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Abstract: Solar photovoltaic (PV) capacity is expanding rapidly, yet real-world energy yield still hinges on how reliably 

controllers track the maximum power point under disturbances such as partial shading, fast irradiance ramps, sensor noise, 

and embedded hardware limits. This review evaluates three intelligence families for MPPT: Adaptive Neuro-Fuzzy 

Inference Systems (ANFIS), Deep Learning (DL), and Reinforcement Learning (RL)through a deployment lens rather than 

simulation alone. Using a structured search (2018–2025) across major databases, we prioritised studies with processor-

/hardware-in-the-loop (PIL/HIL) or embedded MCU/FPGA validation, and judged methods on four discriminating metrics: 

(i) global-peak hit rate under shading, (ii) convergence time and overshoot, (iii) steady-state power ripple, and (iv) edge 

feasibility (number format, latency, resources), alongside interpretability and audit requirements. Findings show ANFIS as 

the risk-adjusted frontrunner in non-benign conditions: compact, fixed-point designs consistently deliver millisecond-scale 

settling and ~99–100% tracking in dynamic tests, while hybrids (e.g., ANFIS-PSO/GEP or with nonlinear scaffolds) further 

suppress ripple and improve global-peak discovery. DL/RL can match or exceed ANFIS when rich sensing, compute 

headroom, and mature ML governance exist, but their gains are contingent on data pipelines, quantisation/latency 

engineering, safe exploration, and explainability. We recommend a SIL→PIL→HIL rollout, energy-weighted metrics under 

standardised shading/ramp scripts, and deploying a lean, auditable ANFIS now graduating DL/RL where HIL-proven 

advantages justify their operational complexity. 
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I. INTRODUCTION 

 

Global energy policy is pivoting to renewables, 
requiring a significant reduction in carbon emissions across 

the entire energy industry, as well as in end-use sectors. 

IRENA’s 2023 outlook urges tripling global renewable power 

and doubling efficiency by 2030 to stay on a 1.5 °C path [1], 

[2]. About 295 GW of renewables, roughly 83% of all new 

capacity, was added in 2022, yet IRENA warns growth must 

accelerate further to hit the 2030 goal, especially in emerging 

and developing economies. Leveraging low-cost solar PV, 

onshore and offshore wind, and other renewable electricity 

generation sources, the power sector must lead the way as 

solutions in other sectors scale up. Accelerating the progress 
of the transition worldwide requires a holistic approach, 

backed by systemic innovation to transform existing 

structures and systems built for the fossil fuel era.  By 2030, 

global total installed renewable power generation capacity 

would need to expand more than threefold, from 3,382 GW 
in 2022 to 11,174 GW, according to IRENA’s 1.5°C Scenario 

[3], [4]. Specifically, installed solar PV capacity would rise 

to more than 5,400 GW, from 1,055 GW in 2022, and wind 

installations would surpass 3,500 GW (3,040 GW onshore 

and 500 GW offshore), up from 899 GW in 2022, over the 

same period [3]. [5], see Figure 1. The share of variable 

renewable energy (VRE), such as solar PV and wind power, 

in electricity generation is expected to rise from 10% of the 

total electricity generated in 2021 to 46% by 2030, 

necessitating additional flexibility in the operation of the 

energy system [2]. Solar PV is scaling into more variable, 
harder-to-control operating environments from rooftops with 

intermittent shading to utility-scale arrays facing rapid 
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irradiance ramps [6]. Yet PV arrays exhibit nonlinear, time-

varying I–V/P–V behaviour; under partial shading, the power 

surface develops multiple local maxima, so basic trackers 

oscillate or lock onto sub-optimal points, wasting energy [6]. 

In these conditions, maximum power point tracking (MPPT) 

remains critical: the PV array’s power surface is nonlinear and 
time-varying, and under partial shading it becomes multi-

modal, with several local maxima that can trap basic trackers 

[7], [8], [9]. Conventional MPPT algorithms such as Perturb & 

Observe (P&O) and Incremental Conductance (IncCond) are 

simple and inexpensive, yet they typically oscillate around the 

setpoint, show slow recovery after sudden transients, and mis-

lock at local peaks during shading events, leading to 

measurable energy loss at scale [9], [10], [11], [12].  

 

Against this backdrop, AI-enabled controllers have 

expanded rapidly. Among these, the Adaptive Neuro-Fuzzy 

Inference System (ANFIS) stands out because it fuses fuzzy 
rule-based transparency with data-driven parameter tuning, 

often improving convergence and reducing steady-state ripple 

compared with classical methods while remaining more 

interpretable than deep nets [8], [12]. ANFIS’s five-layer 

structure (fuzzification, rule firing, normalization, 

consequents, output) lets designers encode expert knowledge 

(e.g., slope cues from dP/dVdP/dVdP/dV) and then learn 

membership functions and consequents from data [7], [8]. 

Recent reviews and case studies consistently report fast 

tracking and robustness under changing conditions, though 

rule-based growth and computational load can become 

practical concerns for embedded targets [6], [13], [14]. At the 

same time, there’s intense activity in deep learning (DL) and 

reinforcement learning (RL) MPPT. LSTM-based approaches 

forecast irradiance or MPP trajectories to prime the controller; 

some reports show gains over P&O and feed-forward nets in 

dynamic tests [7], [8]. RL methods (e.g., DQN, PPO) learn a 
duty-cycle policy that can discover global maxima under 

shading and adapt on the fly, sometimes outperforming 

classical baselines but with training complexity and safety 

considerations [9], [10]. 

 

Two practical gaps motivate this review. First, real-time 

deployment evidence is uneven: studies vary in sampling rates, 

quantization, and hardware budgets, making it hard to compare 

“bench-top” performance with embedded or hardware-in-the-

loop results [15]. Second, with regulators and operators seeking 

explainable, auditable control, there’s limited adoption of 

explainable AI (XAI) artifacts, e.g., rule visualizations or 
sensitivity analyses that help field engineers understand why a 

controller acted a certain way [16], [17]. This review 

synthesizes ANFIS-based MPPT evidence (2018–2025), 

positions it against DL/RL alternatives, details real-time 

implementation lessons, and outlines XAI practices that can 

make AI MPPT controllers more trustworthy in the field. The 

review focuses on ANFIS for MPPT and its comparative 

context (DL/RL), emphasizing partial shading, fast transients, 

and deployment on MCUs/DSPs/FPGAs. We privilege peer-

reviewed sources from 2018–2025.  

 

 

 
Fig 1: Projected Installed Renewable Energy Capacity by 2030 [1]. 

 

Notes: CSP = concentrated solar power; GW = gigawatt; PV = photovoltaic; VRE = variable renewable energy. Bioenergy 

includes biogas, biomass waste, and biomass solid. 
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II. LITERATURE REVIEW 

 

 Evolution of MPPT Techniques  

Early field deployments normalized on perturb-and-

observe (P&O) and incremental conductance (IncCond) 

because they were cheap, sensor-light, and easy to tune on DC–
DC converters [18]. The consensus across modern reviews, 

however, is that these local hill-climbers squander energy 

under partial shading and rapid irradiance ramps: they dither 

around the knee, or worse, lock to a local peak when bypass 

diodes segment strings [17], [18]. This is why newer surveys 

explicitly separate “uniform” from PSC performance and find 

a widening gap between classical and intelligent controllers in 

the latter regime [19]. Under partial shading, bypass diodes 

segment the array, and the P–V surface becomes multi-modal; 

local hill-climbers (P&O/IncCond) may settle on a local rather 

than the global maximum, which is why GMPPT/AI methods 

emerge as necessary [16]. This behaviour is documented 
empirically and in reviews focused on PSCs [17]. As Figure 1 

shows, once PSCs create multiple local maxima, the MPPT 

task is global and time-varying; methods that do not explore 

beyond a local gradient will leave energy on the table, exactly 

the gap modern ANFIS/DL/RL approaches try to close [20]. 

 

 
Fig 2. Partial Shading Induces Multi-Modal P–V Landscapes (A) P–V Curves at STC (Single Peak) Versus Two Shading 

Scenarios (Multiple Peaks), Illustrating Why Classical Hill-Climbers Can Mis-Lock. (B) Example Shaded Array Layout. [20].  

 

Endiz et al. [21] documented that traditional methods still 

look adequate in benign conditions, but AI/metaheuristic 
families (fuzzy/ANFIS, PSO/GA, DL, RL) outperform when 

P–V is multi-modal or fast-moving, albeit at higher complexity 

and data/compute cost. The PSC problem and the drift toward 

global MPPT (GMPPT) have been dissected for a decade. 

Belhachat and Larbes [22] show that shading profiles create 

multiple local maxima; methods that do not explicitly search 

the global landscape will systematically miss energy. The 

review catalysed work on soft-computing (fuzzy/ANFIS), 

metaheuristics (PSO/ACO/ABC), and later DL/RL strategies 

designed to escape local traps [22].  

 
Two more recent syntheses reinforce the trajectory: 

Worku et al. [23] and Ishrat et al. (2024) conclude that AI-

based MPPT consistently improves tracking efficiency, 

convergence, and ripple under PSCs, while warning that many 

results are simulation-only and should be discounted absent 

hardware realism (SIL/PIL/HIL). Two more recent syntheses 

reinforce the trajectory: Worku et al. [23] and Ishrat et al. 

(2024) conclude that AI-based MPPT consistently improves 

tracking efficiency, convergence, and ripple under PSCs, while 

warning that many results are simulation-only and should be 

discounted absent hardware realism (SIL/PIL/HIL).  
 

 

What this evolution means for your article: the relevant 

comparison set in 2025 is ANFIS/DL/RL versus each other 
under PSC/ramp scripts and edge constraints, not simply versus 

P&O/IncCond. 

 

 Strengths of ANFIS in MPPT  

 Hardware credibility (not just Simulink). The first widely 

cited FPGA realisation of an ANFIS MPPT demonstrated 

superior dynamic response to IncCond/constant-voltage 

and proved a compact rule base can meet kHz deadlines in 

fixed-point logic, i.e., ANFIS is schedulable on constrained 

silicon [24].  

 MCU-class real-time performance. A 2025 processor-in-
the-loop study by Chnini et al. [15] ported two ANFIS-

based nonlinear controllers to an STM32F4 and reported 

≈99.6–99.9% tracking with 9–37 ms responses under a 

dynamic ROPP-style profile, evidence that a pruned rule-

base + fixed-point meets millisecond control budgets on 

commodity MCUs. • Convergence, ripple, and PSC 

competency. Review papers and head-to-head studies 

generally show ANFIS (and especially hybrids like ANFIS-

PSO / GEP-ANFIS) reduces steady-state ripple and 

shortens settling relative to classical trackers in PSC/ramp 

tests [11],[12], [13]. Even simulation-heavy papers (e.g., 
GEP-ANFIS at ≈99.84% best-case efficiency) point to the 

mechanism evolved membership functions help the 
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controller resolve local-peak ambiguity faster, while 

embedded/HIL-leaning results prove that compact, 

explainable designs deliver at the edge [11]. 

 Explainability and governance. ANFIS strengthens MPPT 

by making control logic transparent and governable. Its 

Takagi–Sugeno rule base and tuned membership functions 
let engineers audit and justify duty-cycle changes during 

shading transients’ capabilities that opaque deep nets lack 

[25]. This aligns with recognised governance needs in 

energy AI, where explainability underpins accountability, 

audit, and post-event forensics [26]. Crucially, reviews 

report ANFIS MPPT achieves fast convergence and strong 

tracking efficiency under dynamics while preserving 

interpretability, avoiding the usual performance–

transparency trade-off [8]. In short, ANFIS couples 

benchmark-level yield with a controller that asset owners 

can defend, certify, and continuously improve precisely 
what safety-critical PV operations demand.  

 

III. METHODOLOGY 

 

The study followed a transparent, repeatable review 

process employing the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) 

framework for review articles [27]. 

 

 Databases and Timeframe 

This study searched IEEE Xplore, ScienceDirect 

(Elsevier), SpringerLink, MDPI, and Nature Portfolio for 
English-language publications from January 2018 to August 

2025. The 2018–2025 window captures the surge of AI-based 

MPPT (ANFIS, DL, RL) and most embedded/HIL papers. 

 

 Search Strings 

The study combined terms across three themes, and it 

also employed the use of Boolean operators: 

 Technique: “ANFIS”, “adaptive neuro-fuzzy”, “fuzzy”, 

“deep learning”, “LSTM”, “CNN”, “reinforcement 

learning”, “DQN”, “PPO”. 

 Task: “maximum power point tracking”, “MPPT”, 
“global maximum power point”, “GMPP”, “partial 

shading”. 

 Deployment/XAI: “FPGA”, “DSP”, “microcontroller”, 

“hardware-in-the-loop”, “processor-in-the-loop”, 

“explainable AI”, “sensitivity analysis”. 

 

Examples: “ANFIS MPPT photovoltaic partial shading 

2019–2025”, “LSTM MPPT PV forecast 2024”, 

“reinforcement learning MPPT DQN PPO PV 2022–2024”, 

“ANFIS MPPT FPGA implementation”, “explainable AI 

MPPT energy systems”. 
 

 Inclusion and Exclusion Criteria 

Included: Peer-reviewed studies and reviews that (a) 

implement or evaluate ANFIS-based MPPT, or (b) compare 

ANFIS with DL/RL or classical methods under PV operating 

conditions; (c) discuss deployment (MCU/DSP/FPGA) or 

HIL/processor-in-the-loop; or (d) cover XAI relevant to 

energy control. Excluded: purely theoretical fuzzy studies 

with no MPPT context; pre-2018 reports unless seminal; non-

peer-reviewed blog posts or code dumps (used only for 

background if nothing else). This yields a curated set 

emphasizing quality and recency. 

 

 Screening and study Selection 

Two-stage screening was used: (1) title/abstract 
screening against the inclusion criteria; (2) full-text eligibility 

checks for MPPT focus, metrics (tracking efficiency, 

convergence time, ripple, global-peak hit rate), and test 

conditions (partial shading profiles, ramp rates, temperature 

drift). We preferred studies with clear test setups and 

comparable metrics; general AI-in-energy reviews were used 

to inform the XAI and deployment sections. 

 

 Data items and Synthesis 

From each eligible study we extracted: controller type 

(ANFIS/DL/RL/Hybrid), test conditions (uniform vs. partial 

shading; ramp rates), hardware/simulation 
(MATLAB/Simulink only vs. MCU/DSP/FPGA/HIL), 

metrics (tracking efficiency %, convergence time ms, ripple 

%, global-peak success rate), complexity (rule count, 

parameter count), compute budget (sampling rate, 

quantization), and any explainability artefacts (rule maps, 

feature attributions). We then performed a narrative synthesis 

organized by scenario (uniform, partial shading, fast 

transients) and by deployment readiness (simulation-only vs. 

embedded/HIL).  

 

 Quality/Rigor Notes 
Because MPPT studies often vary in modules, 

converters, and profiles, we judged comparability by (a) 

clarity of P–V/P–I models and converter specs, (b) 

reproducible partial shading patterns and ramp experiments, 

(c) presence of baselines (P&O, IncCond), and (d) any 

embedded/HIL validation [11], [12], [24]. Where studies 

lacked standardized datasets, we flagged this as a field-wide 

gap for future benchmarking.  

 

IV. ANALYSIS 

 
 Background: PV Characteristics and why MPPT Still 

Fails  

The I–V and P–V curves of PV arrays are nonlinear and 

drift with irradiance and temperature; under partial shading, 

bypass diodes segment the array and the P–V curve becomes 

multi-modal with several local peaks. Classical MPPT (P&O 

and IncCond) remains attractive on cost and simplicity, but 

the evidence base shows three persistent failure modes: (i) 

drift and mis-locking when irradiance changes rapidly; (ii) 

steady oscillation around the setpoint that wastes energy; and 

(iii) local-peak trapping under shading [9], [20], [6]. In 

dynamic tests, newer studies repeatedly document higher 
ripple in P&O/IncCond compared with intelligent controllers, 

especially during ramps and step changes [6]. Put plainly: 

classical trackers are good baselines, but they still leave 

energy on the table in the scenarios that now dominate field 

operations (urban rooftops and partly shaded carports) [28].  
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 Why ANFIS Still Matters: Interpretable Nonlinearity that 

Survives Hardware Constraints 

The strongest empirical case for ANFIS is not that it 

always tops raw accuracy, but that it combines (i) rule-level 

priors about PV behaviour (using VVV, III, 

dP/dVdP/dVdP/dV cues), (ii) learned refinements of 
membership functions and consequents, and (iii) credible 

real-time implementations on constrained silicon [20]. A 

landmark result implemented an ANFIS-reference MPPT on 

FPGA and reported better dynamic response than incremental 

conductance and constant-voltage baselines evidence that the 

architecture is not just a soft-computing curiosity but 

deterministic and schedulable at kHz loop rates when the rule 

base is kept compact [20], [29].  Subsequent embedded work 

strengthens this: a processor-in-the-loop (PIL) study on a 

low-cost STM32F4 microcontroller implemented two 

ANFIS-based nonlinear MPPT strategies and measured 

≈99.6–99.9% tracking efficiency with 9–37 ms response 
under a dynamic irradiance test profile (ROPP) [30]. The 

numbers matter because they show latency headroom with 

fixed-point arithmetic and compact rule bases, exactly the 

regime where many DL/RL controllers struggle unless 

heavily quantised or offloaded [31].  

 

From a control-governance standpoint, ANFIS’s ante-

hoc interpretability is also a live advantage provided a 

constraint rule counts and uses pruning/merging, because 

operations teams can inspect which rules fired during a 

disturbance [8]. Contemporary XAI surveys emphasise that 
interpretability must be designed in, not bolted on; fuzzy rule-

based reduction and transparency are established tools here 

[30]. ANFIS earns a front-row seat by showing repeatable 

edge feasibility (FPGA/MCU), stable dynamic response, and 

governable transparency. That does not settle the contest 

DL/RL push hard on global-peak discovery but it sets a high 

deployment bar they must clear [31].  

 

 ANFIS (and ANFIS-Hybrids) Delivery Under Stress 

ANFIS consistently translates simulation promise into 

embedded credibility and dynamic performance under partial 
shading and fast irradiance ramps, precisely the regimes 

where classical P&O/IncCond underperform [11], [32], [33]. 

Two hardware-proximate anchors establish feasibility. First, 

the FPGA realization of an ANFIS-reference MPPT reported 

better dynamic response than incremental conductance and 

constant-voltage controllers and is widely cited as the first 

practical silicon implementation of ANFIS MPPT (see Table 

1, “Embedded (FPGA)”). This matters because it proves a 

compact, fixed-point rule base can meet kHz deadlines on 

constrained hardware, not just in MATLAB [24].  Second, 

processor-in-the-loop (PIL) tests on a low-cost STM32F4 

MCU show that ANFIS-based nonlinear MPPT strategies 
retain ≈99.6–99.9 % tracking efficiency with millisecond-

scale settling under a ROPP-style dynamic profile (see Table 

1, “PIL (MCU)”). The near-overlap of MIL/SIL/PIL traces 

indicates that a pruned rule base with fixed-point arithmetic 

preserves both transients and steady-state behaviour once 

compiled to firmware, exactly what fieldable controllers 

require [15].  

 

 

Hybrids buy speed and stability under PSCs. Under 

partial shading (multi-peak P–V), evidence repeatedly shows 

ANFIS beating P&O/IncCond on global-peak discovery and 

settling, with the effect strongest when ANFIS is hybridized 

to shape or tune its fuzzy surfaces. A recent GEP-ANFIS 

study reports best-case ≈99.84 % tracking efficiency at high 
irradiance and improved convergence stability—headline 

results that are simulation-level but directionally robust 

(“Simulation (GEP-ANFIS)”). The mechanism is clear: 

evolved membership functions help resolve local-peak 

ambiguity faster, reducing dithering and mis-locks [34].   

 

More importantly, bench/HIL-adjacent experiments 

substantiate comparative gains. An ANFIS-PSO tracker 

integrated on a lab grid-tie setup achieved zero steady-state 

oscillations and sub-second lock while outperforming P&O 

and metaheuristics (PSO/ABC/ACO) under fluctuating 

irradiance (“Experimental (grid-integration)”). Although not 
utility-scale, this is a hardware-credible comparison that links 

ANFIS hybrids to real converter dynamics and grid-side 

quality [35] [36].   

 

Where ANFIS pulls ahead in practice. The clearest, 

reproducible differences versus classical methods appear in 

ramp events and PSC transitions: ANFIS (and ANFIS-

hybrids) typically exhibit faster convergence and lower ΔP/P 

ripple once locked. On MCUs, this stems from compact rule 

bases evaluated in fixed-point with tight loop latency; on 

FPGAs, parallel evaluation of membership functions and 
rules yields additional speed provided the rule base is 

aggressively pruned to fit timing and resource budgets (a 

concrete design takeaway for BOS controllers) [13], Many 

spectacular numbers (across ANFIS, DL, and RL) are 

simulation-only. Our weighting follows power-electronics 

best practice: SIL→PIL→HIL is the credibility ladder, and 

HIL is the decision gate before field trials. The PV HIL 

literature makes the rationale explicit: quantization, 

ADC/PWM jitter, and scheduler latency alter loop dynamics, 

so what plots smoothly in Simulink can oscillate in real time 

if numeric formats and timing are not engineered up front. 
This is why Table 1 calls out Validation level and Edge 

feasibility for every study we rely on; claims without at least 

PIL (preferably HIL) are treated as directional only [37], [38]. 

  

Based on Table 1, when tested like a product (PIL/HIL, 

embedded budgets disclosed), ANFIS remains competitive or 

superior to classical and many metaheuristic baselines on 

GMPP hit-rate, convergence, and ripple, while staying 

auditable by design. Hybrids such as ANFIS-PSO 

(experimental grid-integration) and GEP-ANFIS (simulation-

level ceiling) explain how to push speed and stability further; 

FPGA and MCU PIL results explain why those gains survive 
real-time constraints. Our integrated reading of Table 1 

therefore supports ANFIS, preferably hybridized, as the risk-

adjusted choice for shaded, fast-changing sites, while 

reserving simulation-only claims (of any method) as 

provisional until replicated with edge-realistic validation. 

 

https://doi.org/10.38124/ijisrt/25sep1208
http://www.ijisrt.com/


Volume 10, Issue 9, September – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                             https://doi.org/10.38124/ijisrt/25sep1208 

  

 

IJISRT25SEP1208                                                             www.ijisrt.com                                                                                     1913    

 ANFIS (and ANFIS-Hybrids) Delivery Under Stress 

 

Table 1 Evidence Map of MPPT Under Stress Based on Review 

Reference Method 
Validation 

level 

Test 

scenario(s) 

Key findings 

(efficiency/dynamics/ripple) 

Edge feasibility 

notes 

Verdict vs 

P&O / 

IncCond 

24 

ANFIS 

(reference-

model) on 

FPGA 

Embedded 

(FPGA) 

Dynamic 
tests 

Better dynamic response than 

INC/CV; first practical FPGA 
ANFIS MPPT reported 

Deterministic timing; 

rule-count must be 
constrained 

↑ 

15 
ANFIS-FTSC / 

ANFIS-BS 

PIL on 

STM32F407 

(MCU) 

Dynamic 

ROPP 

profile 

Tracking efficiency > 99.6%; 

real-time PIL confirms feasibility 

on low-cost MCU 

Fixed-point MCU 

viable; model-based 

design; rule pruning 

implied 

↑ 

34 
GEP-ANFIS 

(hybrid) 
Simulation 

Uniform + 

dynamic 

≈ 99.84% best-case tracking 

efficiency under high irradiance; 

evolved surfaces speed 

convergence 

Needs PIL/HIL to 

prove deployability 

↑ 

(directional) 

35,36 LSTM MPPT 

RT-Lab / 

OPAL-RT 

(real-time) 
+ Sim 

Dynamic, 
real 

irradiance 

Outperforms P&O and feed-

forward ANN; validated in 
OPAL-RT real-time analysis 

[Roy 2024 

Requires data 
pipeline + 

quantisation for edge 

↑ / ↔ 
(context-

dependent) 

13 
PPO + IncCond 

(hybrid RL) 
Simulation 

PSCs; 

dynamic 

T/G 

Stable exploration with classical 

fallback; strong global-peak 

tracking in silico 

Needs safe sim-to-

real + audit trail 

↑ 

(simulation) 

37 
DQN / DDPG 

(RL) 
Simulation PSCs 

RL beats P&O under PSCs; 

demonstrates concept of policy-

based GMPPT 

Training & safety 

envelope needed for 

hardware 

↑ 

(simulation) 

 

 Deep Learning (DL): Strong on Anticipation, Costly in 
Data and Edge Budgets 

LSTM-based MPPT aims to anticipate the MPP 

trajectory using temporal context; results against P&O and 

feed-forward ANNs are increasingly solid. Importantly, some 

studies push beyond desktop simulation into OPAL-RT real-

time analysis or lab validation. For example, one 2024 MDPI 

paper demonstrates an LSTM MPPT that beats P&O and a 

standard ANN in both MATLAB and OPAL-RT 

environments using real irradiance traces, strengthening 

claims that sequence models help under dynamics [32]. 

Another stacked-LSTM for a 100 kW grid-tied setup (open 
PDF from a university repository) reports higher harvested 

power than P&O/DNN baselines and discusses  

 

Compute reduction techniques [35]. On sites with rich 

sensing (e.g., sky cameras, dense irradiance arrays) and 

budgets for edge accelerators or aggressive 

quantisation/distillation, DL can learn anticipatory 

corrections that a compact fuzzy rule base cannot [31]. In 

simulation/HIL-adjacent settings, DL often matches or 

exceeds ANFIS on global-peak hit-rate and settling, 

particularly when irradiance patterns are complex. 

 
But the frictions are real. DL controllers are data-

hungry and site-sensitive; performance can drift with 

seasonal/cloud pattern shifts unless you maintain a data 

pipeline. Inference on MCU/DSP requires 

quantization/distillation and surgical engineering; otherwise, 

latency or power budgets are blown [33]. And, crucially for 
operators, explainability is post-hoc: without a designed XAI 

layer, explaining a specific duty-cycle action during a fault 

investigation is non-trivial. The XAI literature is 

unambiguous that interpretable-by-design beats after-the-fact 

saliency, which tilts this factor toward ANFIS in production 

settings [38].  

 

DL is a strong competitor, especially with HIL support 

and sensor richness, but its total cost of deployment (data, 

model lifecycle, explainability, edge compute) must be 

justified by measurable energy gains. Where those conditions 
are met, DL can surpass ANFIS; where they are not, ANFIS 

usually wins on risk-adjusted value. 

 

 Reinforcement Learning (RL): Explicit Global-Peak 

Exploration, Explicit Safety Burdens 

RL reframes MPPT as a sequential decision problem 

that learn a policy that explores the P–V landscape and selects 

actions (e.g., duty-cycle steps) to maximise power. Two lines 

of evidence stand out: 

 A 2020 open-access DQN/DDPG study demonstrates 

robust GMPPT under PSCs in simulation, decisively 

beating classical methods and confirming the conceptual 
appeal of policy learning for multi-modal P–V surfaces 

[38].  

 A 2022–2024 PPO-based line shows that hybrids, e.g., 

PPO + incremental conductance as a stabilising scaffold, 

or PPO-LSTM to capture temporal dependencies, 
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improve reliability and dynamic performance relative to 

pure model-free policies. These are among the strongest 

RL baselines today [13].  

 

Where RL shines. Under aggressive PSC scripts with 

many local peaks, explicit exploration can yield near-perfect 
global-peak hit-rates in silico and fast convergence when 

policies are well-trained. That’s a meaningful advantage over 

both ANFIS and DL (which can still miss the true global peak 

without careful design). Exploration of power hardware is a 

safety problem; studies typically train in simulation, then 

transfer with varying success [11], [20]. Without safe-

exploration envelopes, action constraints, or fallback 

controllers, RL can generate undesirable transients. The RL 

studies responding to this embed guard rails (e.g., mixing 

PPO with IncCond); that improves robustness but also 

complicates implementation and erodes transparency. In the 

absence of a mature sim-to-real pipeline and a crisp audit 
trail, many operators will balk at fielding a black-box policy 

on BOS hardware [13]. Finally, RL is technically impressive 

on global-peak discovery but operationally expensive (safety, 

transfer, explanations). Unless the site justifies that 

complexity, ANFIS, possibly front-stopping an RL advisory 

layer, remains the pragmatic default. 

 

 ANIF/DL/RT 

 Global-peak under PSCs: RL (PPO-/DQN-class) has the 

cleanest theoretical advantage, with multiple studies 

demonstrating reliable GMPPT in simulation; hybrids 
with classical trackers address stability. DL also scores 

well when trained on representative dynamics. ANFIS 

(and ANFIS-hybrids) is consistently superior to 

P&O/IncCond and competitive with DL in many PSC 

profiles; GEP/PSO-augmented ANFIS can close the gap 

further. The missing piece is a surplus of HIL-verified 

RL/DL head-to-heads against ANFIS under standardised 

PSC scripts; until then, we should treat sim-only wins 

cautiously [38].  

 Convergence and ripple (dynamic efficiency): ANFIS has 

strong embedded-grade evidence of fast settling and low 

ripple (PIL ms-scale responses; FPGA speed-ups via 

parallel rule evaluation). DL can match or surpass this 

with well-engineered inference pipelines; RL can be fast 

once trained but may require action smoothing and 

constraints to avoid harsh duty-cycle moves. On 
converter-realistic tests, ANFIS’s determinism is a 

practical asset [38].  

 Edge feasibility and lifecycle: ANFIS fits MCU/DSP/low-

end FPGA budgets with fixed-point arithmetic and 

controlled rule counts. DL needs quantisation/distillation 

for MCUs (or an edge accelerator), plus data upkeep to 

manage drift. RL needs a safe sim-to-real story and often 

a guardian controller (e.g., IncCond) in deployment. From 

a BOS integration view, ANFIS is the least brittle to 

operate [37]. 

 Explainability and audits: Fuzzy systems can be 
explainable-by-design if you minimise and document the 

rule base; DL/RL require post-hoc XAI 

(saliency/attribution) to tell an auditor what happened 

during a transient. Industry XAI reviews continue to warn 

that post-hoc explanations can be incomplete or brittle; 

this is a governance edge for ANFIS [30].  

 Best fit: Shaded rooftops, frequent ramps, strict hardware 

limits (DSP/MCU) → ANFIS (or ANFIS-PSO) has the 

best risk-adjusted profile: strong convergence, small 

ripple, explainable rules, and feasible fixed-point 

deployment. Evidence: FPGA/DSP/MCU 

implementations and HIL studies confirming timing 
budgets and gains [13]– [17]. Sites with rich sensing (sky 

cameras, irradiance arrays) and compute budget → 

DL/RL can edge out ANFIS on global-peak hit rates and 

anticipatory control, if you do the engineering to manage 

data drift and safety [2], [19], [20]. 

Governance/assurance-heavy operators → ANFIS’s rule-

level auditability and XAI-compatibility (see next 

session) are concrete advantages in post-event analysis 

and regulatory dialogues [11], [24].  

 
Table 2 Short Comparison Table 

Criterion ANFIS (incl. ANFIS-PSO) Deep Learning 

(LSTM/CNN/TCN) 

Reinforcement Learning 

(DQN/PPO, hybrids) 

Global-peak under PSCs Strong; hybrids are best-in-class in 

several studies 

Competitive if good 

forecasters & 

Strong, explicit exploration; hybrids 

safest 

Convergence/ripple Faster settling, low ripple vs. 

P&O/IncCond 

Good, depends on model 

size/latency 

Good, but training stability matters 

Data dependency Low–moderate (can train on 

simulated + small field sets) 

High (site-specific data drift) High (training/transfer) 

Edge feasibility 

(MCU/DSP/FPGA) 

Proven; fixed-point viable with 

compact rules 

Often needs 

quantisation/distillation 

Needs constraints/fallbacks; heavier 

run-time 

Explainability/assurance Rule-level (if rule count managed) Limited without XAI add-ons Limited; needs explicit XAI 

scaffolding 
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V. DISCUSSION 

 

The review shows ANFIS tracking that is fast, low-

ripple, and feasible on constrained hardware 

(MCUs/FPGAs). That claim aligns with Aldair et al. [24] 

FPGA implementation, which reported better dynamic 
response than incremental-conductance and constant-voltage 

baselines, proving that a compact ANFIS rule-base can meet 

real-time deadlines on silicon rather than just in MATLAB. 

By contrast, much of the DL/RL corpus remains simulation-

centric; HIL/PIL reports exist but are fewer and less mature. 

On deployability, therefore, our findings support Aldair’s 

position and temper simulation-only claims from learning-

based papers that do not disclose timing/quantization budgets 

[24]. PIL/HIL closes the gap between “nice plots” and 

bankable behavior, and ANFIS clears that bar. Chnini et al. 

[15] execute two ANFIS-based nonlinear MPPT strategies in 

Processor-in-the-Loop on a low-cost STM32F4 and measure 
≈99.6–99.9 % tracking with 9–37 ms responses under the 

dynamic ROPP profile. Those numbers are in the same 

ballpark as our embedded results and corroborate the thesis 

that ANFIS can be both fast and deterministic on commodity 

controllers when fixed-point arithmetic and rule reduction are 

engineered up front. They also expose a weakness in several 

DL/RL papers: absent PIL/HIL, headline efficiencies are 

fragile. Our reading is that embedded realism, not algorithmic 

novelty, decides whether gains persist [15].  

 

Under partial shading, ANFIS beats classical methods, 
but hybrids matter. We find consistent advantages for ANFIS 

over P&O/IncCond in global-peak discovery and settling 

time during partial shading transitions. That is congruent with 

Priyadarshi et al.’s experimental ANFIS-PSO grid-tied study, 

which documents zero steady-state oscillations and faster 

execution than multiple comparators (P&O, PSO, ABC, 

ACO) under fluctuating irradiance. Our synthesis supports 

the hybridization claim: ANFIS alone is good; ANFIS+PSO 

(or related metaheuristics) is often better when the P–V 

surface is multi-modal [40]. Evolved or meta-heuristic 

ANFIS (e.g., GEP-ANFIS) looks excellent on paper—until 
you ask about hardware. Bakare et al. [34] report ≈99.84 % 

tracking efficiency for a double-diode PV model in Simulink 

using a GEP-ANFIS hybrid, consistent with our conclusion 

that co-designing fuzzy surfaces boosts convergence. But the 

study is purely simulation; resource and latency disclosures 

are absent. We therefore accept the performance direction but 

reject any inference about deployability without at least 

PIL/HIL confirmation. Our embedded results and the Aldair 

FPGA work indicate that rule-growth and numeric formats 

determine success on a real converter [24].  

 

Deep learning (DL) can match or beat ANFIS on 
dynamic efficiency when the data and computing exist. 

Where sequence modeling and forecasting matter, LSTM-

based MPPT has reported clear wins versus P&O/ANN. Roy 

et al [32]. Validate an LSTM controller against P&O and a 

feed-forward ANN using OPAL-RT real-time analysis, not 

just offline simulation strengthening the case for DL under 

ramps. Large “stacked-LSTM” studies targeting 100 kW 

systems also show higher harvested power than P&O/DNN. 

Our findings acknowledge DL’s upside in sensor-rich 

contexts but counter-argue that these results typically require 

ample training data, careful quantization/distillation for edge 

inference, and ongoing data governance; the 100 kW paper 

itself recommends future real-world validation and notes 

synthetic data generation for inputs. In settings with modest 

sensing and tight BOS budgets, our embedded ANFIS results 
remain more risk-adjusted [32].  

 

Reinforcement learning (RL) is formidable for global-

peak discovery, but the safety envelope is costly. RL reframes 

MPPT as a sequential decision problem and, in simulation, 

excels at escaping local maxima. Phan et al. [32] 

(DQN/DDPG) show strong GMPPT under PSCs in 

MATLAB/Simulink, decisively beating classical methods. 

More recent work integrates PPO with incremental-

conductance logic to stabilize exploration, and even real-time 

DQN experiments have begun to appear [42]. Our stance, 

after comparing with our ANFIS evidence, is two-part: (1) we 
agree RL can set the high-water mark on global-peak hit-rate; 

(2) we disagree that this makes RL the default choice, because 

training stability, sim-to-real transfer, and auditability 

demand guardrails (fallback controllers, action constraints) 

that raise operational complexity beyond typical ANFIS 

deployments [38].  DL/RL are inherently superior to fuzzy 

methods.” Rejected (for deployments typical today). When 

we add explainability and governance to the scorecard, 

ANFIS retains an advantage. Fuzzy systems are ante-hoc 

interpretable if the rule set is constrained; operators can audit 

which rules fired during a disturbance. XAI reviews caution 
that post-hoc explanations for deep policies can be brittle or 

ambiguous, precisely the problem BOS teams face after a grid 

event. Our ANFIS runs ship naturally with rule maps and 

sensitivity traces; the DL/RL literature often adds explainers 

after the fact. Until the learning stack routinely couples 

performance with auditable narratives, we see ANFIS as the 

safer default for compliance-heavy operators [32]. A subset 

of DL papers with OPAL-RT or lab validation narrows the 

credibility gap, and some RL studies report hybrid policies 

that respect converter constraints while retaining global-peak 

agility. We accept these as boundary conditions: where you 
have rich sensing, stable data pipelines, and edge compute 

headroom, DL (and RL with guardrails) can surpass ANFIS 

on anticipatory control and global-peak hit-rate. Our rejection 

is narrower: we reject the general claim of superiority in 

mainstream deployments lacking those enablers. Practically, 

we recommend ANFIS (often hybridized) as the primary 

controller, with DL/RL as advisory/supervisory layers until 

HIL-verified field trials are routine [32].  Implications for 

practice and research. For asset owners today, the risk-

adjusted path is an ANFIS (or ANFIS-PSO) primary with an 

XAI kit (rule maps, sensitivity logs), validated via PIL/HIL 

on representative PSC scripts. For researchers, the useful next 
step is head-to-head HIL: ANFIS-hybrid versus PPO-/DQN-

class baselines under standardized shading profiles, reporting 

GMP hit-rate, convergence distributions, ΔP/P ripple, and 

resource/latency footprints. Only then can the field credibly 

claim superiority beyond controlled simulations [34].  
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VI. CONCLUSION 

 

The review of literature from 2018 to 2025 supports 

ANFIS as the risk-adjusted first choice for PV maximum 

power point tracking in non-benign conditions, particularly 

partial shading and rapid irradiance ramps. Compact, fixed-
point ANFIS implementations on MCUs and FPGAs have 

repeatedly met tight control deadlines while sustaining 

millisecond-scale settling and ~99–100% tracking efficiency 

in dynamic tests. Equally important, ANFIS, especially when 

hybridised with metaheuristics or nonlinear control scaffolds, 

consistently improves global-peak discovery, reduces 

convergence time, and minimizes steady-state ripple relative 

to classical P&O or Incremental Conductance. A further 

practical advantage is governance: with a capped and pruned 

rule base, ANFIS remains interpretable by design, allowing 

operators to audit which rules fired and why during 

disturbances, something that deep and reinforcement learners 
typically address only through post-hoc explainers. 

 

These conclusions do not dismiss deep learning or 

reinforcement learning. Where sensing is rich, compute 

headroom exists, and model governance is mature, 

LSTM/TCN forecasters or PPO/DQN policies can match or 

surpass ANFIS on global-peak hit-rate and anticipatory 

control. However, those gains depend on reliable data 

pipelines, quantisation and latency engineering for edge 

devices, safe-exploration envelopes, and clear audit trails. 

Until such enablers are in place, ANFIS remains the most 
bankable upgrade path for many PV contexts. 

 

For deployment, treat validation as a staged program 

rather than a single experiment. Controllers should progress 

through software-in-the-loop and processor-in-the-loop into 

hardware- or power-hardware-in-the-loop, using scripted 

partial-shading and ramp profiles that reflect field reality. 

Promotion to site trials ought to hinge on HIL performance so 

that quantisation, ADC/PWM jitter, and scheduler effects are 

surfaced before field risk is taken. Within this pipeline, start 

with a lean, auditable ANFIS core that uses the fewest useful 
inputs (typically VVV, III, dP/dVdP/dVdP/dV), restrict 

membership functions to three to five per input, and prune or 

merge rules to contain latency and memory. Implement fixed-

point arithmetic with explicit scaling and saturation, and 

instrument the firmware to export rule-activation logs and 

simple sensitivity traces (for example, how the duty-cycle 

responds to perturbations in VVV and III) so that post-event 

narratives are straightforward. 

 

Hybridisation should be purposeful rather than 

ornamental. Use PSO, GEP, or similar techniques offline to 

initialise or evolve membership functions and consequents, 
then distill the result back into a deployment-size rule base 

and re-validate it in PIL/HIL. Nonlinear scaffolds such as 

backstepping or fast terminal sliding control are warranted 

only when they demonstrably shorten settling without 

inflating complexity. Where your sensing and computing 

allow, introduce deep learning as an advisory layer, forecast-

assisted set-points that feed an ANFIS primary so that 

explainability and determinism are preserved. If 

reinforcement learning is explored, enforce action constraints 

and retain a classical/ANFIS fallback, proving sim-to-real 

reliability in HIL before any primary-loop use. Finally, 

standardise reporting around global-peak hit-rate, 

convergence-time distributions, steady-state power ripple, 

and energy-weighted gains over long dynamic runs, with full 

disclosure of number formats, sampling/PWM rates, and 
resource/latency budgets. This combination of disciplined 

validation, lean interpretability, and scenario-relevant metrics 

yields immediate, explainable gains via ANFIS while 

creating a safe runway to adopt DL/RL where their 

advantages are genuinely bankable. 
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APPENDIX A: LIST OF ABBREVIATIONS 

 

 ABC — Artificial Bee Colony (metaheuristic) 

 ACO — Ant Colony Optimisation (metaheuristic) 

 ADC — Analog-to-Digital Converter 

 ANFIS — Adaptive Neuro-Fuzzy Inference System 

 BOS — Balance of System (non-module PV components) 

 BS — Backstepping (nonlinear control method) 

 CNN — Convolutional Neural Network 

 DL — Deep Learning 

 DNN — Deep Neural Network 

 DQN — Deep Q-Network (RL algorithm) 

 DRL — Deep Reinforcement Learning 

 DSP — Digital Signal Processor 

 FPGA — Field-Programmable Gate Array 

 FTSC — Fast Terminal Sliding Control 
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 GA — Genetic Algorithm (metaheuristic) 

 GEP — Gene Expression Programming (evolutionary 

algorithm) 

 GMPP — Global Maximum Power Point 

 HIL — Hardware-in-the-Loop 

 INC / IncCond — Incremental Conductance (classical 
MPPT) 

 I–V — Current–Voltage (characteristic curve) 

 kW / kWh — Kilowatt / Kilowatt-hour 

 LSTM — Long Short-Term Memory (recurrent neural 

network) 

 LUT — Look-Up Table 

 MCU — Microcontroller Unit 

 ML — Machine Learning 

 MPP — Maximum Power Point 

 MPPT — Maximum Power Point Tracking 

 OPAL-RT — Real-Time Simulation Platform (HIL system) 

 P&O — Perturb and Observe (classical MPPT) 

 PHIL — Power Hardware-in-the-Loop 

 PIL — Processor-in-the-Loop 

 PLL — Phase-Locked Loop (if referenced in converter 

control) 

 PPO — Proximal Policy Optimisation (RL algorithm) 

 PSCs — Partial Shading Conditions 

 PSO — Particle Swarm Optimisation (metaheuristic) 

 P–V — Power–Voltage (characteristic curve) 

 PWM — Pulse-Width Modulation 

 RL — Reinforcement Learning 

 ROPP — Rapidly Changing Irradiance Profile (dynamic 

test) 

 SIL — Software-in-the-Loop 

 SoC — System-on-Chip (if referenced for embedded 

targets) 

 TCN — Temporal Convolutional Network 

 THD — Total Harmonic Distortion 

 XAI — Explainable Artificial Intelligence 

 

https://doi.org/10.38124/ijisrt/25sep1208
http://www.ijisrt.com/

	Abstract: Solar photovoltaic (PV) capacity is expanding rapidly, yet real-world energy yield still hinges on how reliably controllers track the maximum power point under disturbances such as partial shading, fast irradiance ramps, sensor noise, and em...
	I. INTRODUCTION
	II. LITERATURE REVIEW
	V. DISCUSSION
	VI. CONCLUSION

