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Abstract: Solar photovoltaic (PV) capacity is expanding rapidly, yet real-world energy yield still hinges on how reliably
controllers track the maximum power point under disturbances such as partial shading, fast irradiance ramps, sensor noise,
and embedded hardware limits. This review evaluates three intelligence families for MPPT: Adaptive Neuro-Fuzzy
Inference Systems (ANFIS), Deep Learning (DL), and Reinforcement Learning (RL)through a deployment lens rather than
simulation alone. Using a structured search (2018-2025) across major databases, we prioritised studies with processor-
/hardware-in-the-loop (PIL/HIL) or embedded MCU/FPGA validation, and judged methods on four discriminating metrics:
(i) global-peak hit rate under shading, (ii) convergence time and overshoot, (iii) steady-state power ripple, and (iv) edge
feasibility (number format, latency, resources), alongside interpretability and audit requirements. Findings show ANFIS as
the risk-adjusted frontrunner in non-benign conditions: compact, fixed-point designs consistently deliver millisecond-scale
settling and ~99-100% tracking in dynamic tests, while hybrids (e.g., ANFIS-PSO/GEP or with nonlinear scaffolds) further
suppress ripple and improve global-peak discovery. DL/RL can match or exceed ANFIS when rich sensing, compute
headroom, and mature ML governance exist, but their gains are contingent on data pipelines, quantisation/latency
engineering, safe exploration, and explainability. We recommend a SIL—PIL—HIL rollout, energy-weighted metrics under
standardised shading/ramp scripts, and deploying a lean, auditable ANFIS now graduating DL/RL where HIL-proven
advantages justify their operational complexity.
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l. INTRODUCTION structures and systems built for the fossil fuel era. By 2030,
global total installed renewable power generation capacity

Global energy policy is pivoting to renewables,
requiring a significant reduction in carbon emissions across
the entire energy industry, as well as in end-use sectors.
IRENA’s 2023 outlook urges tripling global renewable power
and doubling efficiency by 2030 to stay on a 1.5 °C path [1],
[2]. About 295 GW of renewables, roughly 83% of all new
capacity, was added in 2022, yet IRENA warns growth must
accelerate further to hit the 2030 goal, especially in emerging
and developing economies. Leveraging low-cost solar PV,
onshore and offshore wind, and other renewable electricity
generation sources, the power sector must lead the way as
solutions in other sectors scale up. Accelerating the progress
of the transition worldwide requires a holistic approach,
backed by systemic innovation to transform existing
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would need to expand more than threefold, from 3,382 GW
in 2022 to 11,174 GW, according to IRENA’s 1.5°C Scenario
[3], [4]. Specifically, installed solar PV capacity would rise
to more than 5,400 GW, from 1,055 GW in 2022, and wind
installations would surpass 3,500 GW (3,040 GW onshore
and 500 GW offshore), up from 899 GW in 2022, over the
same period [3]. [5], see Figure 1. The share of variable
renewable energy (VRE), such as solar PV and wind power,
in electricity generation is expected to rise from 10% of the
total electricity generated in 2021 to 46% by 2030,
necessitating additional flexibility in the operation of the
energy system [2]. Solar PV is scaling into more variable,
harder-to-control operating environments from rooftops with
intermittent shading to utility-scale arrays facing rapid
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irradiance ramps [6]. Yet PV arrays exhibit nonlinear, time-
varying 1-V/P-V behaviour; under partial shading, the power
surface develops multiple local maxima, so basic trackers
oscillate or lock onto sub-optimal points, wasting energy [6].
In these conditions, maximum power point tracking (MPPT)
remains critical: the PV array’s power surface is nonlinear and
time-varying, and under partial shading it becomes multi-
modal, with several local maxima that can trap basic trackers
[71, [8], [9]. Conventional MPPT algorithms such as Perturb &
Observe (P&O) and Incremental Conductance (IncCond) are
simple and inexpensive, yet they typically oscillate around the
setpoint, show slow recovery after sudden transients, and mis-
lock at local peaks during shading events, leading to
measurable energy loss at scale [9], [10], [11], [12].

Against this backdrop, Al-enabled controllers have
expanded rapidly. Among these, the Adaptive Neuro-Fuzzy
Inference System (ANFIS) stands out because it fuses fuzzy
rule-based transparency with data-driven parameter tuning,
often improving convergence and reducing steady-state ripple
compared with classical methods while remaining more
interpretable than deep nets [8], [12]. ANFIS’s five-layer
structure  (fuzzification, rule firing, normalization,
consequents, output) lets designers encode expert knowledge
(e.g., slope cues from dP/dVdP/dVdP/dV) and then learn
membership functions and consequents from data [7], [8].
Recent reviews and case studies consistently report fast
tracking and robustness under changing conditions, though
rule-based growth and computational load can become
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practical concerns for embedded targets [6], [13], [14]. At the
same time, there’s intense activity in deep learning (DL) and

reinforcement learning (RL) MPPT.
forecast irradiance or MPP trajectori

LSTM-based approaches
es to prime the controller;

some reports show gains over P&O and feed-forward nets in

dynamic tests [7], [8]. RL methods

(e.g., DQN, PPO) learn a

duty-cycle policy that can discover global maxima under
shading and adapt on the fly, sometimes outperforming
classical baselines but with training complexity and safety

considerations [9], [10].

Two practical gaps motivate this review. First, real-time
deployment evidence is uneven: studies vary in sampling rates,

quantization, and hardware budgets,

making it hard to compare

“bench-top” performance with embedded or hardware-in-the-
loop results [15]. Second, with regulators and operators seeking
explainable, auditable control, there’s limited adoption of
explainable Al (XAl) artifacts, e.g., rule visualizations or
sensitivity analyses that help field engineers understand why a
controller acted a certain way [16], [17]. This review

synthesizes ANFIS-based MPPT

evidence (2018-2025),

positions it against DL/RL alternatives, details real-time
implementation lessons, and outlines XAl practices that can
make Al MPPT controllers more trustworthy in the field. The
review focuses on ANFIS for MPPT and its comparative
context (DL/RL), emphasizing partial shading, fast transients,
and deployment on MCUs/DSPs/FPGAs. We privilege peer-

reviewed sources from 2018-2025.
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Fig 1: Projected Installed Renewable Energy Capacity by 2030 [1].

Notes: CSP = concentrated solar power; GW = gigawatt; PV = photovoltaic; VRE = variable renewable energy. Bioenergy
includes biogas, biomass waste, and biomass solid.
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1. LITERATURE REVIEW
» Evolution of MPPT Techniques

Early field deployments normalized on perturb-and-
observe (P&QO) and incremental conductance (IncCond)
because they were cheap, sensor-light, and easy to tune on DC—
DC converters [18]. The consensus across modern reviews,
however, is that these local hill-climbers squander energy
under partial shading and rapid irradiance ramps: they dither
around the knee, or worse, lock to a local peak when bypass
diodes segment strings [17], [18]. This is why newer surveys
explicitly separate “uniform” from PSC performance and find
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a widening gap between classical and intelligent controllers in
the latter regime [19]. Under partial shading, bypass diodes
segment the array, and the P—V surface becomes multi-modal;
local hill-climbers (P&O/IncCond) may settle on a local rather
than the global maximum, which is why GMPPT/AI methods
emerge as necessary [16]. This behaviour is documented
empirically and in reviews focused on PSCs [17]. As Figure 1
shows, once PSCs create multiple local maxima, the MPPT
task is global and time-varying; methods that do not explore
beyond a local gradient will leave energy on the table, exactly
the gap modern ANFIS/DL/RL approaches try to close [20].
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Fig 2. Partial Shading Induces Multi-Modal P-V Landscapes (A)

P-V Curves at STC (Single Peak) Versus Two Shading

Scenarios (Multiple Peaks), Hlustrating Why Classical Hill-Climbers Can Mis-Lock. (B) Example Shaded Array Layout. [20].

Endiz et al. [21] documented that traditional methods still
look adequate in benign conditions, but Al/metaheuristic
families (fuzzy/ANFIS, PSO/GA, DL, RL) outperform when
P-V is multi-modal or fast-moving, albeit at higher complexity
and data/compute cost. The PSC problem and the drift toward
global MPPT (GMPPT) have been dissected for a decade.
Belhachat and Larbes [22] show that shading profiles create
multiple local maxima; methods that do not explicitly search
the global landscape will systematically miss energy. The
review catalysed work on soft-computing (fuzzy/ANFIS),
metaheuristics (PSO/ACO/ABC), and later DL/RL strategies
designed to escape local traps [22].

Two more recent syntheses reinforce the trajectory:
Worku et al. [23] and Ishrat et al. (2024) conclude that Al-
based MPPT consistently improves tracking efficiency,
convergence, and ripple under PSCs, while warning that many
results are simulation-only and should be discounted absent
hardware realism (SIL/PIL/HIL). Two more recent syntheses
reinforce the trajectory: Worku et al. [23] and Ishrat et al.
(2024) conclude that Al-based MPPT consistently improves
tracking efficiency, convergence, and ripple under PSCs, while
warning that many results are simulation-only and should be
discounted absent hardware realism (SIL/PIL/HIL).
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What this evolution means for your article: the relevant
comparison set in 2025 is ANFIS/DL/RL versus each other
under PSC/ramp scripts and edge constraints, not simply versus
P&O/IncCond.

» Strengths of ANFIS in MPPT

Hardware credibility (not just Simulink). The first widely
cited FPGA realisation of an ANFIS MPPT demonstrated
superior dynamic response to IncCond/constant-voltage
and proved a compact rule base can meet kHz deadlines in
fixed-point logic, i.e., ANFIS is schedulable on constrained
silicon [24].

MCU-class real-time performance. A 2025 processor-in-
the-loop study by Chnini et al. [15] ported two ANFIS-
based nonlinear controllers to an STM32F4 and reported
~99.6-99.9% tracking with 9-37 ms responses under a
dynamic ROPP-style profile, evidence that a pruned rule-
base + fixed-point meets millisecond control budgets on
commodity MCUs. «  Convergence, ripple, and PSC
competency. Review papers and head-to-head studies
generally show ANFIS (and especially hybrids like ANFIS-
PSO / GEP-ANFIS) reduces steady-state ripple and
shortens settling relative to classical trackers in PSC/ramp
tests [11],[22], [13]. Even simulation-heavy papers (e.g.,
GEP-ANFIS at ~99.84% best-case efficiency) point to the
mechanism evolved membership functions help the
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controller resolve local-peak ambiguity faster, while
embedded/HIL-leaning results prove that compact,
explainable designs deliver at the edge [11].

o Explainability and governance. ANFIS strengthens MPPT
by making control logic transparent and governable. Its
Takagi—Sugeno rule base and tuned membership functions
let engineers audit and justify duty-cycle changes during
shading transients’ capabilities that opaque deep nets lack
[25]. This aligns with recognised governance needs in
energy Al, where explainability underpins accountability,
audit, and post-event forensics [26]. Crucially, reviews
report ANFIS MPPT achieves fast convergence and strong
tracking efficiency under dynamics while preserving
interpretability, avoiding the wusual performance—
transparency trade-off [8]. In short, ANFIS couples
benchmark-level yield with a controller that asset owners
can defend, certify, and continuously improve precisely
what safety-critical PV operations demand.

1. METHODOLOGY

The study followed a transparent, repeatable review
process employing the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA)
framework for review articles [27].

» Databases and Timeframe

This study searched IEEE Xplore, ScienceDirect
(Elsevier), SpringerLink, MDPI, and Nature Portfolio for
English-language publications from January 2018 to August
2025. The 2018-2025 window captures the surge of Al-based
MPPT (ANFIS, DL, RL) and most embedded/HIL papers.

» Search Strings
The study combined terms across three themes, and it
also employed the use of Boolean operators:

e Technique: “ANFIS”, “adaptive neuro-fuzzy”, “fuzzy”,
“deep learning”, “LSTM”, “CNN”, “reinforcement
learning”, “DQN”, “PPO”.

e Task: “maximum power point tracking”, “MPPT”,
“global maximum power point”, “GMPP”, “partial
shading”.

e Deployment/XAI: “FPGA”, “DSP”, “microcontroller”,
“hardware-in-the-loop”, “processor-in-the-loop”,
“explainable AI”, “sensitivity analysis”.

Examples: “ANFIS MPPT photovoltaic partial shading
2019-2025”, “LSTM MPPT PV forecast 2024”7,
“reinforcement learning MPPT DQN PPO PV 2022-2024”,
“ANFIS MPPT FPGA implementation”, “explainable Al
MPPT energy systems”.

» Inclusion and Exclusion Criteria

Included: Peer-reviewed studies and reviews that (a)
implement or evaluate ANFIS-based MPPT, or (b) compare
ANFIS with DL/RL or classical methods under PV operating
conditions; (c) discuss deployment (MCU/DSP/FPGA) or
HIL/processor-in-the-loop; or (d) cover XAl relevant to
energy control. Excluded: purely theoretical fuzzy studies
with no MPPT context; pre-2018 reports unless seminal; non-
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peer-reviewed blog posts or code dumps (used only for
background if nothing else). This yields a curated set
emphasizing quality and recency.

> Screening and study Selection

Two-stage screening was used: (1) title/abstract
screening against the inclusion criteria; (2) full-text eligibility
checks for MPPT focus, metrics (tracking -efficiency,
convergence time, ripple, global-peak hit rate), and test
conditions (partial shading profiles, ramp rates, temperature
drift). We preferred studies with clear test setups and
comparable metrics; general Al-in-energy reviews were used
to inform the XAl and deployment sections.

» Data items and Synthesis

From each eligible study we extracted: controller type
(ANFIS/DL/RL/Hybrid), test conditions (uniform vs. partial
shading; ramp rates), hardware/simulation
(MATLAB/Simulink only vs. MCU/DSP/FPGA/HIL),
metrics (tracking efficiency %, convergence time ms, ripple
%, global-peak success rate), complexity (rule count,
parameter count), compute budget (sampling rate,
quantization), and any explainability artefacts (rule maps,
feature attributions). We then performed a narrative synthesis
organized by scenario (uniform, partial shading, fast
transients) and by deployment readiness (simulation-only vs.
embedded/HIL).

» Quality/Rigor Notes

Because MPPT studies often vary in modules,
converters, and profiles, we judged comparability by (a)
clarity of P-V/P-I models and converter specs, (b)
reproducible partial shading patterns and ramp experiments,
(c) presence of baselines (P&O, IncCond), and (d) any
embedded/HIL validation [11], [12], [24]. Where studies
lacked standardized datasets, we flagged this as a field-wide
gap for future benchmarking.

V. ANALYSIS

» Background: PV Characteristics and why MPPT Still
Fails

The -V and P-V curves of PV arrays are nonlinear and
drift with irradiance and temperature; under partial shading,
bypass diodes segment the array and the P-V curve becomes
multi-modal with several local peaks. Classical MPPT (P&O
and IncCond) remains attractive on cost and simplicity, but
the evidence base shows three persistent failure modes: (i)
drift and mis-locking when irradiance changes rapidly; (ii)
steady oscillation around the setpoint that wastes energy; and
(iii) local-peak trapping under shading [9], [20], [6]. In
dynamic tests, newer studies repeatedly document higher
ripple in P&O/IncCond compared with intelligent controllers,
especially during ramps and step changes [6]. Put plainly:
classical trackers are good baselines, but they still leave
energy on the table in the scenarios that now dominate field
operations (urban rooftops and partly shaded carports) [28].
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» Why ANFIS Still Matters: Interpretable Nonlinearity that
Survives Hardware Constraints

The strongest empirical case for ANFIS is not that it
always tops raw accuracy, but that it combines (i) rule-level
priors about PV  behaviour (using VVV, Il
dP/dVvdP/dVdP/dV cues), (ii) learned refinements of
membership functions and consequents, and (iii) credible
real-time implementations on constrained silicon [20]. A
landmark result implemented an ANFIS-reference MPPT on
FPGA and reported better dynamic response than incremental
conductance and constant-voltage baselines evidence that the
architecture is not just a soft-computing curiosity but
deterministic and schedulable at kHz loop rates when the rule
base is kept compact [20], [29]. Subsequent embedded work
strengthens this: a processor-in-the-loop (PIL) study on a
low-cost STM32F4 microcontroller implemented two
ANFIS-based nonlinear MPPT strategies and measured
~09.6-99.9% tracking efficiency with 9-37 ms response
under a dynamic irradiance test profile (ROPP) [30]. The
numbers matter because they show latency headroom with
fixed-point arithmetic and compact rule bases, exactly the
regime where many DL/RL controllers struggle unless
heavily quantised or offloaded [31].

From a control-governance standpoint, ANFIS’s ante-
hoc interpretability is also a live advantage provided a
constraint rule counts and uses pruning/merging, because
operations teams can inspect which rules fired during a
disturbance [8]. Contemporary XAl surveys emphasise that
interpretability must be designed in, not bolted on; fuzzy rule-
based reduction and transparency are established tools here
[30]. ANFIS earns a front-row seat by showing repeatable
edge feasibility (FPGA/MCU), stable dynamic response, and
governable transparency. That does not settle the contest
DL/RL push hard on global-peak discovery but it sets a high
deployment bar they must clear [31].

» ANFIS (and ANFIS-Hybrids) Delivery Under Stress

ANFIS consistently translates simulation promise into
embedded credibility and dynamic performance under partial
shading and fast irradiance ramps, precisely the regimes
where classical P&O/IncCond underperform [11], [32], [33].
Two hardware-proximate anchors establish feasibility. First,
the FPGA realization of an ANFIS-reference MPPT reported
better dynamic response than incremental conductance and
constant-voltage controllers and is widely cited as the first
practical silicon implementation of ANFIS MPPT (see Table
1, “Embedded (FPGA)”). This matters because it proves a
compact, fixed-point rule base can meet kHz deadlines on
constrained hardware, not just in MATLAB [24]. Second,
processor-in-the-loop (PIL) tests on a low-cost STM32F4
MCU show that ANFIS-based nonlinear MPPT strategies
retain ~99.6-99.9 % tracking efficiency with millisecond-
scale settling under a ROPP-style dynamic profile (see Table
1, “PIL (MCU)”). The near-overlap of MIL/SIL/PIL traces
indicates that a pruned rule base with fixed-point arithmetic
preserves both transients and steady-state behaviour once
compiled to firmware, exactly what fieldable controllers
require [15].
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Hybrids buy speed and stability under PSCs. Under
partial shading (multi-peak P-V), evidence repeatedly shows
ANFIS beating P&O/IncCond on global-peak discovery and
settling, with the effect strongest when ANFIS is hybridized
to shape or tune its fuzzy surfaces. A recent GEP-ANFIS
study reports best-case ~99.84 % tracking efficiency at high
irradiance and improved convergence stability—headline
results that are simulation-level but directionally robust
(“Simulation (GEP-ANFIS)”). The mechanism is clear:
evolved membership functions help resolve local-peak
ambiguity faster, reducing dithering and mis-locks [34].

More importantly, bench/HIL-adjacent experiments
substantiate comparative gains. An ANFIS-PSO tracker
integrated on a lab grid-tie setup achieved zero steady-state
oscillations and sub-second lock while outperforming P&O
and metaheuristics (PSO/ABC/ACO) under fluctuating
irradiance (“Experimental (grid-integration)”). Although not
utility-scale, this is a hardware-credible comparison that links
ANFIS hybrids to real converter dynamics and grid-side
quality [35] [36].

Where ANFIS pulls ahead in practice. The clearest,
reproducible differences versus classical methods appear in
ramp events and PSC transitions: ANFIS (and ANFIS-
hybrids) typically exhibit faster convergence and lower AP/P
ripple once locked. On MCUs, this stems from compact rule
bases evaluated in fixed-point with tight loop latency; on
FPGAs, parallel evaluation of membership functions and
rules yields additional speed provided the rule base is
aggressively pruned to fit timing and resource budgets (a
concrete design takeaway for BOS controllers) [13], Many
spectacular numbers (across ANFIS, DL, and RL) are
simulation-only. Our weighting follows power-electronics
best practice: SIL—PIL—HIL is the credibility ladder, and
HIL is the decision gate before field trials. The PV HIL
literature makes the rationale explicit: quantization,
ADC/PWM jitter, and scheduler latency alter loop dynamics,
so what plots smoothly in Simulink can oscillate in real time
if numeric formats and timing are not engineered up front.
This is why Table 1 calls out Validation level and Edge
feasibility for every study we rely on; claims without at least
PIL (preferably HIL) are treated as directional only [37], [38].

Based on Table 1, when tested like a product (PIL/HIL,
embedded budgets disclosed), ANFIS remains competitive or
superior to classical and many metaheuristic baselines on
GMPP hit-rate, convergence, and ripple, while staying
auditable by design. Hybrids such as ANFIS-PSO
(experimental grid-integration) and GEP-ANFIS (simulation-
level ceiling) explain how to push speed and stability further;
FPGA and MCU PIL results explain why those gains survive
real-time constraints. Our integrated reading of Table 1
therefore supports ANFIS, preferably hybridized, as the risk-
adjusted choice for shaded, fast-changing sites, while
reserving simulation-only claims (of any method) as
provisional until replicated with edge-realistic validation.
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Table 1 Evidence Map of MPPT Under Stress Based on Review
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» Deep Learning (DL): Strong on Anticipation, Costly in
Data and Edge Budgets

LSTM-based MPPT aims to anticipate the MPP
trajectory using temporal context; results against P&O and
feed-forward ANNSs are increasingly solid. Importantly, some
studies push beyond desktop simulation into OPAL-RT real-
time analysis or lab validation. For example, one 2024 MDPI
paper demonstrates an LSTM MPPT that beats P&O and a
standard ANN in both MATLAB and OPAL-RT
environments using real irradiance traces, strengthening
claims that sequence models help under dynamics [32].
Another stacked-LSTM for a 100 kW grid-tied setup (open
PDF from a university repository) reports higher harvested
power than P&O/DNN baselines and discusses

Compute reduction techniques [35]. On sites with rich
sensing (e.g., sky cameras, dense irradiance arrays) and
budgets for  edge  accelerators or  aggressive
quantisation/distillation, DL can learn anticipatory
corrections that a compact fuzzy rule base cannot [31]. In
simulation/HIL-adjacent settings, DL often matches or
exceeds ANFIS on global-peak hit-rate and settling,
particularly when irradiance patterns are complex.

But the frictions are real. DL controllers are data-
hungry and site-sensitive; performance can drift with
seasonal/cloud pattern shifts unless you maintain a data
pipeline. Inference on MCU/DSP requires
quantization/distillation and surgical engineering; otherwise,
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latency or power budgets are blown [33]. And, crucially for
operators, explainability is post-hoc: without a designed XAl
layer, explaining a specific duty-cycle action during a fault
investigation is non-trivial. The XAl literature is
unambiguous that interpretable-by-design beats after-the-fact
saliency, which tilts this factor toward ANFIS in production
settings [38].

DL is a strong competitor, especially with HIL support
and sensor richness, but its total cost of deployment (data,
model lifecycle, explainability, edge compute) must be
justified by measurable energy gains. Where those conditions
are met, DL can surpass ANFIS; where they are not, ANFIS
usually wins on risk-adjusted value.

» Reinforcement Learning (RL): Explicit Global-Peak
Exploration, Explicit Safety Burdens
RL reframes MPPT as a sequential decision problem
that learn a policy that explores the P-V landscape and selects
actions (e.g., duty-cycle steps) to maximise power. Two lines
of evidence stand out:

e A 2020 open-access DQN/DDPG study demonstrates
robust GMPPT under PSCs in simulation, decisively
beating classical methods and confirming the conceptual
appeal of policy learning for multi-modal P-V surfaces
[38].

e A 2022-2024 PPO-based line shows that hybrids, e.g.,
PPO + incremental conductance as a stabilising scaffold,
or PPO-LSTM to capture temporal dependencies,
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improve reliability and dynamic performance relative to
pure model-free policies. These are among the strongest
RL baselines today [13].

Where RL shines. Under aggressive PSC scripts with
many local peaks, explicit exploration can yield near-perfect
global-peak hit-rates in silico and fast convergence when
policies are well-trained. That’s a meaningful advantage over
both ANFIS and DL (which can still miss the true global peak
without careful design). Exploration of power hardware is a
safety problem; studies typically train in simulation, then
transfer with varying success [11], [20]. Without safe-
exploration envelopes, action constraints, or fallback
controllers, RL can generate undesirable transients. The RL
studies responding to this embed guard rails (e.g., mixing
PPO with IncCond); that improves robustness but also
complicates implementation and erodes transparency. In the
absence of a mature sim-to-real pipeline and a crisp audit
trail, many operators will balk at fielding a black-box policy
on BOS hardware [13]. Finally, RL is technically impressive
on global-peak discovery but operationally expensive (safety,
transfer, explanations). Unless the site justifies that
complexity, ANFIS, possibly front-stopping an RL advisory
layer, remains the pragmatic default.

» ANIF/DL/RT

o Global-peak under PSCs: RL (PPO-/DQN-class) has the
cleanest theoretical advantage, with multiple studies
demonstrating reliable GMPPT in simulation; hybrids
with classical trackers address stability. DL also scores
well when trained on representative dynamics. ANFIS
(and  ANFIS-hybrids) is consistently superior to
P&O/IncCond and competitive with DL in many PSC
profiles; GEP/PSO-augmented ANFIS can close the gap
further. The missing piece is a surplus of HIL-verified
RL/DL head-to-heads against ANFIS under standardised
PSC scripts; until then, we should treat sim-only wins
cautiously [38].

e Convergence and ripple (dynamic efficiency): ANFIS has
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strong embedded-grade evidence of fast settling and low
ripple (PIL ms-scale responses; FPGA speed-ups via
parallel rule evaluation). DL can match or surpass this
with well-engineered inference pipelines; RL can be fast
once trained but may require action smoothing and
constraints to avoid harsh duty-cycle moves. On
converter-realistic tests, ANFIS’s determinism is a
practical asset [38].

e Edge feasibility and lifecycle: ANFIS fits MCU/DSP/low-

end FPGA budgets with fixed-point arithmetic and
controlled rule counts. DL needs quantisation/distillation
for MCUs (or an edge accelerator), plus data upkeep to
manage drift. RL needs a safe sim-to-real story and often
a guardian controller (e.g., IncCond) in deployment. From
a BOS integration view, ANFIS is the least brittle to
operate [37].

e Explainability and audits: Fuzzy systems can be

explainable-by-design if you minimise and document the
rule  base;, DL/RL  require post-hoc XAl
(saliency/attribution) to tell an auditor what happened
during a transient. Industry XAl reviews continue to warn
that post-hoc explanations can be incomplete or brittle;
this is a governance edge for ANFIS [30].

e Best fit: Shaded rooftops, frequent ramps, strict hardware

limits (DSP/MCU) — ANFIS (or ANFIS-PSO) has the
best risk-adjusted profile: strong convergence, small
ripple, explainable rules, and feasible fixed-point
deployment. Evidence: FPGA/DSP/MCU
implementations and HIL studies confirming timing
budgets and gains [13]- [17]. Sites with rich sensing (sky
cameras, irradiance arrays) and compute budget —
DL/RL can edge out ANFIS on global-peak hit rates and
anticipatory control, if you do the engineering to manage
data  drift and safety [2], [19], [20].
Governance/assurance-heavy operators — ANFIS’s rule-
level auditability and XAl-compatibility (see next
session) are concrete advantages in post-event analysis
and regulatory dialogues [11], [24].

Table 2 Short Comparison Table

Criterion ANFIS (incl. ANFIS-PSO)

Deep Learning
(LSTM/CNN/TCN)

Reinforcement Learning
(DQN/PPOQ, hybrids)

Global-peak under PSCs| Strong; hybrids are best-in-class in
several studies

Competitive if good
forecasters &

Strong, explicit exploration; hybrids
safest

Convergence/ripple Faster settling, low ripple vs.

P&O/IncCond

Good, depends on model
size/latency

Good, but training stability matters

Data dependency Low-moderate (can train on

simulated + small field sets)

High (site-specific data drift)

High (training/transfer)

Edge feasibility Proven; fixed-point viable with

Often needs

Needs constraints/fallbacks; heavier

(MCU/DSP/FPGA) compact rules guantisation/distillation run-time
Explainability/assurance| Rule-level (if rule count managed) |Limited without XAl add-ons Limited; needs explicit XAl
scaffolding
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V. DISCUSSION

The review shows ANFIS tracking that is fast, low-
ripple, and  feasible on  constrained  hardware
(MCUs/FPGAS). That claim aligns with Aldair et al. [24]
FPGA implementation, which reported better dynamic
response than incremental-conductance and constant-voltage
baselines, proving that a compact ANFIS rule-base can meet
real-time deadlines on silicon rather than just in MATLAB.
By contrast, much of the DL/RL corpus remains simulation-
centric; HIL/PIL reports exist but are fewer and less mature.
On deployability, therefore, our findings support Aldair’s
position and temper simulation-only claims from learning-
based papers that do not disclose timing/quantization budgets
[24]. PIL/HIL closes the gap between “nice plots” and
bankable behavior, and ANFIS clears that bar. Chnini et al.
[15] execute two ANFIS-based nonlinear MPPT strategies in
Processor-in-the-Loop on a low-cost STM32F4 and measure
~09.6-99.9 % tracking with 9—37 ms responses under the
dynamic ROPP profile. Those numbers are in the same
ballpark as our embedded results and corroborate the thesis
that ANFIS can be both fast and deterministic on commodity
controllers when fixed-point arithmetic and rule reduction are
engineered up front. They also expose a weakness in several
DL/RL papers: absent PIL/HIL, headline efficiencies are
fragile. Our reading is that embedded realism, not algorithmic
novelty, decides whether gains persist [15].

Under partial shading, ANFIS beats classical methods,
but hybrids matter. We find consistent advantages for ANFIS
over P&O/IncCond in global-peak discovery and settling
time during partial shading transitions. That is congruent with
Priyadarshi et al.’s experimental ANFIS-PSO grid-tied study,
which documents zero steady-state oscillations and faster
execution than multiple comparators (P&O, PSO, ABC,
ACO) under fluctuating irradiance. Our synthesis supports
the hybridization claim: ANFIS alone is good; ANFIS+PSO
(or related metaheuristics) is often better when the P-V
surface is multi-modal [40]. Evolved or meta-heuristic
ANFIS (e.g., GEP-ANFIS) looks excellent on paper—until
you ask about hardware. Bakare et al. [34] report ~99.84 %
tracking efficiency for a double-diode PV model in Simulink
using a GEP-ANFIS hybrid, consistent with our conclusion
that co-designing fuzzy surfaces boosts convergence. But the
study is purely simulation; resource and latency disclosures
are absent. We therefore accept the performance direction but
reject any inference about deployability without at least
PIL/HIL confirmation. Our embedded results and the Aldair
FPGA work indicate that rule-growth and numeric formats
determine success on a real converter [24].

Deep learning (DL) can match or beat ANFIS on
dynamic efficiency when the data and computing exist.
Where sequence modeling and forecasting matter, LSTM-
based MPPT has reported clear wins versus P&O/ANN. Roy
et al [32]. Validate an LSTM controller against P&O and a
feed-forward ANN using OPAL-RT real-time analysis, not
just offline simulation strengthening the case for DL under
ramps. Large “stacked-LSTM” studies targeting 100 kW
systems also show higher harvested power than P&O/DNN.
Our findings acknowledge DL’s upside in sensor-rich

INISRT25SEP1208

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25sep 1208

contexts but counter-argue that these results typically require
ample training data, careful quantization/distillation for edge
inference, and ongoing data governance; the 100 kW paper
itself recommends future real-world validation and notes
synthetic data generation for inputs. In settings with modest
sensing and tight BOS budgets, our embedded ANFIS results
remain more risk-adjusted [32].

Reinforcement learning (RL) is formidable for global-
peak discovery, but the safety envelope is costly. RL reframes
MPPT as a sequential decision problem and, in simulation,
excels at escaping local maxima. Phan et al. [32]
(DQN/DDPG) show strong GMPPT under PSCs in
MATLAB/Simulink, decisively beating classical methods.
More recent work integrates PPO with incremental-
conductance logic to stabilize exploration, and even real-time
DQN experiments have begun to appear [42]. Our stance,
after comparing with our ANFIS evidence, is two-part: (1) we
agree RL can set the high-water mark on global-peak hit-rate;
(2) we disagree that this makes RL the default choice, because
training stability, sim-to-real transfer, and auditability
demand guardrails (fallback controllers, action constraints)
that raise operational complexity beyond typical ANFIS
deployments [38]. DL/RL are inherently superior to fuzzy
methods.” Rejected (for deployments typical today). When
we add explainability and governance to the scorecard,
ANFIS retains an advantage. Fuzzy systems are ante-hoc
interpretable if the rule set is constrained; operators can audit
which rules fired during a disturbance. XAl reviews caution
that post-hoc explanations for deep policies can be brittle or
ambiguous, precisely the problem BOS teams face after a grid
event. Our ANFIS runs ship naturally with rule maps and
sensitivity traces; the DL/RL literature often adds explainers
after the fact. Until the learning stack routinely couples
performance with auditable narratives, we see ANFIS as the
safer default for compliance-heavy operators [32]. A subset
of DL papers with OPAL-RT or lab validation narrows the
credibility gap, and some RL studies report hybrid policies
that respect converter constraints while retaining global-peak
agility. We accept these as boundary conditions: where you
have rich sensing, stable data pipelines, and edge compute
headroom, DL (and RL with guardrails) can surpass ANFIS
on anticipatory control and global-peak hit-rate. Our rejection
is narrower: we reject the general claim of superiority in
mainstream deployments lacking those enablers. Practically,
we recommend ANFIS (often hybridized) as the primary
controller, with DL/RL as advisory/supervisory layers until
HIL-verified field trials are routine [32]. Implications for
practice and research. For asset owners today, the risk-
adjusted path is an ANFIS (or ANFIS-PSO) primary with an
XAl kit (rule maps, sensitivity logs), validated via PIL/HIL
on representative PSC scripts. For researchers, the useful next
step is head-to-head HIL: ANFIS-hybrid versus PPO-/DQN-
class baselines under standardized shading profiles, reporting
GMP hit-rate, convergence distributions, AP/P ripple, and
resource/latency footprints. Only then can the field credibly
claim superiority beyond controlled simulations [34].
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V1. CONCLUSION

The review of literature from 2018 to 2025 supports
ANFIS as the risk-adjusted first choice for PV maximum
power point tracking in non-benign conditions, particularly
partial shading and rapid irradiance ramps. Compact, fixed-
point ANFIS implementations on MCUs and FPGAS have
repeatedly met tight control deadlines while sustaining
millisecond-scale settling and ~99-100% tracking efficiency
in dynamic tests. Equally important, ANFIS, especially when
hybridised with metaheuristics or nonlinear control scaffolds,
consistently improves global-peak discovery, reduces
convergence time, and minimizes steady-state ripple relative
to classical P&O or Incremental Conductance. A further
practical advantage is governance: with a capped and pruned
rule base, ANFIS remains interpretable by design, allowing
operators to audit which rules fired and why during
disturbances, something that deep and reinforcement learners
typically address only through post-hoc explainers.

These conclusions do not dismiss deep learning or
reinforcement learning. Where sensing is rich, compute
headroom exists, and model governance is mature,
LSTM/TCN forecasters or PPO/DQN policies can match or
surpass ANFIS on global-peak hit-rate and anticipatory
control. However, those gains depend on reliable data
pipelines, quantisation and latency engineering for edge
devices, safe-exploration envelopes, and clear audit trails.
Until such enablers are in place, ANFIS remains the most
bankable upgrade path for many PV contexts.

For deployment, treat validation as a staged program
rather than a single experiment. Controllers should progress
through software-in-the-loop and processor-in-the-loop into
hardware- or power-hardware-in-the-loop, using scripted
partial-shading and ramp profiles that reflect field reality.
Promotion to site trials ought to hinge on HIL performance so
that quantisation, ADC/PWM jitter, and scheduler effects are
surfaced before field risk is taken. Within this pipeline, start
with a lean, auditable ANFIS core that uses the fewest useful
inputs (typically VvV, I, dP/dVdP/dVdP/dV), restrict
membership functions to three to five per input, and prune or
merge rules to contain latency and memory. Implement fixed-
point arithmetic with explicit scaling and saturation, and
instrument the firmware to export rule-activation logs and
simple sensitivity traces (for example, how the duty-cycle
responds to perturbations in VVV and 1) so that post-event
narratives are straightforward.

Hybridisation should be purposeful rather than
ornamental. Use PSO, GEP, or similar techniques offline to
initialise or evolve membership functions and consequents,
then distill the result back into a deployment-size rule base
and re-validate it in PIL/HIL. Nonlinear scaffolds such as
backstepping or fast terminal sliding control are warranted
only when they demonstrably shorten settling without
inflating complexity. Where your sensing and computing
allow, introduce deep learning as an advisory layer, forecast-
assisted set-points that feed an ANFIS primary so that
explainability and determinism are preserved. If
reinforcement learning is explored, enforce action constraints
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and retain a classical/ANFIS fallback, proving sim-to-real
reliability in HIL before any primary-loop use. Finally,
standardise  reporting around global-peak hit-rate,
convergence-time distributions, steady-state power ripple,
and energy-weighted gains over long dynamic runs, with full
disclosure of number formats, sampling/PWM rates, and
resource/latency budgets. This combination of disciplined
validation, lean interpretability, and scenario-relevant metrics
yields immediate, explainable gains via ANFIS while
creating a safe runway to adopt DL/RL where their
advantages are genuinely bankable.
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APPENDIX A: LIST OF ABBREVIATIONS

ABC — Artificial Bee Colony (metaheuristic)
ACO — Ant Colony Optimisation (metaheuristic)
ADC — Analog-to-Digital Converter

ANFIS — Adaptive Neuro-Fuzzy Inference System
BOS — Balance of System (non-module PV components)
BS — Backstepping (nonlinear control method)
CNN — Convolutional Neural Network

DL — Deep Learning

DNN — Deep Neural Network

DQN — Deep Q-Network (RL algorithm)

DRL — Deep Reinforcement Learning

DSP — Digital Signal Processor

FPGA — Field-Programmable Gate Array

FTSC — Fast Terminal Sliding Control
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GA — Genetic Algorithm (metaheuristic)

GEP — Gene Expression Programming (evolutionary
algorithm)

GMPP — Global Maximum Power Point

HIL — Hardware-in-the-Loop

INC / IncCond — Incremental Conductance (classical
MPPT)

I-V — Current—Voltage (characteristic curve)

kW / kwh — Kilowatt / Kilowatt-hour

LSTM — Long Short-Term Memory (recurrent neural
network)

LUT — Look-Up Table

MCU — Microcontroller Unit

ML — Machine Learning

MPP — Maximum Power Point

MPPT — Maximum Power Point Tracking

OPAL-RT — Real-Time Simulation Platform (HIL system)
P&O — Perturb and Observe (classical MPPT)

PHIL — Power Hardware-in-the-Loop

PIL — Processor-in-the-Loop

PLL — Phase-Locked Loop (if referenced in converter
control)

PPO — Proximal Policy Optimisation (RL algorithm)
PSCs — Partial Shading Conditions

PSO — Particle Swarm Optimisation (metaheuristic)
P-V — Power-Voltage (characteristic curve)

PWM — Pulse-Width Modulation

RL — Reinforcement Learning

ROPP — Rapidly Changing Irradiance Profile (dynamic
test)

SIL — Software-in-the-Loop

SoC — System-on-Chip (if referenced for embedded
targets)

TCN — Temporal Convolutional Network

THD — Total Harmonic Distortion

XAl — Explainable Artificial Intelligence
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