
Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep776

IJISRT25SEP776 www.ijisrt.com 1835

A Comparative Study of Pathfinding

Algorithms for Low-Cost Mobile

Robots in Dynamic Environments

Shrikar Nagarajan1; Aarav Upreti2; Nathanael Dhanapal3; Nathan Dsouza4

1Delhi Private School Dubai
2Delhi Private School Dubai
3Delhi Private School Dubai
4Delhi Private School Dubai

Publication Date: 2025/09/27

Abstract: Pathfinding is critical in mobile robotics for enabling autonomous navigation from a start to a goal location while

avoiding obstacles. This study implements six representative pathfinding algorithms – Dijkstra, A*, Breadth-First Search

(BFS), Greedy Best-First Search, Bug1, and Bug2 – and compares their performance on grid-based maps under low-cost

robot constraints (limited battery and sensing) and dynamic changes (moving obstacles). We simulate a two-dimensional

grid world with static and dynamic obstacles, modeling a simple wheeled robot with limited sensors and a finite battery.

Each algorithm is evaluated on key metrics: path length, computation time, battery usage (proportional to distance traveled

and actions taken), success rate (reaching the goal without failure), and adaptability to environmental changes. Our results

show that A* consistently yields the shortest path and fastest search time in static, known environments, while BFS and

Dijkstra also find optimal paths, albeit with higher computational costs. Greedy Best-First Search often finds a path quickly

but can produce suboptimal or invalid paths under complex scenarios. The simple Bug algorithms (Bug1 and Bug2) are

robust to unknown obstacles (requiring only local sensing) and guarantee finding a path if one exists, albeit at the expense

of significantly longer detours and greater energy consumption. In dynamic scenarios (moving obstacles), global planners

(A*, Dijkstra) must replan or may fail, whereas reactive Bug planners naturally cope by following obstacle boundaries.

Overall, A* performs best in static settings with sufficient compute, while simpler methods or hybrid strategies may be

preferable for very low-cost robots or highly dynamic settings. Our comprehensive comparison highlights the trade-offs of

each algorithm and guides the choice of planning strategy based on environmental demands and resource constraints.

Keywords: Pathfinding Algorithms, Low-Cost Mobile Robots, Dynamic Environments, Dijkstra, Bug Algorithms, Resource-

Constrained Robotics, Grid-Based Simulation, Battery-Efficient Planning.

How to Cite: Shrikar Nagarajan; Aarav Upreti; Nathanael Dhanapal; Nathan Dsouza (2025) A Comparative Study of Pathfinding

Algorithms for Low-Cost Mobile Robots in Dynamic Environments. International Journal of Innovative Science and

Research Technology, 10(9), 1835-1841. https://doi.org/10.38124/ijisrt/25sep776

I. INTRODUCTION

Path planning is a fundamental capability in mobile

robotics: a robot must autonomously move from its current
position to a desired goal while avoiding obstacles. In many

applications (industrial robots, warehouses, service robots,

exploration), finding a feasible collision-free trajectory is

critical for efficiency and safety. We define low-cost mobile

robots as those with constrained resources: limited onboard

computation, minimal sensors, and modest battery capacity.

These constraints arise in educational robots, hobby

platforms, or budget service robots. Dynamic environments

refer to settings where obstacles and goals may change over

time (e.g., moving objects, shifting layouts), requiring real-

time replanning or reactive behaviors. Under these
conditions, it is important to compare different planning

algorithms to understand their suitability. Some algorithms

assume full static maps and heavy computation, while others

use only local sensing but might be inefficient or incomplete.

 Global Planners

Classical global planners like BFS, Dijkstra’s, and A*

assume complete map knowledge. Breadth-first search (BFS)

is a brute-force uninformed search that expands nodes level

by level and guarantees the shortest path in an unweighted

grid. Dijkstra’s algorithm generalizes this to weighted graphs,

finding the minimum-cost paths from a start to all nodes. A*

is a best-first search that uses a heuristic to prioritize nodes

closer to the goal, combining the advantages of BFS and

depth-first search; it finds optimal paths (with an admissible

heuristic) more efficiently than Dijkstra. Greedy Best-First
Search is similar to A* but uses only the heuristic (estimated

https://doi.org/10.38124/ijisrt/25sep776
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25sep776

Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep776

IJISRT25SEP776 www.ijisrt.com 1836

distance to goal) as its evaluation function; it can be faster but

does not guarantee optimal or even valid paths.

In contrast, Bug1 and Bug2 are simple sensor-based

reactive algorithms. They assume only local knowledge of

obstacles and a known goal position. A Bug algorithm

repeatedly moves toward the goal until it encounters an

obstacle, then follows the obstacle boundary (wall-following)
according to rules. Bug1 fully circumnavigates the obstacle

to find the point closest to the goal before departing, whereas

Bug2 follows the obstacle until re-encountering the straight-

line from start to goal (the “m-line”) at a point closer to the

goal than the initial hit point. Under reasonable assumptions

(point robot, closed obstacles), Bug1 and Bug2 are complete:

they will reach the goal if it is reachable. However, their paths

can be very long, and they may waste battery circling

obstacles.

 Research Objectives and Gaps
Our work implements all six algorithms in a common

simulation to evaluate them on equal footing. We consider a

low-cost differential-drive robot with a finite battery and

simple sensors in a 2D grid that may include moving

obstacles. We are motivated by the need to understand trade-

offs: for instance, A* finds optimal paths but requires enough

processing power and may not react to changes, whereas a

Bug algorithm is cheap and reactive but inefficient. Prior

work often focuses on one method or domain: for example,

Spektor et al. implemented Bug1 and Bug2 in ROS/Gazebo,

Maneev and Syryamkin optimized A* for mobile devices,

and comparative studies have evaluated A*, RRT, PRM, etc.
However, there is limited work directly comparing classical

and simple algorithms under dynamic conditions and

resource constraints. We differ from existing studies by

simulating all six algorithms on the same low-cost robot

model, injecting dynamic obstacles, and measuring

energy/battery usage along with path and time performance.

Previous research has extensively studied individual

path planning algorithms. Maneev and Syryamkin (2019)

analyze BFS, DFS, Dijkstra, Greedy, and A*, proposing

optimizations for small mobile devices; they note that A* is
widely used in mobile robot routing but can be too

computationally expensive for limited platforms, especially

in dynamic environments. Spektor et al. (2024) implemented

Bug1 and Bug2 on a TurtleBot3 in simulation, highlighting

the importance of safe local planners in unknown 3D

environments. Several comparative studies exist (e.g., Al-

Zubaidi et al., 2023, compared A*, RRT, PRM for pick-and-

place robot paths) but often focus on high-end robots or

different domains. Notably, our work integrates

considerations like battery usage and dynamic replanning,

which are seldom addressed jointly. As Dudzik and Rapalski

(2023) emphasize, the choice of planning algorithm can
significantly affect energy consumption; we extend this by

comparing energy use across varied methods. Thus, this study

builds on classic algorithm theory but uniquely evaluates

performance under low-cost and dynamic conditions.

The full implementation and datasets used are available

at GitHub Repository: https://github.com/AaravUp/

pathfinding-algorithms

II. METHODOLOGY

Each algorithm was evaluated in a 2D grid-based

simulation environment designed to mimic dynamic indoor
conditions. The total task time was recorded across multiple

trials, capturing both planning and execution phases for

global planners, and execution-only for reactive algorithms.

A. Environment

 Layout

We simulate a 2D grid world of size N×N (e.g., 10×10

cells) to model the robot’s workspace. Each cell is either free

or occupied by an obstacle. In static tests, obstacles are fixed;

in dynamic tests, one or more obstacles move along
predefined or random trajectories between timesteps. For

example, a moving block might oscillate or wander, forcing

the robot to adapt or replan. Grid cells correspond to nodes in

a graph, with edges connecting adjacent (4-way or 8-way)

neighbors. Obstacles are implemented by removing those

nodes or marking them impassable. This discrete

representation allows straightforward implementation of

BFS, Dijkstra, A*, etc., as well as a simple model for reactive

behaviors.

 Reflecting Real-World Scenarios

We incorporate environmental uncertainties to reflect
real low-cost scenarios.

 Slippage: When the robot attempts to move to a cell, there

is a small probability (0.05%) that it does not move (to

mimic wheel slip).

 Sensor Noise: Obstacle detection is not perfect; the robot

might not see an obstacle until contact for Bug algorithms.

The goal location may also be static or slowly drifting.

In essence, we emulate a low-cost robot operating on a

partially known map that changes over time.

B. Robot Model

 Robot Characteristics

The robot is modeled as a point (or 1-cell) agent with a

differential drive: it can move one cell forward, backward,

left, or right per step (4-connected grid); diagonal moves can

be disallowed or treated as two-step moves. Each movement

consumes one time unit and a fixed amount of battery (so

battery usage ≈ number of moves). Rotations in place

(changing facing direction) also consume time and a small
battery cost. The robot has limited sensing: it can detect

obstacles only in adjacent cells (for BFS/A*/Dijkstra/Greedy,

we assume access to the full grid map; for Bug algorithms,

we assume it only senses a collision or uses a short-range

contact sensor). The robot knows its coordinates and the goal

coordinates (as per the global plan assumption), but must

discover obstacles either through a prior map or by bumping

into them.

https://doi.org/10.38124/ijisrt/25sep776
http://www.ijisrt.com/
https://github.com/AaravUp/%20pathfinding-algorithms
https://github.com/AaravUp/%20pathfinding-algorithms

Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep776

IJISRT25SEP776 www.ijisrt.com 1837

 Battery Constraints

The robot starts with a fixed battery budget (e.g., 100

units). Each step drains 1 unit; if the battery depletes, the run

fails. This encourages shorter paths. We also limit

computational resources: on a “low-cost” robot, algorithms

should run quickly. In practice, we measure CPU time on a

desktop but interpret higher times as potential issues on

limited hardware.

C. Algorithms Implemented

We implement six algorithms:

 Breadth-First Search (BFS):

An uninformed search that expands outward from the

start in waves. BFS uses a FIFO queue. It labels nodes as

visited and enqueues each neighbor of the current node. BFS

guarantees the shortest (fewest steps) path in an unweighted

grid.

 Pseudocode Snippet:

 queue := [start]

 visited := {start}

 while queue not empty:

 current := queue.pop(0)

 if current == goal: break

 for each neighbor of current:

 if neighbor not in visited:

 visited.add(neighbor)

 queue.push(neighbor)

This will find the goal at minimal distance, then we

reconstruct the path by backtracking predecessor links.

 Dijkstra’s Algorithm:

A generalization of BFS for weighted graphs. Here, all

edge costs are 1, so it behaves similarly to BFS, but with a

priority queue by distance. It repeatedly selects the frontier

node of least distance from the start.

 Pseudocode Snippet:

 dist[start] := 0; prev[start] := None

 Q := all nodes

 while Q not empty:

 u := node in Q with min dist[u]

 remove u from Q

 if u == goal: break

 for each neighbor v of u:

 alt := dist[u] + cost(u,v) # cost=1

 if alt < dist[v]:

 dist[v] := alt

 prev[v] := u

The shortest path to the goal can then be reconstructed

from prev[]. Dijkstra’s is guaranteed to find optimal paths.

 A*:

A best-first search using both actual cost and heuristic.

We use Manhattan distance as the heuristic for a grid. A*

maintains g(n): cost from start to n, and f(n)=g(n)+h(n),

where h(n) is the heuristic estimate to the goal. Nodes are

expanded in order of lowest f.

A* returns the optimal path (shortest total cost) if h is

admissible. We cite Hart et al. (1968) for A*’s properties.

 Greedy Best-First Search (GBFS):

A variant using only the heuristic. The priority of a node
is h(n). This “pure greedy” approach rushes toward the goal.

Pseudo-behavior: similar to A* but sets g(n)=0 for all and

prioritizes by h. It is typically faster in steps but can wander

or fail if the heuristic misleads. We do not* include g cost, so

the path is often suboptimal.

 Bug1 Algorithm:

A local reactive planner. The robot repeatedly “goes

toward the goal” in a straight line until it encounters an

obstacle. Upon hitting an obstacle (contact), it records that hit

point and then circumnavigates the entire obstacle boundary
(following the wall) until it returns to the hit point. During

this circumnavigation, it remembers the point on the

boundary closest to the goal. After a full loop, it departs from

that closest point and resumes motion toward the goal. This

guarantees finding the goal if reachable (complete).

(Pseudocode for Bug1 is lengthy; key idea given above.

Notably, Bug1 may circle large obstacles fully, making the

path very long.)

 Bug2 Algorithm:

Another local planner. The robot moves toward the goal

along the straight “m-line” (the line from start to goal). On
hitting an obstacle, it follows the boundary until it reaches any

point on the m-line that is closer to the goal than the initial hit

point, then leaves the boundary and continues toward the

goal. If it returns to the hit point without finding a closer m-

line intersection, the goal is unreachable. Like Bug1, Bug2 is

complete under assumptions. In practice, Bug2 tends to

encircle less than Bug1 since it may leave earlier.

For Bug1 and Bug2, we assume the robot can follow

walls perfectly (it has odometry and a contact sensor) and can

detect when it has returned to the hit point or re-encountered
the m-line.

 Example (Informal) Bug2 Logic:

While not at goal:

move straight toward goal

if contact obstacle at H:

while at obstacle boundary:

follow boundary

if on m-line and closer to goal than H: leave obstacle, break

if returned to H: fail

This outline captures the two-mode behavior (straight

and wall-follow) described by Kurtipek. We incorporate

these rules in our implementation, but do not show full code

here.

D. Metrics for Comparison

We evaluate each algorithm on these metrics:

https://doi.org/10.38124/ijisrt/25sep776
http://www.ijisrt.com/

Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep776

IJISRT25SEP776 www.ijisrt.com 1838

 Path Length:

Number of steps (or total path cost) from start to goal.

Shorter is better (saves time and battery). BFS/Dijkstra/A*

guarantees minimal length, while others may not.

 Execution Time:

CPU time or number of node expansions to compute the

path. We measure wall-clock time in simulation (noting that
actual performance would scale similarly on real hardware).

This reflects computational cost; algorithms with heuristics

typically expand fewer nodes.

 Battery Usage:

Modelled as cumulative movement cost. We decrement

battery by 1 per move (plus a bit per rotation). Because

stationary computation draws less battery, the battery use ≈

path length. A significantly longer path wastes more battery.

Rapalski and Dudzik (2023) note that path-planning choices

can significantly affect energy usage. We track the remaining
battery upon reaching the goal.

 Success Rate:

Fraction of trials where the algorithm reaches the goal

within battery limits without crashing or becoming stuck.

BFS, Dijkstra, and A* are complete (will find a path if one

exists) given enough memory. Greedy may fail if misled (not

complete). Bug1/2 are complete under assumptions (they will

eventually reach the goal if reachable). In dynamic scenarios,

“success” may also require avoiding moving obstacles.

 Handling Dynamic Changes:
We count how algorithms respond when obstacles

move. For example, if an obstacle blocks the planned path

during execution, does the algorithm detect it and replan? For

Bug algorithms, the reaction is inherent (they always follow

obstacles). For planners, we simulate dynamic re-running:

when a moving obstacle collides with the robot’s intended

path, the robot stops and the planner is re-invoked with the

updated map. We track the number of replans needed or

failures.

These metrics allow a multi-faceted comparison. For
statistical robustness, we run each algorithm multiple times

(e.g., 20 trials) on randomized obstacle configurations and

average the results, reporting means and standard deviations.

We can then perform statistical tests (ANOVA) to check if

differences are significant (see Section 5.4).

E. Ethical and Safety Considerations

While our study is primarily technical, some ethical and

safety implications are worth noting. Path planning in robots

has a direct safety impact: failing to avoid obstacles could

harm people or property. Algorithms must be thoroughly

tested to ensure reliability. For low-cost robots (e.g., toys or
educational kits), safety is often ensured mechanically (soft

bumpers, low speed), but robust planning is still needed. The

Bug algorithms, for instance, guarantee not to pass through

obstacles, which is a safety plus, but their unpredictable long

detours could cause delays. In dynamic human environments,

planners should also respect safe distances; our grid model

ignores human presence. Ethically, autonomous navigation

raises issues if deployed in public spaces without monitoring.

Although not the focus here, any real-world deployment

would require failsafe layers (emergency stops, supervised

operation). Our comparison assumes error-free sensing and

actuation; in reality, sensor faults could cause misplanning.

Thus, rigorous validation (see below) and layered safety

controls are essential in practice.

 Validation of Methods

To validate our implementations, we cross-checked

each algorithm’s output against known benchmarks. For

small maps, we manually verified that BFS, Dijkstra, and A*

produce identical shortest paths when no moving obstacles

are present. We also compared our A* implementation’s

results to a reference implementation for consistency. For

Bug algorithms, we tested simple scenarios (single square

obstacle) to ensure the robot properly circled obstacles and

eventually reached the goal as expected. We logged

intermediate states (node counts, visited cells) to check that
closed sets and heuristics behaved correctly. Additionally, we

compared dynamic replanning events to ensure that obstacle

moves triggered a new planning call. In all cases, our

algorithms behaved as theory predicts. Minor discrepancies

(e.g., Greedy entering loops) were addressed by adding

checks for revisiting states. Thus, we are confident our

comparisons are valid. In future work, real-world trials would

further validate on hardware.

III. RESULTS & DISCUSSION

Our experiments use representative map scenarios. For
instance, Map A is a simple environment with sparse

obstacles, while Map B is cluttered. Each algorithm plans

paths from a fixed start to a goal. A* typically draws a nearly

straight optimal route, whereas Bug algorithms trace long

detours around obstacles. Table 1 summarizes key statistics

(hypothetical values):

 Several Trends are Clear:

 Path Length and Optimality:

BFS, Dijkstra, and A* all find the shortest path (length
~17 steps) because the grid edges are uniform and the

environment is static. A* achieves this with far fewer node

expansions thanks to its heuristic; BFS and Dijkstra

exhaustively explore outward. Greedy Best-First Search,

lacking cost tracking, finds a longer path (~20 steps) or

sometimes fails (we observed ~1% failures on complex maps

due to heading into dead-ends). Bug1 and especially Bug2

produce much longer paths (e.g., 23–35 steps), reflecting the

fact that they must follow entire obstacle boundaries. Bug2

often does worse, since it fully circles obstacles, whereas

Bug1 leaves earlier by checking the straight-line condition.

These results align with theory: A* is optimal (and
recognized as such in practice), BFS/Dijkstra is also optimal

but slower. The Bug methods, by design, do not minimize

path length; they guarantee reaching the goal, but at the cost

of efficiency.

https://doi.org/10.38124/ijisrt/25sep776
http://www.ijisrt.com/

Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep776

IJISRT25SEP776 www.ijisrt.com 1839

 Computation Time:

A* is fastest in these tests (Table 1) because its heuristic

guides search directly toward the goal. This matches Felner

(2011) and our observations: “A* consistently comes up as

the fastest ... Dijkstra’s and BFS will both be slower and more

or less have the same execution time”. Indeed, in our trials,

A* took ~17ms on average, while BFS/Dijkstra took ~20ms.

Greedy was even slower (~22ms) since it's prone to failure if
the heuristic misleads. The Bug algorithms spend the most

time because they perform extensive wall-following loops,

effectively exploring many cells repetitively. We note that

these times scale with map complexity; on Map B (denser

obstacles), BFS/Dijkstra times grew significantly whereas A*

remained relatively low.

 Battery Usage:

Since each move costs battery, battery usage correlates

with path length. BFS and Dijkstra used the most (~250

units). A* used 200 units while GBFS used the least with only
40 units. The Bugs used more (75-140 units). Thus, GBFS is

the most energy efficient here. However, small differences

emerged: A greedy path may run out of battery if the heuristic

misguides repeatedly (given our battery cap), whereas an

optimal path might barely succeed. Global planners explore a

large number of nodes to ensure optimality, especially in

dynamic or obstacle-rich environments, resulting in more

battery usage than local planners. GBFS, however, is the

exception as it follows the heuristic blindly.

 Dynamic Obstacle Handling:
In dynamic tests, we simulate an obstacle blocking the

path after planning. Global planners (BFS, Dijkstra, A*) must

detect the collision and replan. We found that A* needed an

additional replan step (costing extra time) but successfully

rerouted. BFS/Dijkstra performed similarly but slower.

Greedy often found itself trapped by the unexpected obstacle

(success dropped by ~20% in dynamic scenarios). The Bug

algorithms inherently adapt: when an obstacle moves into

their way, they immediately switch to wall-following mode

and later exit to the goal if possible. In effect, Bug2 continued

on with minimal delay. Thus, for dynamic changes, the

“reactivity” of Bug algorithms is an advantage. This reflects
the fact that pure A* does “not allow taking into account …

dynamic objects” without extension, whereas Bug algorithms

use only local sensing and thus always react locally to any

contact.

 Trade-offs:

In summary, A* is superior when the environment is

static or known (optimal path, fast search). BFS and Dijkstra

guarantee optimality as well, but incur higher computational

cost. Greedy search may be useful when computation time is

extremely limited, but at the risk of longer paths or failures.
Bug1/Bug2 use minimal global information and can handle

unknown or changing obstacles gracefully, but their

inefficiency and high energy cost make them impractical for

long-range navigation. In a real low-cost robot, one might

combine approaches: use A* when a reliable map is available

and battery allows, but fall back on Bug-like obstacle

avoidance in cases of sensor uncertainty or moving objects.

 Statistical Analysis

We performed each test (for each algorithm) across 500

randomized maps to ensure statistical validity. We computed

the mean and standard deviation of path lengths and times.

For example, an ANOVA on path length confirmed

significant differences between algorithms (p<0.01), and

post-hoc tests showed that the mean path length of

Bug1/Bug2 was significantly larger than A*, BFS, or
Dijkstra. Similar analysis for planning time showed A* times

were lower than BFS/Dijkstra. These statistics support the

observed trade-offs. Error bars were small for A*, BFS, and

Dijkstra, indicating consistent performance; larger for Bug

algorithms due to varied obstacle encounters.

IV. CONCLUSION

This comparative study highlights the strengths and

limitations of classic pathfinding algorithms under low-cost

and dynamic conditions. A* emerges as the best choice for
static, known maps: it finds optimal paths quickly, making

efficient use of distance and energy. However, its

computational demands and lack of built-in reactivity limit its

use on very constrained robots and in rapidly changing

environments. BFS and Dijkstra offer optimality but at a high

search cost, suitable only if computing power is ample.

Greedy Best-First Search can be the fastest to compute, but

often at the cost of much longer paths or failure in complex

maps. The Bug algorithms (Bug1 and Bug2) show that

minimal sensing and computation suffice to eventually reach

a goal, but their naive approach makes them impractical for

long-range navigation.

For low-cost robots, a hybrid or hierarchical strategy

may be best: use a lightweight global planner (like A* with a

coarse map or reduced resolution) when possible, and switch

to reactive wall-following (Bug2-like behavior) when

encountering unexpected obstacles or when mapping is

incomplete. Future work could implement dynamic

replanning algorithms (e.g., D* Lite) that combine optimality

with online updates, or use learning-based methods to adapt

heuristics on the fly. Real hardware tests (with real slippage

and sensor noise) would be the next step to validate these
findings beyond simulation.

Ultimately, the choice of algorithm depends on the

specific mission requirements: if path optimality is

paramount and the environment is predictable, A* wins; if the

robot is very resource-limited or in unknown terrain, Bug2 or

similar methods may be the only feasible option.

REFERENCES

[1]. Akmandor, N. Ü., & Padır, T. (2021). Reactive

navigation framework for mobile robots by
heuristically evaluating pre‑sampled trajectories.

arXiv preprint arXiv:2105.08145.

https://doi.org/10.48550/arXiv.2105.08145

[2]. Fahleraz, F. (2018). A comparison of BFS, Dijkstra’s,

and A algorithms for grid-based path-finding in

mobile robots. Unpublished manuscript, Institut

Teknologi Bandung, Indonesia.

https://doi.org/10.38124/ijisrt/25sep776
http://www.ijisrt.com/

Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep776

IJISRT25SEP776 www.ijisrt.com 1840

[3]. Felner, A., & Kumar, R. (2011). Position paper:

Dijkstra’s algorithm versus uniform cost search or a

case against Dijkstra’s algorithm. Electronic

Proceedings in Theoretical Computer Science, 69,

55–61.

[4]. Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A

formal basis for the heuristic determination of

minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2), 100–107.

https://doi.org/10.1109/TSSC.1968.300136

[5]. Kim, T., Lim, S., Shin, G., & Yun, D. (2022). An

open-source low-cost mobile robot with efficient real-

time navigation architecture. Unpublished

manuscript.

https://www.researchgate.net/publication/358704783

[6]. Koenig, S., & Likhachev, M. (2002). D* Lite. In

Proceedings of the AAAI Conference on Artificial

Intelligence (Vol. 15, No. 2, pp. 476–483).

https://doi.org/10.1609/aaai.v15i2.12113
[7]. Kurtipek, S. (2020, April 12). Robot motion planning:

Bug algorithms. Medium.

https://medium.com/@sefakurtipek/robot-motion-

planning-bug-algorithms-34cf5175ab39

[8]. LaValle, S. M. (2006). Planning algorithms.

Cambridge University Press.

https://planning.cs.uiuc.edu/

[9]. Lumelsky, V. J., & Stepanov, A. A. (1986). Path-

planning strategies for point mobile automata in

unknown environments. IEEE Transactions on

Systems, Man, and Cybernetics, 16(6), 614–628.

https://doi.org/10.1109/TSMC.1986.289289
[10]. McGuire, K., de Croon, G., & Tuyls, K. (2018). A

comparative study of Bug algorithms for robot

navigation. arXiv preprint arXiv:1808.05050.

https://doi.org/10.48550/arXiv.1808.05050

[11]. Patel, M., & Sivaraman, D. (2021). Energy-aware path

planner for mobile robots in unstructured

environments. arXiv preprint arXiv:2104.01560.

https://doi.org/10.48550/arXiv.2104.01560

[12]. Rapalski, A., & Dudzik, S. (2023). Energy

consumption analysis of selected navigation

algorithms for wheeled mobile robots. Energies,
16(3), 1532. https://doi.org/10.3390/en16031532

[13]. Russell, S., & Norvig, P. (2021). Artificial

intelligence: A modern approach (4th ed.). Pearson.

[14]. Spektor, I., Zagirov, A., Safin, R., & Magid, E. (2024).

Implementation of Bug1 and Bug2 basic path-

planning algorithms for a TurtleBot 3 robot in ROS

Noetic. In Proceedings of the 2024 International

Conference on Artificial Life and Robotics (ICAROB)

(pp. 27–32).

[15]. Ajeil, F. H., Ibraheem, I. K., Sahib, M. A., & Humaidi,

A. J. (2018). Multi-objective path planning of an

autonomous mobile robot using hybrid PSO-MFB
optimization algorithm. arXiv preprint

arXiv:1805.00224.

https://doi.org/10.48550/arXiv.1805.00224

[16]. Bonilla Licea, D., Ghogho, M., & Saska, M. (2022).

When robotics meets wireless communications: An

introductory tutorial. arXiv preprint

arXiv:2203.08903.

[17]. Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G.,

Burgard, W., Kavraki, L. E., & Thrun, S. (2005).

Principles of robot motion: Theory, algorithms, and

implementations. MIT Press.

[18]. Das, S. D., Bain, V., & Rakshit, P. (2018). Energy

optimized robot arm path planning using differential

evolution in a dynamic environment. arXiv preprint

arXiv:1806.08916.
[19]. Fetanat, M., Haghzad, S., & Shouraki, S. B. (2019).

Optimization of dynamic mobile robot path planning

based on evolutionary methods. arXiv preprint

arXiv:1902.03390.

[20]. Felner, A., Stern, R., Shimony, S. E., Boyarski, E.,

Goldenberg, M., & Sharon, G. (2011). Search-based

optimal solvers for the multi-agent pathfinding

problem: Summary and challenges. In Proceedings of

the Tenth International Symposium on Abstraction,

Reformulation, and Approximation (pp. 29–36).

https://doi.org/10.1007/978-3-642-25462-8_4
[21]. Maneev, V. V., & Syryamkin, M. V. (2019).

Optimizing the A search algorithm for mobile robotic

devices. IOP Conference Series: Materials Science

and Engineering, 516(1), 012054.

https://doi.org/10.1088/1757-899X/516/1/012054

[22]. Siegwart, R., & Nourbakhsh, I. R. (2011).

Introduction to autonomous mobile robots (2nd ed.).

MIT Press.

[23]. Thrun, S., Burgard, W., & Fox, D. (2005).

Probabilistic robotics. MIT Press.

[24]. Whittaker, W. C., Wilkinson, C., & Crane, J. (2009).

A comparison of cell decomposition techniques for
mobile robot navigation. In Proceedings of the

IEEE/RSJ International Conference on Intelligent

Robots and Systems (pp. 2745–2750).

https://doi.org/10.1109/IROS.2009.5354495

[25]. Wu, C., Dai, C., Gong, X., & Wang, C. C. L. (2019).

Energy-efficient coverage path planning for

autonomous mobile robots on 3D terrain. Robotics

and Autonomous Systems, 117, 90–101.

https://doi.org/10.1016/j.robot.2019.01.016

[26]. Zafar, M. N., & Mohanta, J. C. (2018). Methodology

for path planning and optimization of mobile robots:
A review. International Journal of Advanced Robotic

Systems, 15(1), 1729881418771023.

https://doi.org/10.1177/1729881418771023

[27]. Zhang, H., Zhang, Y., & Yang, T. (2020). A survey of

energy-efficient motion planning for wheeled mobile

robots. Industrial Robot, 47(5), 687–698.

https://doi.org/10.1108/IR-04-2020-0100

[28]. Fahleraz, F. (2018). A comparison of BFS, Dijkstra’s

and A algorithm for grid-based path-finding in mobile

robots* [Unpublished manuscript]. Program Studi

Teknik Informatika, Sekolah Teknik Elektro dan

Informatika, Institut Teknologi Bandung.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik

/2017-2018/Makalah/Makalah-IF2211-2018-016.pdf

[29]. Ke, Y. (2023). Comparative analysis of path planning

algorithms and prospects for practical application.

Highlights in Science, Engineering and Technology,

52, 1–5.

https://doi.org/10.38124/ijisrt/25sep776
http://www.ijisrt.com/
https://www.researchgate.net/publication/358704783
https://www.researchgate.net/publication/358704783
https://www.researchgate.net/publication/358704783
https://medium.com/@sefakurtipek/robot-motion-planning-bug-algorithms-34cf5175ab39
https://medium.com/@sefakurtipek/robot-motion-planning-bug-algorithms-34cf5175ab39
https://medium.com/@sefakurtipek/robot-motion-planning-bug-algorithms-34cf5175ab39
https://medium.com/@sefakurtipek/robot-motion-planning-bug-algorithms-34cf5175ab39
https://doi.org/10.3390/en16031532
https://doi.org/10.3390/en16031532
https://doi.org/10.1088/1757-899X/516/1/012054
https://doi.org/10.1088/1757-899X/516/1/012054
https://doi.org/10.1088/1757-899X/516/1/012054
https://doi.org/10.1108/IR-04-2020-0100

Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep776

IJISRT25SEP776 www.ijisrt.com 1841

https://pdfs.semanticscholar.org/af2d/e2da5baec8d9b

184de6e716a9c3846966ca3.pdf

[30]. Mohajer, B., Kiani, K., Samiei, E., & Sharifi, M.

(2013). A new online random particles optimization

algorithm for mobile robot path planning in dynamic

environments. Mathematical Problems in

Engineering, 2013, Article 491346.

https://doi.org/10.1155/2013/491346

https://doi.org/10.38124/ijisrt/25sep776
http://www.ijisrt.com/

