ISSN No:-2456-2165

Regenerative Dentistry and Advanced Biomaterials: Healing from Within

Dr. Dhwani Patel¹; Hajer Adam²; Nathaly Toribio³; Gabriela Gonzalez⁴

¹Associate Dentist; ²Dental Assistant; ^{3,4}Dental Hygienist ¹Namaha Dental Clinic; ²Serene Dentistry; ^{3,4}Dental Care at Mark

Publication Date: 2025/09/29

Abstract: Regenerative dentistry is changing the game in oral healthcare. Instead of just fixing problems with artificial materials, we're now learning how to help teeth and gums heal themselves using the body's natural repair systems. This review explored how stem cells from different parts of the mouth like dental pulp, baby teeth, and the tissues around teeth can actually regrow damaged structures. We're talking about regrowing the inside of teeth, the supporting ligaments, and even the hard outer layers. What makes this possible is the combination of these powerful stem cells with smart biomaterials and cutting-edge 3D printing technology. Think of it as giving the body the right tools and instructions to fix itself. Major dental schools across the U.S., including Penn, UCSF, Michigan, Columbia, and Colorado, are leading this research revolution. Their work is bringing us closer to treatments that are less invasive, more natural, and long lasting than anything we've had before.

Keywords: Biomaterials, Regeneratice Dentistry, 3D BioPrinitng, Tissue Regrow, Biology/Stem Cells.

How to Cite: Dr. Dhwani Patel; Hajer Adam; Nathaly Toribio; Gabriela Gonzalez (2025) Regenerative Dentistry and Advanced Biomaterials: Healing from Within. *International Journal of Innovative Science and Research Technology*, 10(9), 1898-1903. https://doi.org/10.38124/ijisrt/25sep1019

I. INTRODUCTION

Dentistry is having its iPhone moment. For decades, fixing teeth meant drilling, filling, and replacing damaged parts with artificial materials. But what if we could teach teeth to fix themselves instead? That's exactly what regenerative dentistry is all about. Traditional dental work is essentially sophisticated carpentry; we remove the bad stuff and patch it up with synthetic materials. Root canals, fillings, crowns, implants, they all follow the same basic principle of replacement rather than restoration. While these treatments work, they're not perfect. Fillings can fail, root canals sometimes need retreatment, and implants, though successful, are still foreign objects in your mouth. The longevity of these conventional treatments varies significantly, with amalgam fillings lasting 10-15 years, composite restorations requiring replacement every 5-10 years, and even dental implants experiencing complications in 5-10% of cases over their lifetime.

Regenerative dentistry flips this script entirely. Instead of fighting against the body's natural processes, we're learning to work with them. The goal isn't just to restore function, it's to bring back the actual living tissue that was there before.[1][2] This means recreating not just the physical structure, but the biological function as well; complete with living cells, blood vessels, and nerve networks that can respond to stimuli and continue to adapt over time. Three main factors that are driving this shift are our growing understanding of stem cell biology,

major advances in biomaterials science, and the development of 3D bioprinting technology. When you combine these elements, something remarkable happens. We can create environments where damaged oral tissues can actually regenerate themselves. This biological approach acknowledges that teeth and their supporting structures are dynamic, living systems rather than static mechanical components.[3][4]

Leading dental schools are pouring resources into this field. The University of Pennsylvania focuses heavily on "regenerative materials and technologies" and "cellular biology of connective tissues and bone". UCSF's dental school has entire divisions dedicated to "tissue engineering and regeneration" and "biomaterials and bioengineering". Michigan's dental school runs specialized labs for "Regenerative Dentistry" and "Tissue Engineering and Regenerative Medicine". Columbia University emphasizes "Biomaterials/Regenerative Biology/Stem Cells", while Colorado works on "Biomaterials/Bioengineering" and "Stimuli-responsive 'Smart' Materials".[5][6][7][8][9][10][11] These institutions are investing millions of dollars in specialized equipment, hiring world-class researchers, and establishing interdisciplinary collaborations that bring together experts from dentistry, engineering, biology, and materials science. This isn't just academic curiosity. Early clinical trials are showing real promise, and some regenerative treatments are already making their way into dental offices. The FDA has begun approving certain regenerative dental products, and

https://doi.org/10.38124/ijisrt/25sep1019

professional organizations are developing guidelines for their clinical implementation.

II. STEM CELLS: YOUR MOUTH'S BUILT-IN REPAIR CREW

Here's something most people don't realize: your mouth is packed with stem cells. These aren't the controversial embryonic stem cells you hear about in the news; these are adult stem cells that live right in your teeth and gums, just waiting for the right signals to start rebuilding damaged tissue. Unlike embryonic stem cells, these adult stem cells are readily accessible, ethically unproblematic, and specifically adapted to the oral environment. What makes oral stem cells particularly remarkable is their ability to maintain their regenerative capacity even in the challenging conditions of the mouth, where they're constantly exposed to bacteria, mechanical stress, and chemical variations from food and drink.

- > The Heavy Hitters: Different Types for Different Jobs
- Dental Pulp Stem Cells (DPSCs) live inside the soft center of your teeth. These cells are particularly good at making new dentin (the hard layer under your enamel) and can help rebuild the entire pulp-dentin complex. When researchers put DPSCs into specially designed scaffolds loaded with growth factors like VEGF and bFGF, something amazing happens; they create new, living pulp tissue complete with blood vessels and nerves. Studies in dogs have shown this can work for full-length pulp regeneration. What's particularly exciting about DPSCs is their remarkable plasticity—they can differentiate not only into odontoblasts that make dentin, but also into cells that form blood vessels, nerve tissue, and even bone-like structures. This versatility makes them ideal for complex regenerative procedures that require multiple tissue types.[12][13]
- Stem Cells from Human Exfoliated Deciduous teeth (SHEDs) come from baby teeth; yes, those teeth kids lose and put under their pillows. Don't throw them away just yet. These cells are incredibly versatile and can differentiate into tooth-forming cells and blood vessel cells. They're easier to obtain than other types since they come from teeth that would be discarded anyway. SHEDs are particularly valuable because they retain more of their embryonic characteristics compared to adult dental stem cells, making them more potent and faster-acting in regenerative applications. Research has shown that SHEDs can successfully regenerate not just dental tissues, but also neural tissues and even cardiac muscle, highlighting their exceptional multipotency.[9][12]
- Periodontal Ligament Stem Cells (PDLSCs) live in the tissue that connects your teeth to your jawbone. These cells excel at regenerating the periodontal ligament itself and the cementum(the specialized hard tissue that covers tooth roots). This is crucial for keeping teeth stable in their sockets. PDLSCs are unique because they exist in a highly specialized mechanical environment where they must constantly respond to the forces generated during chewing and speaking. This mechanical conditioning actually enhances their regenerative capabilities, making them

particularly effective for treating periodontal disease and supporting structures around dental implants.[11][12][9]

What makes these cells special isn't just their ability to turn into different types of tissue. They also have immunomodulatory properties, meaning they can help control inflammation and create a healing environment. This is crucial because successful regeneration requires not just building new tissue, but also managing the immune response to prevent rejection and promote integration. These cells can secrete anti-inflammatory factors, recruit beneficial immune cells, and even help reprogram the local tissue environment from a state of chronic inflammation to one of active healing. [5][12]

- > Real-World Applications: From Lab to Clinic
 The research moving from laboratories to actual patients'
- The research moving from laboratories to actual patients' care is impressive.
- Dental pulp Stem Cells (DPSCs), scientists are working on treatments that could eliminate the need for traditional root canals. Instead of removing all the infected pulp and filling the space with inert material, the idea is to clean out just the infected parts and then introduce stem cells and growth factors to regrow healthy pulp tissue.[13][14] Clinical trials are already underway using growth factors to stimulate existing pulp stem cells, and early results show promising revascularization and re-innervation of treated teeth. Early studies even demonstrate that activating native pulp stem cells can help seal small cavities from the inside out, offering a biological alternative to traditional dental restorations.[13]
- Enamel regeneration is trickier since adult enamel doesn't naturally regrow. But researchers are exploring ways to coax ameloblast cells (which make enamel during tooth development) to start working again. The vision is a regenerative gel or rinse that could heal early cavities by triggering natural enamel repair.[4][14] Scientists are investigating protein-based approaches using amelogenin other enamel matrix proteins to remineralization, while others are exploring small molecule compounds that can reactivate dormant ameloblast-like cells. The challenge lies in recreating the highly organized, prismatic structure of natural enamel, which requires precise control over mineral deposition patterns.
- PDLSCs combined with smart scaffolds can regenerate lost bone and ligament tissue for periodontal disease (which affects nearly half of adults over 30). Current procedures already use bone grafts and membranes to stimulate tissue growth, but stem cell approaches could make these treatments much more predictable and effective. Clinical studies are showing that PDLSCs can regenerate not just the periodontal ligament, but also alveolar bone and cementum simultaneously, creating a fully functional tooth-supporting apparatus. This comprehensive regeneration is particularly important for older patients whose natural healing capacity has diminished.[8][13]
- Exosome therapy represents the newest frontier. Exosomes
 are tiny packages that cells use to communicate with each
 other. They carry proteins, genetic material, and other
 signaling molecules. The beauty of exosome therapy is that
 you get the benefits of stem cell treatment without actually
 transplanting cells. These nano-sized vesicles can promote
 blood vessel formation, reduce inflammation, and stimulate

tissue repair. Researchers are now developing methods to load exosomes with specific therapeutic molecules, creating targeted delivery systems that can guide regeneration with unprecedented precision. This approach also eliminates many of the safety concerns associated with live cell therapies, as there's no risk of unwanted cell growth or immune rejection.[15][16][17][18]

Alveolar Bone Regeneration is for patients who have lost bone in their jaws. Treatment such as Mesenchymal Stem Cells (MSCs) delivered via engineered scaffolds are showing serious promise. These composite scaffolds improve bone volume and quality, creating a solid foundation for dental implants and other advanced restorative procedures. This kind of regeneration has the potential to make bone grafts less necessary and provide natural, long-lasting support for replacement teeth. Advanced imaging techniques now allow clinicians to precisely map bone defects and design patient-specific scaffolds that optimize bone regeneration in three dimensions. The integration of MSCs with growth factors like BMP-2 and PDGF is showing particularly promising results in clinical trials, with some patients experiencing complete bone regeneration within 6-12 months.[21]

III. SMART MATERIALS: BUILDING BETTER SCAFFOLDS

Stem cells are only half the story. To successfully regenerate tissue, you need the right environment - think of it as providing both the construction crew (stem cells) and the blueprints and materials (biomaterials) for the job. The scaffold material must be carefully engineered to support cell attachment, provide mechanical stability, allow nutrient diffusion, and guide tissue formation in the correct three-dimensional architecture. Modern scaffold design involves complex considerations of porosity, degradation rate, mechanical properties, and bioactivity, all of which must be optimized for the specific type of tissue being regenerated.

➤ Natural vs. Engineered: The Best of Both Worlds

- Natural biomaterials like collagen, alginate, and chitosan advantages—they're biocompatible, obvious biodegradable, and cells recognize them as familiar neighbors rather than foreign invaders. Collagen is particularly valuable since it's already a major component of natural bone and soft tissue. When combined with hydroxyapatite (the mineral component of bone), collagen creates composite materials that closely mimic natural bone structure.[20][22] Studies show that hydroxyapatite composites can actually recruit the body's own cells and promote new bone growth. One commercially available material called Biostat (made from hydroxyapatite, collagen, and chondroitin sulfate) showed 67% new bone coverage in clinical trials compared to just 34% with no treatment.[20] The success of these natural materials stems from their ability to provide not just structural support, but also biological cues that guide cellular behavior through specific protein-protein interactions.
- Engineered biomaterials take this a step further by modifying natural materials to perform specific functions.

Scientists can adjust degradation rates, mechanical properties, and biological signaling capabilities. For example, adding specific growth factors to collagen scaffolds can direct stem cells toward particular types of tissue formation. Advanced processing techniques like electrospinning can create nanofibrous structures that closely mimic the natural extracellular matrix, providing optimal conditions for cell attachment and growth. Crosslinking methods can be tailored to control how quickly the scaffold dissolves, ensuring that it provides support during the critical early phases of regeneration but disappears as new tissue takes over.[23]

- Nanomaterials are opening up entirely new possibilities. These materials can improve mechanical strength and durability while adding novel functions like targeted drug delivery or antimicrobial properties. Colorado's research includes work on "Nanogels for drug delivery" and "Antibacterial coatings". Nanoparticles can be engineered to release growth factors in response to specific biological signals, creating smart delivery systems that respond to the healing environment. Some nanomaterials can even change their properties in response to pH, temperature, or enzymatic activity, allowing for dynamic scaffolds that adapt to the changing needs of regenerating tissue.[5]
- Biodegradable implants represent a paradigm shift in thinking. Instead of permanent implants that last forever, these materials do their job and then disappear as the body's natural tissue takes over. This eliminates the need for removal surgeries and reduces long-term complications. Modern biodegradable materials can be engineered with precise degradation profiles, ensuring that they maintain structural integrity during the initial healing phase but completely resorb once regeneration is complete. This approach is particularly attractive for pediatric applications, where permanent implants would require multiple replacement surgeries as the child grows.[24]

➤ 3D Bioprinting: Precision Manufacturing for Biology

3D bioprinting is where engineering meets biology in the most literal sense. This technology can create living tissue constructs by precisely placing cells and materials exactly where they need to be. The process works by using "bioinks"; specialized materials that can carry living cells while being printable. The most common approach is extrusion-based printing, which works like a very sophisticated cake decorator, laying down continuous strands of cell-laden material to build up complex three-dimensional structures. Modern bioprinters can achieve resolution down to the micrometer scale, allowing for the creation of structures that closely match the natural architecture of oral tissues. The printing process itself must be carefully controlled to maintain cell viability, requiring precise temperature control, sterile conditions, and optimized printing speeds. [6][25][26][13]

What makes this exciting for dentistry is the ability to create patient-specific treatments. Using data from CT scans and Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), researchers can design and print custom scaffolds that match the exact size and shape of a patient's defect. Some labs are already printing custom healing abutments and surgical guides alongside regenerative constructs.[19] The integration with digital dentistry

workflows means this technology could eventually enable "same-day "chairside fabrication" and regenerative treatments," similar to how some dental offices now make crowns while you wait. Advanced software can now analyze patient imaging data and automatically generate optimal scaffold designs that account for mechanical stress patterns, blood flow requirements, and aesthetic considerations.[19] Recent work has even combined artificial intelligence with bioprinting to optimize tissue constructs. AI can help design scaffolds with the perfect balance of mechanical properties, cell distribution, and nutrient flow. Machine learning algorithms can predict how different scaffold designs will perform, allowing researchers to optimize constructs before they're ever printed. This computational approach is dramatically accelerating the development of new regenerative treatments, reducing the time from concept to clinical trial.[27]

IV. LOOKING FORWARD: CHALLENGES AND POSSIBILITIES

Regenerative dentistry is no longer science fiction, but it's not quite ready for prime time either. There are several hurdles that remain:

- Scaling up from small animal studies to humans is always challenging. Human tissues are more complex, and what works in a mouse or rat doesn't always translate directly to clinical success. Regulatory approval for stem cell therapies is notoriously stringent, and for good reason safety has to come first. The FDA's regulatory pathway for regenerative dental products is still evolving, with different requirements for cell-based therapies, tissue-engineered products, and combination devices. Clinical trials for regenerative dental treatments must demonstrate not only safety and efficacy, but also long-term stability and integration of regenerated tissues. This typically requires follow-up periods of several years, significantly extending the time from research to clinical availability.[2][4]
- Cost is another significant barrier. Early regenerative treatments will likely be expensive until we achieve economies of scale. This could limit access initially, though costs should decrease as the technology matures. The current cost of isolating and culturing stem cells, combined with the expense of custom scaffold fabrication and specialized growth factors, makes regenerative treatments significantly more expensive than conventional alternatives. However, the long-term economic benefits of treatments that eliminate the need for repeated interventions could ultimately make regenerative dentistry cost-effective from a lifetime treatment perspective.[2]
- Standardization of protocols is crucial for widespread adoption. Right now, different research groups use different methods, making it hard to compare results and establish best practices. Professional organizations are beginning to develop guidelines for regenerative dental procedures, but much work remains to be done in establishing standardized protocols for cell isolation, scaffold preparation, and treatment delivery. Quality control measures must be developed to ensure consistent outcomes across different treatment centers.[4]

Yet the potential is enormous. Conservative estimates suggest that by 2030, we could see stem cell-based enamel

repair in dental offices. By 2040, lab-grown teeth might become a viable alternative to implants.[2] The economic impact could be substantial too. Oral disease costs billions annually in treatments and lost productivity. Regenerative approaches that prevent disease progression rather than just managing symptoms could significantly reduce this burden. The global market for regenerative dental products is projected to reach several billion dollars within the next decade, driven by an aging population and increasing demand for minimally invasive treatments. Insurance companies are beginning to recognize the long-term cost benefits of regenerative treatments, and some are starting to provide coverage for certain procedures.[2].

V. WHAT THIS MEANS FOR PATIENTS

For patients, regenerative dentistry promises a future where dental visits focus more on restoration than replacement. Cavities might heal themselves with simple treatments. Tooth loss could become reversible. Even aging mouths might regain strength as bone and tissue regenerate naturally.[14][2] The patient experience will be fundamentally different, with less drilling, less discomfort, and treatments that work with the body's natural healing processes rather than against them. Patients may find themselves receiving treatments that involve simple injections of growth factors or placement of bioactive materials, rather than extensive surgical procedures, Dentists will need to evolve too, becoming more like bioengineers who work with the body's natural healing processes rather than against them. This will require new training and different ways of thinking about oral health.[2] Dental education is already beginning to incorporate courses in tissue engineering, stem cell biology, and biomaterials science. Continuing education programs are helping practicing dentists understand and implement regenerative approaches as they become clinically available.

Early clinical trials are already underway, and some regenerative treatments are beginning to appear in dental practices. Companies are investing heavily in computational modeling to speed up development, and the convergence of AI with regenerative medicine could accelerate progress significantly.[27][2] The transformation won't happen overnight, but the trajectory is clear. We're moving toward a world where teeth and their supporting structures don't just endure—they thrive, naturally and sustainably. For anyone who's ever dreaded the dentist's drill, that's definitely something to smile about.

Leading institutions like Penn, UCSF, Michigan, Columbia, and Colorado continue pushing the boundaries through their dedicated research programs and interdisciplinary collaborations. Their work in "interdisciplinary scholarship and translational research", "tissue engineering and regeneration", and "biomaterials and bioengineering" is essential for turning laboratory discoveries into clinical realities.[7][10] The field demands continued focus on standardizing clinical protocols, conducting rigorous long-term safety studies, and developing cost-effective strategies for widespread implementation. As emerging technologies like advanced exosome therapies and AI-optimized 3D bioprinting mature, they'll likely define the next chapter in regenerative dentistry. This interdisciplinary

ISSN No:-2456-2165

https://doi.org/10.38124/ijisrt/25sep1019

field draws from developmental biology, materials science, biomedical engineering, and clinical dentistry to create a future where genuine healing from within becomes the standard of care rather than the exception.

VI. CONCLUSION: THE REGENERATIVE FUTURE OF ORAL HEALTH

Regenerative dentistry isn't just another dental trend; it's a complete game-changer that's flipping the script on how we think about oral health. We're moving away from the old fix-it-when-it-breaks mentality to something much more exciting: helping the body heal itself from the inside out. The combination of stem cell science and smart biomaterials is creating possibilities that seem like science fiction. Instead of drilling and filling, we're talking about actual regeneration. Real tissue growing back where it belongs.

The heavy lifting in this field is happening at some of America's top dental schools. Penn's approach to "interdisciplinary scholarship and translational research" is pushing boundaries by bringing together experts from different fields who normally wouldn't work together. UCSF's "tissue engineering and regeneration" programs are developing treatments that could change everything. Michigan's Bottino Lab is cranking out innovative materials that make regeneration possible. Columbia's DDS/PhD program partnering with their Engineering School shows how serious this field has become about crossing traditional boundaries. Colorado's work on "nanogels for drug delivery" is solving the tricky problem of getting healing factors exactly where they need to go.

But let's be real about what still needs to happen. We need to standardize how these treatments are done so that a patient in California gets the same quality care as someone in New York. Long-term safety studies are absolutely critical; we can't rush this to market without knowing what happens five or ten years down the road. And honestly, cost is going to be a major hurdle initially. Early regenerative treatments will probably be expensive until we figure out how to scale them up. The good news is that technologies like exosome therapy and AIoptimized 3D bioprinting are advancing fast, and they could make these treatments more accessible sooner than we think. This field pulls together everything from developmental biology to materials engineering to create something that's genuinely revolutionary. We're not just fixing teeth anymore; we're giving them the tools to fix themselves. That's the future of dentistry, and it's closer than most people realize.

REFERENCES

- [1]. Andrew I. Spielman. "Dental education and practice: past, present, and future trends." Frontiers in Oral Health, 17 Apr. 2024, https://www.frontiersin.org/journals/oral-health/articles/10.3389/froh.2024.1368121/full
- [2]. "Emerging Trends and Innovations Shaping the Dental Industry." Ameritas, 29 May 2025, https://www.ameritas.com/insights/emerging-trends-and-innovations-shaping-the-dental-industry/

- [3]. "Dentists as Innovators: Exploring Their Contributions to Biomedical Advances." Cornerstone Smiles, 16 Jan. 2025, https://cornerstonesmiles.com/dentists-as-innovators-exploring-their-contributions-to-biomedical-advances/
- [4]. "The Future of Dentistry: Technology Innovations in 2025." HR for Health, 22 Feb. 2024, https://hrforhealth.com/blog/the-future-of-dentistry-technology-innovations-in-2025
- [5]. Sarah Lee. "Ultimate Guide: Personalized Dentistry & Evidence-Based Practice." Number Analytics, 15 Jun. 2025, https://www.numberanalytics.com/blog/ultimate-guide-personalized-dentistry-evidence-based
- [6]. Paczkowska-Walendowska, Magdalena, Maciej Kulawik, Jakub Kwiatek, Dimitrios Bikiaris, and Judyta Cielecka-Piontek. "Novel Applications of Natural Biomaterials in Dentistry—Properties, Uses, and Development Perspectives" 5 May 2025 Materials 18, no. 9: 2124. https://doi.org/10.3390/ma18092124
- [7]. "Research." University of Colorado School of Dental Medicine, https://dental.cuanschutz.edu/research
- [8]. "Research." Columbia University College of Dental Medicine, https://www.dental.columbia.edu/research
- [9]. "Preventive and Restorative Dental Sciences." UCSF School of Dentistry, https://dentistry.ucsf.edu/about/academicdepartments/prds
- [10]. Ragimova N, Abdullayev V, Mirzoyeva A, Mirzoyeva E. Application of Artificial Intelligence in Dentistry. Health Leadership and Quality of Life. 2024; 3:.454. https://doi.org/10.56294/hl2024.454
- [11]. "OMFS Research." UCSF School of Dentistry, https://dentistry.ucsf.edu/programs/post-grad/omfs/research
- [12]. "Top Latest Dental Technologies and Innovations in Dentistry." Windham Family Dentistry, https://windhamdentist.com/latest-dental-technologies/
- [13]. Agarwal, Sumeet et al. "Pioneering the Future of Oral Healthcare: Bioprinting and Its Transformative Clinical Potential in Dentistry." Cureus vol. 17,2 e79030. 15 Feb. 2025, doi:10.7759/cureus.79030
- [14]. "Advances in Digital Implantology." Pankey Institute, https://pankey.org/advances-in-digital-implantology/
- [15]. "Our Labs." University of Michigan School of Dentistry, https://dent.umich.edu/research/our-labs
- [16]. "Dental Stem Cells in Regenerative Dentistry: A Narrative Review of Therapeutic Strategies and Biomaterials." JCC Practice, https://jccpractice.com/article/dental-stem-cells-in-regenerative-dentistry-a-narrative-review-of-therapeutic-strategies-and-biomaterials-1042/
- [17]. "Regenerative Dentistry Advances: The Future of Healing Teeth and Beyond." Grand Lake Dental, 15 Apr. 2025, https://www.grandlakedental.com/blog/2025/4/15/rege nerative-dentistry-advances-the-future-of-healingteeth-and-beyond/
- [18]. "Research Overview." University of Pennsylvania School of Dental Medicine, https://www.dental.upenn.edu/research/research-overview/

https://doi.org/10.38124/ijisrt/25sep1019

- [19]. "Dental Stem Cells in Regenerative Dentistry: A Narrative Review of Therapeutic Strategies and Biomaterials." JCC Practice, https://jccpractice.com/article/dental-stem-cells-in-regenerative-dentistry-a-narrative-review-of-therapeutic-strategies-and-biomaterials-1042/
- [20]. Kołodziejska, Barbara et al. "Biologically Inspired Collagen/Apatite Composite Biomaterials for Potential Use in Bone Tissue Regeneration-A Review." Materials (Basel, Switzerland) vol. 13,7 1748. 9 Apr. 2020, doi:10.3390/ma13071748
- [21]. Yuan, Zhenglin et al. "Biomaterial selection for tooth regeneration." Tissue engineering. Part B, Reviews vol. 17,5 (2011): 373-88. doi:10.1089/ten.TEB.2011.0041
- [22]. "Ultimate Guide: Clinical Trials & Biomaterials in Dental Applications." Number Analytics, https://www.numberanalytics.com/blog/ultimate-guideclinical-trials-biomaterials-dental-applications
- [23]. Dong, Chanjuan, and Yonggang Lv. "Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives." Polymers vol. 8,2 42. 4 Feb. 2016, doi:10.3390/polym8020042
- [24]. Kotteda, Anil Kumar et al. "Advancements in Biodegradable Orthopaedic Implants: A Literature Review." Indian journal of orthopaedics vol. 59,8 1090-1100. 22 Jun. 2025, doi:10.1007/s43465-025-01445-y
- [25]. Rossi, Arianna et al. "Biomaterials for extrusion-based bioprinting and biomedical applications." Frontiers in bioengineering and biotechnology vol. 12 1393641. 21 Jun. 2024, doi:10.3389/fbioe.2024.1393641
- [26]. "The Future of Teledentistry in 2024: 3 Trends and Possibilities." The Teledentists, https://www.theteledentists.com/post/the-future-of-teledentistry-in-2024-3-trends-and-possibilities
- [27]. Omigbodun, Francis T, and Bankole I Oladapo. "AI-Optimized Lattice Structures for Biomechanics Scaffold Design." Biomimetics (Basel, Switzerland) vol. 10,2 88. 1 Feb. 2025, doi:10.3390/biomimetics10020088