and IL-1 β to recruit more immune cells. T-cells later sustain inflammation, especially in chronic or autoimmune conditions [2] [6].

A diverse range of chemical mediators plays a crucial role in regulating the inflammatory response. Cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF- α) influence cellular communication and the attraction of immune cells. Chemokines guide immune cells to the sites of injury or infection. Prostaglandins, produced from arachidonic acid through the action of cyclooxygenase (COX) enzymes, are key contributors to fever, blood vessel dilation, and pain [7].

ISSN No:-2456-2165

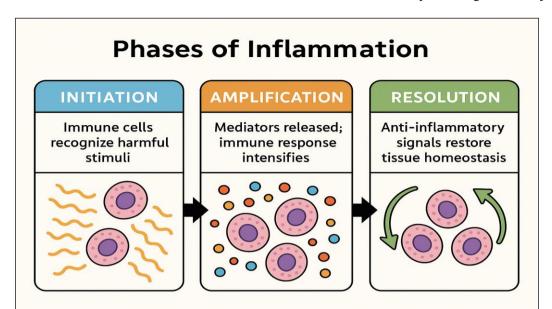


Fig 2 Phases of Inflammation [8-9]

III. TRIGGERS OF INFLAMMATION

Inflammation can be initiated by a diverse array of internal and external triggers, reflecting its role as a broad-spectrum defence mechanism. These triggers initiate innate immune responses that offer short-term protection but may cause lasting inflammation and tissue harm if not resolved.

Infectious agents are among the best-known triggers of immune responses. Host immune cells recognize pathogen-associated molecular patterns (PAMPs) from bacteria, viruses, fungi, and parasites. For example, bacterial lipopolysaccharide (LPS) activates Toll-like receptor 4 (TLR4), triggering cytokine release [10]. Similarly, viral double-stranded RNA is sensed by RIG-I-like receptors, prompting type I interferon production. Fungal β -glucans and parasitic antigens similarly

stimulate immune responses, all of which aim to contain the pathogen but can cause significant tissue inflammation if dysregulated.

Stress triggers the reactivation of dormant infections. In response, the immune system combats these infections by inducing inflammation. However, this non-specific inflammation harms body tissues, which in turn provokes another stress response—thus perpetuating a cycle [11].

Physical and chemical non-biological injuries, like trauma, burns, and radiation, trigger inflammation by releasing DAMPs such as ATP, heat shock proteins, and uric acid. Chemical agents, including pollutants and cigarette smoke, cause oxidative stress and activate inflammasomes, leading to inflammatory responses [12-13].

Table 1 Common Triggers of Inflammation and Their Mechanisms

Trigger	Mechanism of inflammatory action	Examples
Processed foods	High sugar & trans fats activate NF-κB pathway and cytokine	Refined carbs, fried items
	production	
Air pollution	Inhalation of particulates causes oxidative stress and immune	PM2.5, ozone, industrial
	activation	fumes
Chronic stress	Activates HPA axis, elevates cortisol, leading to immune	Long-term work/family stress
	dysregulation	
Poor sleep	Disrupts circadian rhythm, elevates IL-6 and CRP levels	Insomnia, sleep apnea
Sedentary lifestyle	Reduces anti-inflammatory myokines and increases visceral fat	Prolonged sitting, no exercise
	accumulation	
Gut microbiota	Dysbiosis affects mucosal immunity and increases systemic	Low-fiber diets, antibiotic
imbalance	inflammation	overuse

Inflammation plays a key role in both allergic and autoimmune conditions. Allergens like pollen, dust mites, and certain foods trigger mast cells and IgE-driven respo nses, causing histamine and cytokine release. In autoimmune diseases like rheumatoid arthritis and lupus, the immune system mistakenly attacks self-tissues, leading to persistent inflammation [14]. Obesity also contributes by increasing pro-

inflammatory adipokines such as TNF- α and IL-6, driving systemic inflammation [15 – 16].

Women are more susceptible to autoimmune diseases, and hormonal changes impact inflammatory responses. Estrogen can act as both a pro- and anti-inflammatory agent, based on its levels and the specific tissue involved [17]. Additionally, conditions like PCOS and endometriosis have

Volume 10, Issue 9, September – 2025

ISSN No:-2456-2165

https://doi.org/10.38124/ijisrt/25sep1247

strong inflammatory links [18]. Socioeconomic and caregiving roles also place women at greater risk for stress-related inflammation.

IV. IMPACT OF CHRONIC INFLAMMATION ON HEALTH

While acute inflammation serves a protective role, chronic inflammation—characterized by persistent immune activation and tissue damage—is involved in the development of various non-communicable diseases. This low-grade, systemic inflammation often arises silently and progresses gradually, contributing significantly to global disease burden.

Table 2 Inflammation	in	Common	Chronic D	iseases	[19-24]
----------------------	----	--------	-----------	---------	---------

Disease	Inflammatory role	Key mediators involved
Type 2 Diabetes	Inflammation disrupts insulin action	TNF-alpha, IL-6, CRP levels
Cardiovascular Disease	Chronic vascular inflammation accelerates plaque formation	IL-1β, CRP, oxidative stress markers
Alzheimer's Disease	Neuroinflammation contributes to neuronal damage and cognitive decline	Microglial activation, TNF-α
Rheumatoid Arthritis	Autoimmune inflammation attacks joint synovium	TNF-α, IL-1, IL-6
Polycystic Ovary Syndrome	Systemic inflammation worsens insulin resistance and hormonal imbalance	IL-6, TNF-α, CRP

In metabolic disorders, chronic inflammation both disrupts and results from impaired homeostasis. In obesity, enlarged fat tissue releases more pro-inflammatory cytokines like TNF- α and IL-6, disrupting insulin pathways and causing insulin resistance. This inflammatory state fosters type 2 diabetes mellitus (T2DM), where high blood sugar worsens immune imbalance. Likewise, non-alcoholic fatty liver disease (NAFLD), commonly linked to obesity and T2DM, involves liver inflammation driven by Kupffer cells and macrophages, leading to ongoing liver injury [15].

Cardiovascular diseases are also intimately linked to inflammation. Atherosclerosis, once considered a purely lipid-storage disease, is now recognized as an inflammatory condition where immune cells infiltrate arterial plaques and contribute to their instability. C-reactive protein (CRP), an indicator of systemic inflammation, is a strong predictor of heart attacks and strokes. Inflammation also contributes to hypertension through endothelial dysfunction and vascular remodeling [25].

IMPACT OF CHRONIC INFLAMMATION ON HEALTH Chronic inflammation is characterized by persistent immune activation and tissue damage. It is involved in the development of various diseases: **METABOLIC DISORDERS** Pro-inflammatory cytokines Insulin resistance, T2DM · Non-alcoholic fatty liver disease CARDIOVASCULAR DISEASES Atherosclerosis C-reactive protein (CRP) Hypertension NEUROLOGICAL AND PSYCHIATRIC DISORDERS Neuroinflammation · Alzhelmer's disease, multiple sclerosis Depression **CANCER** Tumor-promoting microenvironment Cell proliferation, survival Inflammatory bowel disease

Fig 3 Disease Spectrum Linked to Chronic Inflammation [26]

https://doi.org/10.38124/ijisrt/25sep1247

Chronic neuroinflammation in the central nervous system is a crucial factor in neurodegenerative and psychiatric diseases. Activated microglia and elevated cytokine levels are commonly found in brains affected by Alzheimer's disease and multiple sclerosis. In depression, peripheral inflammation may alter neurotransmitter metabolism and neuroplasticity, leading to cognitive and emotional dysregulation [27].

Finally, chronic inflammation fosters a tumor-promoting microenvironment in several cancers. Inflammatory mediators enhance cellular proliferation, inhibit apoptosis, and promote angiogenesis and metastasis. Chronic inflammatory diseases like inflammatory bowel disease (IBD) raise colorectal cancer risk, highlighting inflammation's role in cancer development [26-28].

Understanding the widespread impact of chronic inflammation underscores the importance of early intervention and holistic management strategies to prevent disease progression and improve health outcomes.

V. DIAGNOSIS AND BIOMARKERS OF INFLAMMATION

The accurate detection and monitoring of inflammation are essential for diagnosing underlying conditions and guiding treatment decisions. A range of biomarkers and imaging modalities are used to assess both acute and chronic inflammatory states.

Table 3 Diagnostic Tests and Their Significance

Biomarker / Imaging	Source/ Mechanism	Clinical Significance
CRP (Normal range- <0.3 mg/dL)	Synthesized by the liver in reaction to IL-6.	Sensitive marker of systemic inflammation; elevated in infection, trauma, autoimmune and chronic diseases.
ESR (Normal: men <15 mm/hr, women <20 mm/hr)	Measures rate of RBC sedimentation.	Indicates presence of inflammation; nonspecific marker used in chronic conditions.
IL-6, TNF- α	Pro-inflammatory cytokines released by immune cells.	Used in evaluating autoimmune, infectious, and chronic metabolic diseases; indicate inflammation severity.
PET (Positron Emission Tomography Scan)	Detects metabolic activity via radiolabelled glucose uptake.	Identifies areas of active inflammation; useful in systemic or deep tissue involvement.
MRI (Magnetic Resonance Imaging Scan)	High-resolution imaging of soft tissues.	Evaluates localized inflammation in joints, brain, and soft tissues (e.g., arthritis, MS, neuroinflammation).

Early detection of inflammation, especially in asymptomatic individuals, is increasingly important for preventing progression to chronic disease. Integrating clinical biomarkers with advanced imaging can enhance diagnostic accuracy, allowing for timely and targeted interventions that improve patient outcomes and reduce disease burden [29].

VI. MANAGEMENT AND THERAPEUTIC APPROACHES

Effectively managing inflammation, particularly when chronic, requires a multifaceted strategy that addresses both underlying causes and systemic effects.

Table 4 Therapeutic approaches

Strategy type	Examples	Mechanism of action
	• NSAIDs (ibuprofen, naproxen)	 Inhibit COX enzymes, reducing prostaglandin synthesis
	 Corticosteroids (prednisone) 	 Suppress broad immune function
1. Pharmacological	• DMARDs (methotrexate)	 Modulate immune response to slow disease progression
	Biologics (infliximab, adalimumab)	 Block specific cytokines (e.g., TNF-α, IL-6)
	DietOmega-3 fatty acids, Mediterranean diet	 Reduce eicosanoid production Provide antioxidants Lower CRP and cytokine levels
2. Lifestyle modification	Stress management • Yoga • Mindfulness meditation • Stress management techniques • Regular physical activity • Adequate sleep	 Reduce cortisol levels Inhibit NF-κB and pro-inflammatory signaling pathways Improves metabolic and immune function

ISSN No:-2456-2165

		Reduces systemic inflammation and CRP
	• JAK-STAT inhibitors	Target specific immune signaling
3. Emerging therapies	 Microbiome modulation (probiotics, FMT) 	 Improve gut-immune axis
	Personalized medicine	 Tailor treatment based on patient profile (genomics, proteomics)
4. Herbal/Natural	• Turmeric (curcumin)	– Inhibit NF-κB and COX-2 pathways

Integrating pharmacologic and non-pharmacologic strategies offers a holistic framework for inflammation management, addressing both symptoms and root causes to improve long-term health outcomes. [30-39]

VII. CONCLUSION AND FUTURE PERSPECTIVES

Inflammation, while essential for immune defense and tissue repair, becomes a significant contributor to disease when chronic and dysregulated. This article has explored the biology of inflammation, its diverse triggers, and its farreaching impacts on metabolic, cardiovascular, neurological, and oncological health. Key diagnostic tools, from biomarkers like CRP and IL-6 to imaging modalities, provide critical insights into disease progression.

Timely recognition and management of inflammation are vital. Pharmacologic therapies ranging from NSAIDs to biologics offer effective symptom control, while lifestyle interventions such as diet, exercise, and stress reduction address the root causes of chronic inflammation. Emerging treatments, including microbiome-targeted therapies and personalized medicine, represent promising frontiers in achieving precision-based inflammatory disease management.

Looking ahead, innovations in systems biology, artificial intelligence, and genomics will likely reshape how we predict, prevent, and treat inflammatory conditions. As our understanding deepens, a more integrated approach linking immunity, metabolism, environment, and behavior will be essential to reduce the global burden of inflammation-related diseases and enhance quality of life across the lifespan.

ACKNOWLEDGMENT

The authors carried out this research independently without external support or assistance requiring acknowledgment.

REFERENCES

- [1]. Medzhitov R. Origin and physiological roles of inflammation. *Nature*. 2008;454(7203):428–435.
- [2]. Nathan C, Ding A. Nonresolving inflammation. Cell. 2010 March 19;140(6):871-882. Available from: https://doi.org/10.1016/j.cell.2010.02.029

- [3]. Solanki S. Inflammation: Types, Causes, Symptoms and Properties. *Rapidleaks* [Internet]. 2022 Jun 6 [cited 2025 Apr 15]; Available from: https://rapidleaks.com/lifestyle/health/inflammation-types-causes-symptoms-properties/
- [4]. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822-32.
- [5]. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010 Mar 19;140(6):805–20. Available from: https://doi.org/10.1016/j.cell.2010.01.022
- [6]. Nathan C. Points of control in inflammation. Nature. 2002 Dec 19–26;420(6917):846–52. Available from: https://doi.org/10.1038/nature01320
- [7]. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011 May;31(5):986–1000. Available from: https://doi.org/10.1161/ATVBAHA.110.207449
- [8]. O'Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immunemediated disease. Immunity. 2012 Apr 20;36(4):542–50. Available from: https://doi.org/10.1016/j.immuni.2012.03.014
- [9]. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014 Jun 5;510(7503):92–101. Available from: https://doi.org/10.1038/nature13479
- [10]. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. *Cell.* 2006 Feb 24;124(4):783– 801. DOI: 10.1016/j.cell.2006.02.015
- [11]. Garma J. Chronic stress and inflammation: The damage and what to do about it. *GarmaOnHealth*. [Internet]. [cited 2025 Apr 15]. Available from: https://garmaonhealth.com/chronic-stress-and-inflammation/
- [12]. Rock KL, Latz E, Ontiveros F, Kono H. The sterile inflammatory response. Annu Rev Immunol. 2010;28:321–42. Available from: https://doi.org/10.1146/annurev-immunol-030409-101311
- [13]. Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. *Circulation*. 2010 Jun 1;121(21):2331–78. DOI: 10.1161/CIR.0b013e3181dbece1

- [14]. Davidson A, Diamond B. Autoimmune diseases. N Engl J Med. 2001 Aug 2;345(5):340–50. Available from: https://doi.org/10.1056/NEJM200108023450506
- [15]. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006 Dec 14;444(7121):860–7. Available from: https://doi.org/10.1038/nature05485
- [16]. Irwin MR. Why sleep is important for health: A psychoneuroimmunology perspective. *Annu Rev Psychol*. 2015;66:143–172. DOI:10.1146/annurev-psych-010213-115205
- [17]. Straub RH. The complex role of estrogens in inflammation. *Endocr Rev.* 2007 Aug;28(5):521–574. DOI:10.1210/er.2007-0001.
- [18]. González F. Inflammation in polycystic ovary syndrome: Underpinning of insulin resistance and ovarian dysfunction. *Steroids*. 2012 Mar 10;77(4):300–305.

 DOI:10.1016/j.steroids.2011.11.017.
- [19]. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. *Nat Rev Immunol*. 2011 Feb;11(2):98–107. DOI:10.1038/nri2925.
- [20]. Libby, P. (2012). Inflammation in atherosclerosis. *Arteriosclerosis, Thrombosis, and Vascular Biology*, 32(9), 2045–2051. Available from: https://doi.org/10.1161/ATVBAHA.108.179705
- [21]. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer's disease. *Lancet Neurol.* 2015 Apr;14(4):388–405. DOI:10.1016/S1474-4422(15)70016-5.
- [22]. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016 Oct 22;388(10055):2023–38. Available from: https://doi.org/10.1016/S0140-6736(16)30173-8
- [23]. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. *Cell*. 2010 Mar 19;140(6):883–899. DOI:10.1016/j.cell.2010.01.025.
- [24]. Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. *Nat Rev Neurosci*. 2008 Jan;9(1):46–56. DOI:10.1038/nrn2297.
- [25]. Libby P. Inflammation in atherosclerosis. Nature. 2002 Dec 19–26;420(6917):868–74. Available from: https://doi.org/10.1038/nature01323
- [26]. GrassrootsHealth. How to detect silent inflammation, an early warning of un-diagnosed diseases. GrassrootsHealth. [Internet]. 2023 Aug 16 [Accessed 2025 Apr 15]. Available from: https://www.grassrootshealth.net/blog/detect-silentinflammation-early-warning-un-diagnosed-diseases/
- [27]. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016 Jan;16(1):22–34. Available from: https://doi.org/10.1038/nri.2015.5
- [28]. Mantovani A, Allavena P, Sica A, Balkwill F. Cancerrelated inflammation. Nature. 2008 Jul 24;454(7203):436–44. Available from: https://doi.org/10.1038/nature07205

- [29]. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest. 2003 Jun;111(12):1805–12. Available from: https://doi.org/10.1172/JCI18921
- [30]. Vane JR, Botting RM. Mechanism of action of antiinflammatory drugs. *Int J Tissue React*. 1998;20(1):3–15. PMID: 9561441.
- [31]. Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. *Clin Sci* (*Lond*). 1998 Jun;94(6):557–572. Available from: https://doi.org/10.1042/cs0940557
- [32]. Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K, et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr. 2011 Dec;106 Suppl 3(S3):S1–78. Available from: https://doi.org/10.5167/uzh-154065
- [33]. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. *N Engl J Med*. 2013;368(14):1279–1290. DOI: 10.1056/NEJMoa1200303.
- [34]. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. *Nat Rev Immunol*. 2011;11(9):607–615. Available from: https://doi.org/10.1038/nri3041
- [35]. Creswell JD, Irwin MR, Burklund LJ, Lieberman MD, Arevalo JMG, Ma J, et al. Mindfulness-based stress reduction training reduces loneliness and proinflammatory gene expression in older adults. *Brain Behav Immun*. 2012;26(7):1095–1101. Available from: https://doi.org/10.1016/j.bbi.2012.07.006
- [36]. Ammon HPT. Boswellic acids in chronic inflammatory diseases. *Planta Med*. 2006;72(12):1100–1116. DOI: 10.1055/s-2006-947227.
- [37]. Kiecolt-Glaser JK, Bennett JM, Andridge R, Peng J, Christian L, Malarkey WB, et al. Yoga's impact on inflammation, mood, and fatigue in breast cancer survivors: a randomized controlled trial. *J Clin Oncol*. 2014;32(10):1040–1049. Available from: https://doi.org/10.1200/JCO.2013.51.8860
- [38]. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. *Cell.* 2014;157(1):121–141. DOI: 10.1016/j.cell.2014.03.011
- [39]. Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. *Immunity*. 2017;46(4):562–576. DOI: 10.1016/j.immuni.2017.04.008