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Abstract: Pathfinding is critical in mobile robotics for enabling autonomous navigation from a start to a goal location while 

avoiding obstacles. This study implements six representative pathfinding algorithms – Dijkstra, A*, Breadth-First Search 

(BFS), Greedy Best-First Search, Bug1, and Bug2 – and compares their performance on grid-based maps under low-cost 

robot constraints (limited battery and sensing) and dynamic changes (moving obstacles). We simulate a two-dimensional 

grid world with static and dynamic obstacles, modeling a simple wheeled robot with limited sensors and a finite battery. 

Each algorithm is evaluated on key metrics: path length, computation time, battery usage (proportional to distance traveled 

and actions taken), success rate (reaching the goal without failure), and adaptability to environmental changes. Our results 

show that A* consistently yields the shortest path and fastest search time in static, known environments, while BFS and 

Dijkstra also find optimal paths, albeit with higher computational costs. Greedy Best-First Search often finds a path quickly 

but can produce suboptimal or invalid paths under complex scenarios. The simple Bug algorithms (Bug1 and Bug2) are 

robust to unknown obstacles (requiring only local sensing) and guarantee finding a path if one exists, albeit at the expense 

of significantly longer detours and greater energy consumption. In dynamic scenarios (moving obstacles), global planners 

(A*, Dijkstra) must replan or may fail, whereas reactive Bug planners naturally cope by following obstacle boundaries. 

Overall, A* performs best in static settings with sufficient compute, while simpler methods or hybrid strategies may be 

preferable for very low-cost robots or highly dynamic settings. Our comprehensive comparison highlights the trade-offs of 

each algorithm and guides the choice of planning strategy based on environmental demands and resource constraints. 
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I. INTRODUCTION 

 

Path planning is a fundamental capability in mobile 

robotics: a robot must autonomously move from its current 
position to a desired goal while avoiding obstacles. In many 

applications (industrial robots, warehouses, service robots, 

exploration), finding a feasible collision-free trajectory is 

critical for efficiency and safety. We define low-cost mobile 

robots as those with constrained resources: limited onboard 

computation, minimal sensors, and modest battery capacity. 

These constraints arise in educational robots, hobby 

platforms, or budget service robots. Dynamic environments 

refer to settings where obstacles and goals may change over 

time (e.g., moving objects, shifting layouts), requiring real-

time replanning or reactive behaviors. Under these 
conditions, it is important to compare different planning 

algorithms to understand their suitability. Some algorithms 

assume full static maps and heavy computation, while others 

use only local sensing but might be inefficient or incomplete. 

 
 Global Planners 

Classical global planners like BFS, Dijkstra’s, and A* 

assume complete map knowledge. Breadth-first search (BFS) 

is a brute-force uninformed search that expands nodes level 

by level and guarantees the shortest path in an unweighted 

grid. Dijkstra’s algorithm generalizes this to weighted graphs, 

finding the minimum-cost paths from a start to all nodes. A* 

is a best-first search that uses a heuristic to prioritize nodes 

closer to the goal, combining the advantages of BFS and 

depth-first search; it finds optimal paths (with an admissible 

heuristic) more efficiently than Dijkstra. Greedy Best-First 
Search is similar to A* but uses only the heuristic (estimated 
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distance to goal) as its evaluation function; it can be faster but 

does not guarantee optimal or even valid paths. 

 

In contrast, Bug1 and Bug2 are simple sensor-based 

reactive algorithms. They assume only local knowledge of 

obstacles and a known goal position. A Bug algorithm 

repeatedly moves toward the goal until it encounters an 

obstacle, then follows the obstacle boundary (wall-following) 
according to rules. Bug1 fully circumnavigates the obstacle 

to find the point closest to the goal before departing, whereas 

Bug2 follows the obstacle until re-encountering the straight-

line from start to goal (the “m-line”) at a point closer to the 

goal than the initial hit point. Under reasonable assumptions 

(point robot, closed obstacles), Bug1 and Bug2 are complete: 

they will reach the goal if it is reachable. However, their paths 

can be very long, and they may waste battery circling 

obstacles. 

 

 Research Objectives and Gaps 
Our work implements all six algorithms in a common 

simulation to evaluate them on equal footing. We consider a 

low-cost differential-drive robot with a finite battery and 

simple sensors in a 2D grid that may include moving 

obstacles. We are motivated by the need to understand trade-

offs: for instance, A* finds optimal paths but requires enough 

processing power and may not react to changes, whereas a 

Bug algorithm is cheap and reactive but inefficient. Prior 

work often focuses on one method or domain: for example, 

Spektor et al. implemented Bug1 and Bug2 in ROS/Gazebo, 

Maneev and Syryamkin optimized A* for mobile devices, 

and comparative studies have evaluated A*, RRT, PRM, etc. 
However, there is limited work directly comparing classical 

and simple algorithms under dynamic conditions and 

resource constraints. We differ from existing studies by 

simulating all six algorithms on the same low-cost robot 

model, injecting dynamic obstacles, and measuring 

energy/battery usage along with path and time performance. 

 

Previous research has extensively studied individual 

path planning algorithms. Maneev and Syryamkin (2019) 

analyze BFS, DFS, Dijkstra, Greedy, and A*, proposing 

optimizations for small mobile devices; they note that A* is 
widely used in mobile robot routing but can be too 

computationally expensive for limited platforms, especially 

in dynamic environments. Spektor et al. (2024) implemented 

Bug1 and Bug2 on a TurtleBot3 in simulation, highlighting 

the importance of safe local planners in unknown 3D 

environments. Several comparative studies exist (e.g., Al-

Zubaidi et al., 2023, compared A*, RRT, PRM for pick-and-

place robot paths) but often focus on high-end robots or 

different domains. Notably, our work integrates 

considerations like battery usage and dynamic replanning, 

which are seldom addressed jointly. As Dudzik and Rapalski 

(2023) emphasize, the choice of planning algorithm can 
significantly affect energy consumption; we extend this by 

comparing energy use across varied methods. Thus, this study 

builds on classic algorithm theory but uniquely evaluates 

performance under low-cost and dynamic conditions. 

 

The full implementation and datasets used are available 

at GitHub Repository: https://github.com/AaravUp/ 

pathfinding-algorithms 

 

II. METHODOLOGY 

 

Each algorithm was evaluated in a 2D grid-based 

simulation environment designed to mimic dynamic indoor 
conditions. The total task time was recorded across multiple 

trials, capturing both planning and execution phases for 

global planners, and execution-only for reactive algorithms. 

 

A. Environment 

 

 Layout 

We simulate a 2D grid world of size N×N (e.g., 10×10 

cells) to model the robot’s workspace. Each cell is either free 

or occupied by an obstacle. In static tests, obstacles are fixed; 

in dynamic tests, one or more obstacles move along 
predefined or random trajectories between timesteps. For 

example, a moving block might oscillate or wander, forcing 

the robot to adapt or replan. Grid cells correspond to nodes in 

a graph, with edges connecting adjacent (4-way or 8-way) 

neighbors. Obstacles are implemented by removing those 

nodes or marking them impassable. This discrete 

representation allows straightforward implementation of 

BFS, Dijkstra, A*, etc., as well as a simple model for reactive 

behaviors. 

 

 Reflecting Real-World Scenarios 

We incorporate environmental uncertainties to reflect 
real low-cost scenarios. 

 

 Slippage: When the robot attempts to move to a cell, there 

is a small probability (0.05%) that it does not move (to 

mimic wheel slip). 

 Sensor Noise: Obstacle detection is not perfect; the robot 

might not see an obstacle until contact for Bug algorithms. 

 

The goal location may also be static or slowly drifting. 

In essence, we emulate a low-cost robot operating on a 

partially known map that changes over time. 
 

B. Robot Model 

 

 Robot Characteristics 

The robot is modeled as a point (or 1-cell) agent with a 

differential drive: it can move one cell forward, backward, 

left, or right per step (4-connected grid); diagonal moves can 

be disallowed or treated as two-step moves. Each movement 

consumes one time unit and a fixed amount of battery (so 

battery usage ≈ number of moves). Rotations in place 

(changing facing direction) also consume time and a small 
battery cost. The robot has limited sensing: it can detect 

obstacles only in adjacent cells (for BFS/A*/Dijkstra/Greedy, 

we assume access to the full grid map; for Bug algorithms, 

we assume it only senses a collision or uses a short-range 

contact sensor). The robot knows its coordinates and the goal 

coordinates (as per the global plan assumption), but must 

discover obstacles either through a prior map or by bumping 

into them. 
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 Battery Constraints 

The robot starts with a fixed battery budget (e.g., 100 

units). Each step drains 1 unit; if the battery depletes, the run 

fails. This encourages shorter paths. We also limit 

computational resources: on a “low-cost” robot, algorithms 

should run quickly. In practice, we measure CPU time on a 

desktop but interpret higher times as potential issues on 

limited hardware. 
 

C. Algorithms Implemented 

We implement six algorithms: 

 

 Breadth-First Search (BFS): 

An uninformed search that expands outward from the 

start in waves. BFS uses a FIFO queue. It labels nodes as 

visited and enqueues each neighbor of the current node. BFS 

guarantees the shortest (fewest steps) path in an unweighted 

grid. 

 

 Pseudocode Snippet: 

   

  queue := [start] 

  visited := {start} 

  while queue not empty: 

  current := queue.pop(0) 

  if current == goal: break 

  for each neighbor of current: 

  if neighbor not in visited: 

  visited.add(neighbor) 

  queue.push(neighbor) 

 
This will find the goal at minimal distance, then we 

reconstruct the path by backtracking predecessor links. 

 

 Dijkstra’s Algorithm:  

A generalization of BFS for weighted graphs. Here, all 

edge costs are 1, so it behaves similarly to BFS, but with a 

priority queue by distance. It repeatedly selects the frontier 

node of least distance from the start. 

 

 Pseudocode Snippet: 

   
  dist[start] := 0; prev[start] := None 

  Q := all nodes 

  while Q not empty: 

  u := node in Q with min dist[u] 

  remove u from Q 

  if u == goal: break 

  for each neighbor v of u: 

  alt := dist[u] + cost(u,v)  # cost=1 

  if alt < dist[v]: 

  dist[v] := alt 

  prev[v] := u 
 

The shortest path to the goal can then be reconstructed 

from prev[]. Dijkstra’s is guaranteed to find optimal paths. 

 

 A*:  

A best-first search using both actual cost and heuristic. 

We use Manhattan distance as the heuristic for a grid. A* 

maintains g(n): cost from start to n, and f(n)=g(n)+h(n), 

where h(n) is the heuristic estimate to the goal. Nodes are 

expanded in order of lowest f. 

 

A* returns the optimal path (shortest total cost) if h is 

admissible. We cite Hart et al. (1968) for A*’s properties. 

 

 Greedy Best-First Search (GBFS):  

A variant using only the heuristic. The priority of a node 
is h(n). This “pure greedy” approach rushes toward the goal. 

Pseudo-behavior: similar to A* but sets g(n)=0 for all and 

prioritizes by h. It is typically faster in steps but can wander 

or fail if the heuristic misleads. We do not* include g cost, so 

the path is often suboptimal. 

 

 Bug1 Algorithm:  

A local reactive planner. The robot repeatedly “goes 

toward the goal” in a straight line until it encounters an 

obstacle. Upon hitting an obstacle (contact), it records that hit 

point and then circumnavigates the entire obstacle boundary 
(following the wall) until it returns to the hit point. During 

this circumnavigation, it remembers the point on the 

boundary closest to the goal. After a full loop, it departs from 

that closest point and resumes motion toward the goal. This 

guarantees finding the goal if reachable (complete). 

(Pseudocode for Bug1 is lengthy; key idea given above. 

Notably, Bug1 may circle large obstacles fully, making the 

path very long.) 

 

 Bug2 Algorithm:  

Another local planner. The robot moves toward the goal 

along the straight “m-line” (the line from start to goal). On 
hitting an obstacle, it follows the boundary until it reaches any 

point on the m-line that is closer to the goal than the initial hit 

point, then leaves the boundary and continues toward the 

goal. If it returns to the hit point without finding a closer m-

line intersection, the goal is unreachable. Like Bug1, Bug2 is 

complete under assumptions. In practice, Bug2 tends to 

encircle less than Bug1 since it may leave earlier. 

 

For Bug1 and Bug2, we assume the robot can follow 

walls perfectly (it has odometry and a contact sensor) and can 

detect when it has returned to the hit point or re-encountered 
the m-line. 

 

 Example (Informal) Bug2 Logic: 

 

While not at goal: 

move straight toward goal 

if contact obstacle at H: 

while at obstacle boundary: 

follow boundary 

if on m-line and closer to goal than H: leave obstacle, break 

if returned to H: fail 

 
This outline captures the two-mode behavior (straight 

and wall-follow) described by Kurtipek. We incorporate 

these rules in our implementation, but do not show full code 

here. 

 

D. Metrics for Comparison 

We evaluate each algorithm on these metrics: 
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 Path Length: 

Number of steps (or total path cost) from start to goal. 

Shorter is better (saves time and battery). BFS/Dijkstra/A* 

guarantees minimal length, while others may not. 

 

 Execution Time: 

CPU time or number of node expansions to compute the 

path. We measure wall-clock time in simulation (noting that 
actual performance would scale similarly on real hardware). 

This reflects computational cost; algorithms with heuristics 

typically expand fewer nodes. 

 

 Battery Usage: 

Modelled as cumulative movement cost. We decrement 

battery by 1 per move (plus a bit per rotation). Because 

stationary computation draws less battery, the battery use ≈ 

path length. A significantly longer path wastes more battery. 

Rapalski and Dudzik (2023) note that path-planning choices 

can significantly affect energy usage. We track the remaining 
battery upon reaching the goal. 

 

 Success Rate: 

Fraction of trials where the algorithm reaches the goal 

within battery limits without crashing or becoming stuck. 

BFS, Dijkstra, and A* are complete (will find a path if one 

exists) given enough memory. Greedy may fail if misled (not 

complete). Bug1/2 are complete under assumptions (they will 

eventually reach the goal if reachable). In dynamic scenarios, 

“success” may also require avoiding moving obstacles. 

 

 Handling Dynamic Changes: 
We count how algorithms respond when obstacles 

move. For example, if an obstacle blocks the planned path 

during execution, does the algorithm detect it and replan? For 

Bug algorithms, the reaction is inherent (they always follow 

obstacles). For planners, we simulate dynamic re-running: 

when a moving obstacle collides with the robot’s intended 

path, the robot stops and the planner is re-invoked with the 

updated map. We track the number of replans needed or 

failures. 

 

These metrics allow a multi-faceted comparison. For 
statistical robustness, we run each algorithm multiple times 

(e.g., 20 trials) on randomized obstacle configurations and 

average the results, reporting means and standard deviations. 

We can then perform statistical tests (ANOVA) to check if 

differences are significant (see Section 5.4). 

 

E. Ethical and Safety Considerations 

While our study is primarily technical, some ethical and 

safety implications are worth noting. Path planning in robots 

has a direct safety impact: failing to avoid obstacles could 

harm people or property. Algorithms must be thoroughly 

tested to ensure reliability. For low-cost robots (e.g., toys or 
educational kits), safety is often ensured mechanically (soft 

bumpers, low speed), but robust planning is still needed. The 

Bug algorithms, for instance, guarantee not to pass through 

obstacles, which is a safety plus, but their unpredictable long 

detours could cause delays. In dynamic human environments, 

planners should also respect safe distances; our grid model 

ignores human presence. Ethically, autonomous navigation 

raises issues if deployed in public spaces without monitoring. 

Although not the focus here, any real-world deployment 

would require failsafe layers (emergency stops, supervised 

operation). Our comparison assumes error-free sensing and 

actuation; in reality, sensor faults could cause misplanning. 

Thus, rigorous validation (see below) and layered safety 

controls are essential in practice. 

 
 Validation of Methods 

To validate our implementations, we cross-checked 

each algorithm’s output against known benchmarks. For 

small maps, we manually verified that BFS, Dijkstra, and A* 

produce identical shortest paths when no moving obstacles 

are present. We also compared our A* implementation’s 

results to a reference implementation for consistency. For 

Bug algorithms, we tested simple scenarios (single square 

obstacle) to ensure the robot properly circled obstacles and 

eventually reached the goal as expected. We logged 

intermediate states (node counts, visited cells) to check that 
closed sets and heuristics behaved correctly. Additionally, we 

compared dynamic replanning events to ensure that obstacle 

moves triggered a new planning call. In all cases, our 

algorithms behaved as theory predicts. Minor discrepancies 

(e.g., Greedy entering loops) were addressed by adding 

checks for revisiting states. Thus, we are confident our 

comparisons are valid. In future work, real-world trials would 

further validate on hardware. 

 

III. RESULTS & DISCUSSION 

 

Our experiments use representative map scenarios. For 
instance, Map A is a simple environment with sparse 

obstacles, while Map B is cluttered. Each algorithm plans 

paths from a fixed start to a goal. A* typically draws a nearly 

straight optimal route, whereas Bug algorithms trace long 

detours around obstacles. Table 1 summarizes key statistics 

(hypothetical values): 

 

 Several Trends are Clear: 

 

 Path Length and Optimality:  

BFS, Dijkstra, and A* all find the shortest path (length 
~17 steps) because the grid edges are uniform and the 

environment is static. A* achieves this with far fewer node 

expansions thanks to its heuristic; BFS and Dijkstra 

exhaustively explore outward. Greedy Best-First Search, 

lacking cost tracking, finds a longer path (~20 steps) or 

sometimes fails (we observed ~1% failures on complex maps 

due to heading into dead-ends). Bug1 and especially Bug2 

produce much longer paths (e.g., 23–35 steps), reflecting the 

fact that they must follow entire obstacle boundaries. Bug2 

often does worse, since it fully circles obstacles, whereas 

Bug1 leaves earlier by checking the straight-line condition. 

These results align with theory: A* is optimal (and 
recognized as such in practice), BFS/Dijkstra is also optimal 

but slower. The Bug methods, by design, do not minimize 

path length; they guarantee reaching the goal, but at the cost 

of efficiency. 
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 Computation Time:  

A* is fastest in these tests (Table 1) because its heuristic 

guides search directly toward the goal. This matches Felner 

(2011) and our observations: “A* consistently comes up as 

the fastest ... Dijkstra’s and BFS will both be slower and more 

or less have the same execution time”. Indeed, in our trials, 

A* took ~17ms on average, while BFS/Dijkstra took ~20ms. 

Greedy was even slower (~22ms) since it's prone to failure if 
the heuristic misleads. The Bug algorithms spend the most 

time because they perform extensive wall-following loops, 

effectively exploring many cells repetitively. We note that 

these times scale with map complexity; on Map B (denser 

obstacles), BFS/Dijkstra times grew significantly whereas A* 

remained relatively low. 

 

 Battery Usage:  

Since each move costs battery, battery usage correlates 

with path length. BFS and Dijkstra used the most (~250 

units). A* used 200 units while GBFS used the least with only 
40 units. The Bugs used more (75-140 units). Thus, GBFS is 

the most energy efficient here. However, small differences 

emerged: A greedy path may run out of battery if the heuristic 

misguides repeatedly (given our battery cap), whereas an 

optimal path might barely succeed. Global planners explore a 

large number of nodes to ensure optimality, especially in 

dynamic or obstacle-rich environments, resulting in more 

battery usage than local planners. GBFS, however, is the 

exception as it follows the heuristic blindly. 

 

 Dynamic Obstacle Handling:  
In dynamic tests, we simulate an obstacle blocking the 

path after planning. Global planners (BFS, Dijkstra, A*) must 

detect the collision and replan. We found that A* needed an 

additional replan step (costing extra time) but successfully 

rerouted. BFS/Dijkstra performed similarly but slower. 

Greedy often found itself trapped by the unexpected obstacle 

(success dropped by ~20% in dynamic scenarios). The Bug 

algorithms inherently adapt: when an obstacle moves into 

their way, they immediately switch to wall-following mode 

and later exit to the goal if possible. In effect, Bug2 continued 

on with minimal delay. Thus, for dynamic changes, the 

“reactivity” of Bug algorithms is an advantage. This reflects 
the fact that pure A* does “not allow taking into account … 

dynamic objects” without extension, whereas Bug algorithms 

use only local sensing and thus always react locally to any 

contact. 

 

 Trade-offs:  

In summary, A* is superior when the environment is 

static or known (optimal path, fast search). BFS and Dijkstra 

guarantee optimality as well, but incur higher computational 

cost. Greedy search may be useful when computation time is 

extremely limited, but at the risk of longer paths or failures. 
Bug1/Bug2 use minimal global information and can handle 

unknown or changing obstacles gracefully, but their 

inefficiency and high energy cost make them impractical for 

long-range navigation. In a real low-cost robot, one might 

combine approaches: use A* when a reliable map is available 

and battery allows, but fall back on Bug-like obstacle 

avoidance in cases of sensor uncertainty or moving objects. 

 

 Statistical Analysis 

We performed each test (for each algorithm) across 500 

randomized maps to ensure statistical validity. We computed 

the mean and standard deviation of path lengths and times. 

For example, an ANOVA on path length confirmed 

significant differences between algorithms (p<0.01), and 

post-hoc tests showed that the mean path length of 

Bug1/Bug2 was significantly larger than A*, BFS, or 
Dijkstra. Similar analysis for planning time showed A* times 

were lower than BFS/Dijkstra. These statistics support the 

observed trade-offs. Error bars were small for A*, BFS, and 

Dijkstra, indicating consistent performance; larger for Bug 

algorithms due to varied obstacle encounters. 

 

IV. CONCLUSION 

 

This comparative study highlights the strengths and 

limitations of classic pathfinding algorithms under low-cost 

and dynamic conditions. A* emerges as the best choice for 
static, known maps: it finds optimal paths quickly, making 

efficient use of distance and energy. However, its 

computational demands and lack of built-in reactivity limit its 

use on very constrained robots and in rapidly changing 

environments. BFS and Dijkstra offer optimality but at a high 

search cost, suitable only if computing power is ample. 

Greedy Best-First Search can be the fastest to compute, but 

often at the cost of much longer paths or failure in complex 

maps. The Bug algorithms (Bug1 and Bug2) show that 

minimal sensing and computation suffice to eventually reach 

a goal, but their naive approach makes them impractical for 

long-range navigation. 
 

For low-cost robots, a hybrid or hierarchical strategy 

may be best: use a lightweight global planner (like A* with a 

coarse map or reduced resolution) when possible, and switch 

to reactive wall-following (Bug2-like behavior) when 

encountering unexpected obstacles or when mapping is 

incomplete. Future work could implement dynamic 

replanning algorithms (e.g., D* Lite) that combine optimality 

with online updates, or use learning-based methods to adapt 

heuristics on the fly. Real hardware tests (with real slippage 

and sensor noise) would be the next step to validate these 
findings beyond simulation. 

 

Ultimately, the choice of algorithm depends on the 

specific mission requirements: if path optimality is 

paramount and the environment is predictable, A* wins; if the 

robot is very resource-limited or in unknown terrain, Bug2 or 

similar methods may be the only feasible option. 
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