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Abstract: This article presents an exponential fitted optimized three-step, two-off-grid hybrid point for the solution of fourth
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L INTRODUCTION

In sciences and engineering, mathematical models are
developed to understand as well as to interpret physical

phenomena, many of such phenomena, when modeled, often
result into higher order ordinary differential equations of the
form:

9" =9(x0.¢.0"¢"), 9a;)=0(0)¢(a)=¢(0)¢"(a)=¢"0)¢"(a)=¢"(0) (M

An essential mathematical tool for modeling a range of
physical processes that occur in several scientific and
engineering fields is the fourth order ordinary differential
equation, including fluid dynamics, vibration analysis,
control systems, and structural mechanics. According to [1],
the fourth derivative can be optimized to predict, improve,
and enhance computational efficiency and solution accuracy
with superior accuracy and a good region of absolute stability.
Equation (1) is used to solve problems in a number of real-
world domains that frequently occur in physical systems in
science and engineering, such as mechanics, control theory,
beam deflection, and ship dynamics, among others. However,
the majority of these physical issues are complex systems for
which an analytical solution is exceedingly challenging, ifnot
possible. Numerical techniques, which solve (1), are
therefore essential tools. As a result, fourth order ordinary
differential equations have garnered a lot of attention from
researchers, and as a result, theoretical and numerical studies
addressing (1) have recently surfaced in literature. As
demonstrated by [2] and [3]. An old conventional way to
solve (1) is the method of first reducing (1) to system of first
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order differential equation, to solve the resulting system of
equations by any of the existing methods of solving first order
ordinary differential equations. Literatures abounded in this
old conventional method of solving problems of type (1)
numerically are [4]-[6]. The drawbacks of this method
include computational cumbersomeness and longer computer
tine and space. In addition, [7] observes that these methods
do not utilize additional information associated with a
specific ordinary differential equation, such as oscillatory
nature of the solution. To circumvent these drawbacks, many
researchers have solved (1) directly; amongst these are [8]-
[10] who develop blocked methods for numerical solution of
fourth order ordinary differential equations. Among those
who have recently embraced the hybrid approach as an
alternative to the direct method for approximating (1) are
[11], [12], and [13]. [1] have also proposed an optimized
approach by using a novel fourth-order block algorithm to
numerically solve fourth-order initial value problems; [14]
have proposed an optimization of a two-step block method
with three hybrid points for solving third-order initial value
problems. [15] have proposed an optimization of a one-step
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block method with three hybrid points to solve first-order (r+s)-1 ;
ordmgry d1ffer§nt1al equat.lons; [1§] have also prloposed.an ¢(t) = z g (t)ex ©)
adaptive optimized step size hybrid method for integrating i—o
differential systems; and [17] has used the optimized
approach to derive a two-step second derivative method for ) ]
solving stiff systems. The three-step method created for this Where € R are real unknown coefficients that will
article, optimizes one of the two off-point placements by be determined, while r + s denotes number of collation and
setting the principal term of the local truncation error to zero interpolation points.
and using the local truncation error to estimate the values of
the unknown parameter. The first, second, third and fourth derivatives of (2) are given
by
II. DERIVATION OF THE METHOD

We take our basis function to be exponentially fitted of
the form

=2 1 <ol
o) ZJX” 0 i+ i -1)=glto0)
o'(t)= ij13 (" (”J =33k +3j% + +2) g(t,(p,ga',(p") 3)

“(t):ijxj“‘y/j(t)exj(llj—szx” #6150+ X +11j0 181X + 730 =6]2+ ° +6)=glt. 0,00 0 )

=4
Substituting (3) into (1) gives
8
j m j j n 1, k2 k3 m Y : : i-4
o (t)zf(t,’go,’(o 0 ’q)) rp+hrpthize"+h’r™+ Y i (i-1)(i-2)(i-3) yt™  j=1,..4 @
i=4
Now interpolating (2) at first, second and third derivative at { and collocating (4) at all points

t., =t +wh, l//={0, r,s,12, 3} , give a nonlinear equation of the form

n+y

6
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o o o o0 6 6t 3t 2 it*  At° (m)’ 9nn
o o o o 6 6t 3 ot it At | |%Tg | |9
0 0 0 © 6 et 3t it &Y, . (m) L 9n+s ]
7!
m)’ 5
E % | (5)

IJISRT25SEP1050 www.ijisrt.com 1799


https://doi.org/10.38124/ijisrt/25sep1050
http://www.ijisrt.com/

Volume 10, Issue 9, September — 2025
ISSN No: -2456-2165

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25sep 1050

Applying the Guassian elimination method to solve equation (5) gives the coefficient 7, ( j=0 ) and w i» (0, r,s,12, 3)

. The values are then substituted into equation (2) to give the implicit continuous hybrid method of the form;

, 2, 3 ., 43
¢(x):ro¢n+rlh(pn+12h [ n+T3h 1) n+h |:j§ol//j9n+j +V/gjgn+gj}’g:r’s

(6)

were
ro=—_1 m* —462rm2+108rm°—462m?s—9m*s+108sm> —9m*r + 756 ms—3780rs—252m?+198m°>—54m* +5m° —252m?rs+18m°3rs+1386 mrs

0 — 7 90720 rs
7. = —L_m°> [ =252m+7565+108m?s—9m’s—_462ms+198m? —54m° +5m*

1 15120 r(r-3)(r-1)(r-2)(r-s)
ro=—_1 m5 —252m+7565+108m2s—9m>s—462ms+198m?—54m°+5m*

2 15120 s(s—3)(s—1)(s—2)(r-s)
r.o=—1 m5 90m?r—9m3r+90m?s—9m3s—252mr—252ms+756rs+108m? —45m°+5m* +18m?rs—210mrs

3 = 30240 (s-1)(r-1)
r =1 m5 72m?r—9m®r+72m?s—9m3s—126mr —126 ms+378rs+54m? —36m° +5m* +18m?rs—168mrs

4 = 30240 (s-2)(r-2)
o =-1 m5 54m?r—9m°3r+54m?s—9m3s—84mr—84ms+252rs+36m>—27m°+54m* +18m?rs—126 msr

5 = 90720 (s-3)(r-3)
by substituting M =1 in (6) we obtain a multistep formula to approximate the solution of (1) at the point t,,, which yields

i 1 (-393r-3935+2628r5+103) (3935-103)
90720 g,+ 15120 r(r-3)(r-1)(r-2)( gn+r
_ v 1, 2 1p3,m 4 (1 (3935—103 (~171r-1715+564rs+68)
t 41~ q)n + hq) n+ 2 ® n h® + 6 h » n+ h (15120 s(s-3)(s-1)(s-2)( gn+s 30240 (s-1)(r-1) n+l (7)
1 (-63r- 635+228rs+23 1 (~39r-39s+144rs-+14)
30240 (-2 On2 *{ 30720 (s-3)(r-3) n+3

Also by substituting M =1 in the first derivative of (6) we obtain a multistep formula to approximate the solution of (1) at the
point t', ., which yields

(—188r—1885+1064rs+57

1
10080

rs

(188r- 57

(188s- 57
)gn (Lo T3

7)o
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1
_(m s(s-3)(s-1)(s—

gn+1
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®)

Also by substituting M =1 in the second derivative of (6) we obtain a multistep formula to approximate the solution of (1) at

the point t",; which yields

[( 1 (-147r-1475+679r5+53) 1 l47s 53)
2520 rs 420 v(r=3)(r-1)(r-2)(r-s) gn+r
2em _ m p2 3w 4 1 (47r-s3) 53 1 (~119r-1195+266rs+66)
h“t =@ nh +h () n+h (420 SG-3)(sD)(s- )gn+s+(_0 (s-1)(r-1) )gm—l
1 ( -35r— 355+91rs+17 21r 215+56rs+10)
|80 mor2 )92 T zszo T (s-3)(r-3) ) In3 )
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Finally, by substituting M =1 in the third derivative of (6) we obtain a multistep formula to approximate the solution of (1)

at the point t"™ ., which yields

_< 1 (-38r-38s+135rs+17) (385-17)

360 —) g, + (60 W) Gnir
m _ m (38 —17) ( —57r-57s+95r: +40

hst =P h3 + h4 _(%W) Onis (1%0 %) Oni
1 (-12r 125+25rs+7 (~7r-7s+15rs5+4)

_(120 (s—2)(r— ) Oni2 t (360 W) On.3

» Derivation of the Optimize Method
The derivation for the implementation of the optimized three step at third derivative is given by

e Expanding (10) using the Taylor series to obtain the corresponding Local Truncation Error:

(—119r —119s + 266rs +66) h°
L(o(tjs).h)=- 0100 +oh?

o Equating the principal term of the Local Truncation Error in (11) to zero, and keeping s as a free
parameter and assigning the value S = 5 , we obtain the value r = 38—5 as the optimized value.
o Substituting the values of  and s into (7) — (10) produces the following general equations in block form

cllpll = +ZD Irili={o,r,s1,23}

this gives a discrete schemes:

8, . 32 .2, 256 3 . 56922990592  , 4 2493219328
¢ 8 =¢nt3mNPnt 225N ¢ nt 128625 N ¢ "n+ 709340748046875 N In * 5884593942937
35
179400801792 4 33649983488 4 6105325568 4
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n+=
3
7 4
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2 ' 2,2 ., 4.3 58568 1776740000 1258
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3 35 3

2528 13528
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35 3
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Nn+—— n+—— n+=<
35 35 3
14644064 76662272

24422671875 hg n+2 t 1604805890625 hg n+3

IJISRT25SEP1050 www.ijisrt.com 1802


https://doi.org/10.38124/ijisrt/25sep1050
http://www.ijisrt.com/

Volume 10, Issue 9, September — 2025
ISSN No: -2456-2165

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25sep 1050

7141 3512

" m 4771 4359315625 541 632
¢ .2~ ¥ nterago h9n + 10890367704 "9 8 * 28080 "9 2 ~ 98415 NIn+1 + 751980 "In+2 ~ 7424865 NIn+3
3 35
373 262609375 23571 181 7 1
?"n+1 = 2" n+ 5760 NIn + 717061248 hgn 8 T 1520 h9n+g + 1620 "In+1 — 29760 "In+2 + 123220 NIn+3
35 3
79 52521875 3483 728 631 232
?"n+2 = ?"n~ 360 "On + 22876328 "9 8 ~ 3220 N9 2 T 205 NIn+1 + 1860 "In+2 ~ 30555 NIn+3
35 3
w ., 621 52521875 104643 101 16083 3957
?"n+3 = ¢ "n* 620 "On ~ 26557824 "I 8 * 51520 N9 2 T 60 NIn+1 9920 NIn+2 + 13580 NIn+3 (13)
35 3
1. ANALYSIS OF BASIC PROPERTIES OF THE METHOD
» Order of the Block
Let the linear difference operator L{¢(t): h} associated with the new method (13) be express in the form
N N "
. - 4 -
Lp(x):h} =X pp(t+ i) -h*Y (9,0 (t+ in) "
=0 =0
By expanding ¢ (t + jh) and g(t + jh) in Taylor series, (14) becomes:
. _ 1 p_.p p+l__p+l p+4 p+4
L{p(x):h} =Cyp(X)+Cip'(X)+-+-+C hPpP (X)+C, hP 0" (X)+---+C_  hP 0P (X) +---
According to Lambert, 1973, the linear operator L and its corresponding block formula are of order p, if o = C; = --- = C,, =
Cp+1 = Cpy2 = Cpy3 = 0 and Cpyy # 0. The term C,,4 is called the error constant and implies that the local truncation error is
given by:

thik = Cp+4hp+4yp+4(x) + 0(hP*3).

Our method involves expanding (13) in the Taylor series, then comparing the coefficient of h yields

C0=C1=C2=C3= =C9=0
Hence the block (13) has order 5 with error constant:
1242821607424 15217 193 53 159
T 3519216786247558593757 7 8788705537577 571536000 7 44651257 784000
9 4586438 656 ) 1258 9 257 q_467 o 17131
C T 74480778344921875 77 195304567577 127008007 7 992257 156800
10 = o_ 5906887936 o _ 19 23 8863 620 180988492
T 63840667324218757 7 21 0050757 127008007 39318633 167698828125
144 842602584717 907 16780608 16 0 23 8 8534287
" 186399446128 3500000007 © 2251875390625 7 14762257 ° 88905600 7 141757 " 2622352320

» Consistency of the Method

According to (Lambert, 1991), the hybrid block method
is said to be consistent if it has an order more than or equal to

one. Therefore, our method is consistent.

IJISRT25SEP1050

» Zero Stability of the Method

The hybrid block (13) is said to be Zero stable if the
roots z;,i=0,7,51,2,3 of the first -characteristic
polynomial p(z) =0 that is
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k » Convergence of the Method

p(Z) = det Z AW Zk= | — 0, satisfies |z;| <1 and the The necessary and sufficient condition for a numerical
=0 method to be convergent is for it to be consistent and Zero

roots |z;] = 1, has multiplicity not exceeding the order of the stable. Thus since it has been successfully shown from the

differential equation. Hence, our method is zero-stable. above condition, it could be seen that our method is
convergent.

» Region of Absolute Stability of the Method
The stability polynomial for the method is given as:

° ' ﬁﬂ\

-1
2 /
-3
-5 -4 -3 -2 -1 (0] 1
Re(z)

Fig 1 Region of Absolute Stability for the new Method
Iv. NUMERICAL EXPERIMENTS

To validate the accuracy and suitability of the our method, we solve some initial value problems of fourth order ordinary
differential equations and compare the results with the work.

iv

Problem 1 y¥ =x
y(0) =0,y"(0) = 1,y"(0) = 0,y"(0) = 0,
. x5
Exact solution: y(t) = Sotx
Table 1 Comparison of Absolute Error for Problem 1
¢ An Error in An Error in An Error in the New
Muritala et al., (2023) Akinnukawe et al., (2024) Method
0.1 0.0000e-00 1.3878e-17 0.0000
0.2 0.0000e-00 2.7756e-17 0.0000
0.3 0.0000e-00 5.5511e-17 1.0000e-20
0.4 0.0000e-00 5.5511e-17 2.0000e-20
0.5 0.0000e-00 0.0000 5.0000e-20
0.6 0.0000e-00 1.1102e-16 1.0000e-19
0.7 0.0000e-00 1.1102e-16 1.7000e-19
0.8 0.0000e-00 2.2205e-16 2.8000e-19
0.9 0.0000e-00 2.2205e-16 4.5000e-19
1.0 0.0000e-00 2.2205e-16 0.0000
Problem 2 yv = 4y"
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y(0) = 1,y'(0) = 3,y"(0) = 0,y""(0) = 16

yt)=1—t+e?t —e 2

Table 2 Comparison of Absolute Error for Problem 1

¢ An Error in An Error in An Error in the New
Awoyemi et al., (2015) Muritala et al., (2023) Method
0.003125 0.0000e+00 0.0000e+00 0.0000
0.006250 0.0000e+00 0.0000e+00 0.0000
0.009375 2.2205e-16 0.0000e+00 0.0000
0.012500 2.4425e-15 0.0000e+00 1.0000e-19
0.015625 1.1546¢-14 1.0000e-20 0.0000
0.018750 3.3085¢e-14 0.0000e+00 0.0000
0.021875 7.2831e-14 1.0000e-20 1.0000e-19
0.025000 1.3700e-13 0.0000e+00 0.0000
0.028125 2.3093e-13 0.0000e+00 1.0000e-19
0.031250 3.6082¢-13 1.0000e-20 0.0000
V. CONCLUSION [9]. Mohammed, U. (2010) A Six Step Block Method for

It is evident from the above tables that our proposed

method; the optimized approaches can handle stiff equations
and, in fact, converge faster than the compared method.
Hence the approach has a significant improvement over the
existing methods.
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