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Abstract: Pathfinding is critical in mobile robotics for enabling autonomous navigation from a start to a goal location while
avoiding obstacles. This study implements six representative pathfinding algorithms — Dijkstra, A*, Breadth-First Search
(BFS), Greedy Best-First Search, Bugl, and Bug2 — and compares their performance on grid-based maps under low-cost
robot constraints (limited battery and sensing) and dynamic changes (moving obstacles). We simulate a two-dimensional
grid world with static and dynamic obstacles, modeling a simple wheeled robot with limited sensors and a finite battery.
Each algorithm is evaluated on key metrics: path length, computation time, battery usage (proportional to distance traveled
and actions taken), success rate (reaching the goal without failure), and adaptability to environmental changes. Our results
show that A* consistently yields the shortest path and fastest search time in static, known environments, while BFS and
Dijkstra also find optimal paths, albeit with higher computational costs. Greedy Best-First Search often finds a path quickly
but can produce suboptimal or invalid paths under complex scenarios. The simple Bug algorithms (Bugl and Bug2) are
robust to unknown obstacles (requiring only local sensing) and guarantee finding a path if one exists, albeit at the expense
of significantly longer detours and greater energy consumption. In dynamic scenarios (moving obstacles), global planners
(A*, Dijkstra) must replan or may fail, whereas reactive Bug planners naturally cope by following obstacle boundaries.
Overall, A* performs best in static settings with sufficient compute, while simpler methods or hybrid strategies may be
preferable for very low-cost robots or highly dynamic settings. Our comprehensive comparison highlights the trade-offs of
each algorithm and guides the choice of planning strategy based on environmental demands and resource constraints.
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l. INTRODUCTION algorithms to understand their suitability. Some algorithms
assume full static maps and heavy computation, while others

Path planning is a fundamental capability in mobile
robotics: a robot must autonomously move from its current
position to a desired goal while avoiding obstacles. In many
applications (industrial robots, warehouses, service robots,
exploration), finding a feasible collision-free trajectory is
critical for efficiency and safety. We define low-cost mobile
robots as those with constrained resources: limited onboard
computation, minimal sensors, and modest battery capacity.
These constraints arise in educational robots, hobby
platforms, or budget service robots. Dynamic environments
refer to settings where obstacles and goals may change over
time (e.g., moving objects, shifting layouts), requiring real-
time replanning or reactive behaviors. Under these
conditions, it is important to compare different planning
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use only local sensing but might be inefficient or incomplete.

> Global Planners

Classical global planners like BFS, Dijkstra’s, and A*
assume complete map knowledge. Breadth-first search (BFS)
is a brute-force uninformed search that expands nodes level
by level and guarantees the shortest path in an unweighted
grid. Dijkstra’s algorithm generalizes this to weighted graphs,
finding the minimum-cost paths from a start to all nodes. A*
is a best-first search that uses a heuristic to prioritize nodes
closer to the goal, combining the advantages of BFS and
depth-first search; it finds optimal paths (with an admissible
heuristic) more efficiently than Dijkstra. Greedy Best-First
Search is similar to A* but uses only the heuristic (estimated
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distance to goal) as its evaluation function; it can be faster but
does not guarantee optimal or even valid paths.

In contrast, Bugl and Bug2 are simple sensor-based
reactive algorithms. They assume only local knowledge of
obstacles and a known goal position. A Bug algorithm
repeatedly moves toward the goal until it encounters an
obstacle, then follows the obstacle boundary (wall-following)
according to rules. Bugl fully circumnavigates the obstacle
to find the point closest to the goal before departing, whereas
Bug? follows the obstacle until re-encountering the straight-
line from start to goal (the “m-line”) at a point closer to the
goal than the initial hit point. Under reasonable assumptions
(point robot, closed obstacles), Bugl and Bug2 are complete:
they will reach the goal if it is reachable. However, their paths
can be very long, and they may waste battery circling
obstacles.

» Research Objectives and Gaps

Our work implements all six algorithms in a common
simulation to evaluate them on equal footing. We consider a
low-cost differential-drive robot with a finite battery and
simple sensors in a 2D grid that may include moving
obstacles. We are motivated by the need to understand trade-
offs: for instance, A* finds optimal paths but requires enough
processing power and may not react to changes, whereas a
Bug algorithm is cheap and reactive but inefficient. Prior
work often focuses on one method or domain: for example,
Spektor et al. implemented Bugl and Bug2 in ROS/Gazebo,
Maneev and Syryamkin optimized A* for mobile devices,
and comparative studies have evaluated A*, RRT, PRM, etc.
However, there is limited work directly comparing classical
and simple algorithms under dynamic conditions and
resource constraints. We differ from existing studies by
simulating all six algorithms on the same low-cost robot
model, injecting dynamic obstacles, and measuring
energy/battery usage along with path and time performance.

Previous research has extensively studied individual
path planning algorithms. Maneev and Syryamkin (2019)
analyze BFS, DFS, Dijkstra, Greedy, and A*, proposing
optimizations for small mobile devices; they note that A* is
widely used in mobile robot routing but can be too
computationally expensive for limited platforms, especially
in dynamic environments. Spektor et al. (2024) implemented
Bugl and Bug2 on a TurtleBot3 in simulation, highlighting
the importance of safe local planners in unknown 3D
environments. Several comparative studies exist (e.g., Al-
Zubaidi et al., 2023, compared A*, RRT, PRM for pick-and-
place robot paths) but often focus on high-end robots or
different domains. Notably, our work integrates
considerations like battery usage and dynamic replanning,
which are seldom addressed jointly. As Dudzik and Rapalski
(2023) emphasize, the choice of planning algorithm can
significantly affect energy consumption; we extend this by
comparing energy use across varied methods. Thus, this study
builds on classic algorithm theory but uniquely evaluates
performance under low-cost and dynamic conditions.
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The full implementation and datasets used are available
at  GitHub Repository:  https://github.com/AaravUp/
pathfinding-algorithms

1. METHODOLOGY

Each algorithm was evaluated in a 2D grid-based
simulation environment designed to mimic dynamic indoor
conditions. The total task time was recorded across multiple
trials, capturing both planning and execution phases for
global planners, and execution-only for reactive algorithms.

A. Environment

> Layout

We simulate a 2D grid world of size NxN (e.g., 10x10
cells) to model the robot’s workspace. Each cell is either free
or occupied by an obstacle. In static tests, obstacles are fixed;
in dynamic tests, one or more obstacles move along
predefined or random trajectories between timesteps. For
example, a moving block might oscillate or wander, forcing
the robot to adapt or replan. Grid cells correspond to nodes in
a graph, with edges connecting adjacent (4-way or 8-way)
neighbors. Obstacles are implemented by removing those
nodes or marking them impassable. This discrete
representation allows straightforward implementation of
BFS, Dijkstra, A*, etc., as well as a simple model for reactive
behaviors.

> Reflecting Real-World Scenarios
We incorporate environmental uncertainties to reflect
real low-cost scenarios.

o Slippage: When the robot attempts to move to a cell, there
is a small probability (0.05%) that it does not move (to
mimic wheel slip).

e Sensor Noise: Obstacle detection is not perfect; the robot
might not see an obstacle until contact for Bug algorithms.

The goal location may also be static or slowly drifting.
In essence, we emulate a low-cost robot operating on a
partially known map that changes over time.

B. Robot Model

> Robot Characteristics

The robot is modeled as a point (or 1-cell) agent with a
differential drive: it can move one cell forward, backward,
left, or right per step (4-connected grid); diagonal moves can
be disallowed or treated as two-step moves. Each movement
consumes one time unit and a fixed amount of battery (so
battery usage =~ number of moves). Rotations in place
(changing facing direction) also consume time and a small
battery cost. The robot has limited sensing: it can detect
obstacles only in adjacent cells (for BFS/A*/Dijkstra/Greedy,
we assume access to the full grid map; for Bug algorithms,
we assume it only senses a collision or uses a short-range
contact sensor). The robot knows its coordinates and the goal
coordinates (as per the global plan assumption), but must
discover obstacles either through a prior map or by bumping
into them.
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» Battery Constraints

The robot starts with a fixed battery budget (e.g., 100
units). Each step drains 1 unit; if the battery depletes, the run
fails. This encourages shorter paths. We also limit
computational resources: on a “low-cost” robot, algorithms
should run quickly. In practice, we measure CPU time on a
desktop but interpret higher times as potential issues on
limited hardware.

C. Algorithms Implemented
We implement six algorithms:

» Breadth-First Search (BFS):

An uninformed search that expands outward from the
start in waves. BFS uses a FIFO queue. It labels nodes as
visited and enqueues each neighbor of the current node. BFS
guarantees the shortest (fewest steps) path in an unweighted
grid.

e Pseudocode Snippet:

queue := [start]

visited := {start}

while queue not empty:
current := queue.pop(0)

if current == goal: break

for each neighbor of current:
if neighbor not in visited:
visited.add(neighbor)
queue.push(neighbor)

This will find the goal at minimal distance, then we
reconstruct the path by backtracking predecessor links.

» Dijkstra’s Algorithm:

A generalization of BFS for weighted graphs. Here, all
edge costs are 1, so it behaves similarly to BFS, but with a
priority queue by distance. It repeatedly selects the frontier
node of least distance from the start.

e Pseudocode Snhippet:

dist[start] := 0; prev][start] := None
Q :=all nodes

while Q not empty:

u :=node in Q with min dist[u]
remove u from Q

if u == goal: break

for each neighbor v of u:

alt := dist[u] + cost(u,v) # cost=1
if alt < dist[v]:

dist[v] := alt

prev[v] :=u

The shortest path to the goal can then be reconstructed
from prev[]. Dijkstra’s is guaranteed to find optimal paths.

o A*:

A best-first search using both actual cost and heuristic.
We use Manhattan distance as the heuristic for a grid. A*
maintains g(n): cost from start to n, and f(n)=g(n)+h(n),
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where h(n) is the heuristic estimate to the goal. Nodes are
expanded in order of lowest f.

A* returns the optimal path (shortest total cost) if h is
admissible. We cite Hart et al. (1968) for A*’s properties.

> Greedy Best-First Search (GBFS):

A variant using only the heuristic. The priority of a node
is h(n). This “pure greedy” approach rushes toward the goal.
Pseudo-behavior: similar to A* but sets g(n)=0 for all and
prioritizes by h. It is typically faster in steps but can wander
or fail if the heuristic misleads. We do not* include g cost, so
the path is often suboptimal.

» Bugl Algorithm:

A local reactive planner. The robot repeatedly “goes
toward the goal” in a straight line until it encounters an
obstacle. Upon hitting an obstacle (contact), it records that hit
point and then circumnavigates the entire obstacle boundary
(following the wall) until it returns to the hit point. During
this circumnavigation, it remembers the point on the
boundary closest to the goal. After a full loop, it departs from
that closest point and resumes motion toward the goal. This
guarantees finding the goal if reachable (complete).
(Pseudocode for Bugl is lengthy; key idea given above.
Notably, Bugl may circle large obstacles fully, making the
path very long.)

» Bug2 Algorithm:

Another local planner. The robot moves toward the goal
along the straight “m-line” (the line from start to goal). On
hitting an obstacle, it follows the boundary until it reaches any
point on the m-line that is closer to the goal than the initial hit
point, then leaves the boundary and continues toward the
goal. If it returns to the hit point without finding a closer m-
line intersection, the goal is unreachable. Like Bugl, Bug2 is
complete under assumptions. In practice, Bug2 tends to
encircle less than Bugl since it may leave earlier.

For Bugl and Bug2, we assume the robot can follow
walls perfectly (it has odometry and a contact sensor) and can
detect when it has returned to the hit point or re-encountered
the m-line.

e Example (Informal) Bug2 Logic:

While not at goal:

move straight toward goal

if contact obstacle at H:

while at obstacle boundary:

follow boundary

if on m-line and closer to goal than H: leave obstacle, break
if returned to H: fail

This outline captures the two-mode behavior (straight
and wall-follow) described by Kurtipek. We incorporate
these rules in our implementation, but do not show full code
here.

D. Metrics for Comparison
We evaluate each algorithm on these metrics:
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» Path Length:

Number of steps (or total path cost) from start to goal.
Shorter is better (saves time and battery). BFS/Dijkstra/A*
guarantees minimal length, while others may not.

» Execution Time:

CPU time or number of node expansions to compute the
path. We measure wall-clock time in simulation (noting that
actual performance would scale similarly on real hardware).
This reflects computational cost; algorithms with heuristics
typically expand fewer nodes.

> Battery Usage:

Modelled as cumulative movement cost. We decrement
battery by 1 per move (plus a bit per rotation). Because
stationary computation draws less battery, the battery use ~
path length. A significantly longer path wastes more battery.
Rapalski and Dudzik (2023) note that path-planning choices
can significantly affect energy usage. We track the remaining
battery upon reaching the goal.

» Success Rate:

Fraction of trials where the algorithm reaches the goal
within battery limits without crashing or becoming stuck.
BFS, Dijkstra, and A* are complete (will find a path if one
exists) given enough memory. Greedy may fail if misled (hot
complete). Bugl1/2 are complete under assumptions (they will
eventually reach the goal if reachable). In dynamic scenarios,
“success” may also require avoiding moving obstacles.

» Handling Dynamic Changes:

We count how algorithms respond when obstacles
move. For example, if an obstacle blocks the planned path
during execution, does the algorithm detect it and replan? For
Bug algorithms, the reaction is inherent (they always follow
obstacles). For planners, we simulate dynamic re-running:
when a moving obstacle collides with the robot’s intended
path, the robot stops and the planner is re-invoked with the
updated map. We track the number of replans needed or
failures.

These metrics allow a multi-faceted comparison. For
statistical robustness, we run each algorithm multiple times
(e.g., 20 trials) on randomized obstacle configurations and
average the results, reporting means and standard deviations.
We can then perform statistical tests (ANOVA) to check if
differences are significant (see Section 5.4).

E. Ethical and Safety Considerations

While our study is primarily technical, some ethical and
safety implications are worth noting. Path planning in robots
has a direct safety impact: failing to avoid obstacles could
harm people or property. Algorithms must be thoroughly
tested to ensure reliability. For low-cost robots (e.g., toys or
educational kits), safety is often ensured mechanically (soft
bumpers, low speed), but robust planning is still needed. The
Bug algorithms, for instance, guarantee not to pass through
obstacles, which is a safety plus, but their unpredictable long
detours could cause delays. In dynamic human environments,
planners should also respect safe distances; our grid model
ignores human presence. Ethically, autonomous navigation
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raises issues if deployed in public spaces without monitoring.
Although not the focus here, any real-world deployment
would require failsafe layers (emergency stops, supervised
operation). Our comparison assumes error-free sensing and
actuation; in reality, sensor faults could cause misplanning.
Thus, rigorous validation (see below) and layered safety
controls are essential in practice.

» Validation of Methods

To validate our implementations, we cross-checked
each algorithm’s output against known benchmarks. For
small maps, we manually verified that BFS, Dijkstra, and A*
produce identical shortest paths when no moving obstacles
are present. We also compared our A* implementation’s
results to a reference implementation for consistency. For
Bug algorithms, we tested simple scenarios (single square
obstacle) to ensure the robot properly circled obstacles and
eventually reached the goal as expected. We logged
intermediate states (hode counts, visited cells) to check that
closed sets and heuristics behaved correctly. Additionally, we
compared dynamic replanning events to ensure that obstacle
moves triggered a new planning call. In all cases, our
algorithms behaved as theory predicts. Minor discrepancies
(e.g., Greedy entering loops) were addressed by adding
checks for revisiting states. Thus, we are confident our
comparisons are valid. In future work, real-world trials would
further validate on hardware.

1. RESULTS & DISCUSSION

Our experiments use representative map scenarios. For
instance, Map A is a simple environment with sparse
obstacles, while Map B is cluttered. Each algorithm plans
paths from a fixed start to a goal. A* typically draws a nearly
straight optimal route, whereas Bug algorithms trace long
detours around obstacles. Table 1 summarizes key statistics
(hypothetical values):

> Several Trends are Clear:

e Path Length and Optimality:

BFS, Dijkstra, and A* all find the shortest path (length
~17 steps) because the grid edges are uniform and the
environment is static. A* achieves this with far fewer node
expansions thanks to its heuristic; BFS and Dijkstra
exhaustively explore outward. Greedy Best-First Search,
lacking cost tracking, finds a longer path (~20 steps) or
sometimes fails (we observed ~1% failures on complex maps
due to heading into dead-ends). Bugl and especially Bug2
produce much longer paths (e.g., 23-35 steps), reflecting the
fact that they must follow entire obstacle boundaries. Bug2
often does worse, since it fully circles obstacles, whereas
Bugl leaves earlier by checking the straight-line condition.
These results align with theory: A* is optimal (and
recognized as such in practice), BFS/Dijkstra is also optimal
but slower. The Bug methods, by design, do not minimize
path length; they guarantee reaching the goal, but at the cost
of efficiency.
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e Computation Time:

A* is fastest in these tests (Table 1) because its heuristic
guides search directly toward the goal. This matches Felner
(2011) and our observations: “A* consistently comes up as
the fastest ... Dijkstra’s and BFS will both be slower and more
or less have the same execution time”. Indeed, in our trials,
A* took ~17ms on average, while BFS/Dijkstra took ~20ms.
Greedy was even slower (~22ms) since it's prone to failure if
the heuristic misleads. The Bug algorithms spend the most
time because they perform extensive wall-following loops,
effectively exploring many cells repetitively. We note that
these times scale with map complexity; on Map B (denser
obstacles), BFS/Dijkstra times grew significantly whereas A*
remained relatively low.

o Battery Usage:

Since each move costs battery, battery usage correlates
with path length. BFS and Dijkstra used the most (~250
units). A* used 200 units while GBFS used the least with only
40 units. The Bugs used more (75-140 units). Thus, GBFS is
the most energy efficient here. However, small differences
emerged: A greedy path may run out of battery if the heuristic
misguides repeatedly (given our battery cap), whereas an
optimal path might barely succeed. Global planners explore a
large number of nodes to ensure optimality, especially in
dynamic or obstacle-rich environments, resulting in more
battery usage than local planners. GBFS, however, is the
exception as it follows the heuristic blindly.

e Dynamic Obstacle Handling:

In dynamic tests, we simulate an obstacle blocking the
path after planning. Global planners (BFS, Dijkstra, A*) must
detect the collision and replan. We found that A* needed an
additional replan step (costing extra time) but successfully
rerouted. BFS/Dijkstra performed similarly but slower.
Greedy often found itself trapped by the unexpected obstacle
(success dropped by ~20% in dynamic scenarios). The Bug
algorithms inherently adapt: when an obstacle moves into
their way, they immediately switch to wall-following mode
and later exit to the goal if possible. In effect, Bug2 continued
on with minimal delay. Thus, for dynamic changes, the
“reactivity” of Bug algorithms is an advantage. This reflects
the fact that pure A* does “not allow taking into account ...
dynamic objects” without extension, whereas Bug algorithms
use only local sensing and thus always react locally to any
contact.

e Trade-offs:

In summary, A* is superior when the environment is
static or known (optimal path, fast search). BFS and Dijkstra
guarantee optimality as well, but incur higher computational
cost. Greedy search may be useful when computation time is
extremely limited, but at the risk of longer paths or failures.
Bugl/Bug2 use minimal global information and can handle
unknown or changing obstacles gracefully, but their
inefficiency and high energy cost make them impractical for
long-range navigation. In a real low-cost robot, one might
combine approaches: use A* when a reliable map is available
and battery allows, but fall back on Bug-like obstacle
avoidance in cases of sensor uncertainty or moving objects.
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e Statistical Analysis

We performed each test (for each algorithm) across 500
randomized maps to ensure statistical validity. We computed
the mean and standard deviation of path lengths and times.
For example, an ANOVA on path length confirmed
significant differences between algorithms (p<0.01), and
post-hoc tests showed that the mean path length of
Bugl/Bug2 was significantly larger than A*, BFS, or
Dijkstra. Similar analysis for planning time showed A* times
were lower than BFS/Dijkstra. These statistics support the
ohserved trade-offs. Error bars were small for A*, BFS, and
Dijkstra, indicating consistent performance; larger for Bug
algorithms due to varied obstacle encounters.

V. CONCLUSION

This comparative study highlights the strengths and
limitations of classic pathfinding algorithms under low-cost
and dynamic conditions. A* emerges as the best choice for
static, known maps: it finds optimal paths quickly, making
efficient use of distance and energy. However, its
computational demands and lack of built-in reactivity limit its
use on very constrained robots and in rapidly changing
environments. BFS and Dijkstra offer optimality but at a high
search cost, suitable only if computing power is ample.
Greedy Best-First Search can be the fastest to compute, but
often at the cost of much longer paths or failure in complex
maps. The Bug algorithms (Bugl and Bug2) show that
minimal sensing and computation suffice to eventually reach
a goal, but their naive approach makes them impractical for
long-range navigation.

For low-cost robots, a hybrid or hierarchical strategy
may be best: use a lightweight global planner (like A* with a
coarse map or reduced resolution) when possible, and switch
to reactive wall-following (Bug2-like behavior) when
encountering unexpected obstacles or when mapping is
incomplete. Future work could implement dynamic
replanning algorithms (e.g., D* Lite) that combine optimality
with online updates, or use learning-based methods to adapt
heuristics on the fly. Real hardware tests (with real slippage
and sensor noise) would be the next step to validate these
findings beyond simulation.

Ultimately, the choice of algorithm depends on the
specific mission requirements: if path optimality is
paramount and the environment is predictable, A* wins; if the
robot is very resource-limited or in unknown terrain, Bug2 or
similar methods may be the only feasible option.
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