Volume 10, Issue 9, September — 2025 International Journal of Innovative Science and Research Technology
ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep878

AgentHub: A Multi-Source Al
Agent Framework for Enterprise
Workflow Orchestration

Oyejide Timothy Odofin'; Nurudeen Yemi Hussain?*; Sunday Adeola Oladosu®"

L(Luxoft USA, Irvine, CA)
2(OIT, Texas Southern University)
3(InfoSys Texas, Usa)

Corresponding Author: Nurudeen Yemi Hussain?"; Sunday Adeola Oladosu®”

Publication Date: 2025/09/27

Abstract: Enterprise software development relies on diverse tools and knowledge sources, such as issue trackers (e.g., Jira),
version control systems (e.g., GitHub, Bitbucket), and documentation platforms (e.g., Confluence). Developers often
encounter context fragmentation, cognitive overload, and operational inefficiencies due to navigating these disparate
systems. While retrieval-augmented generation (RAG) has advanced document-based question answering, most existing
solutions fail to integrate live operational tools or orchestrate workflows across multiple sources. We introduce AgentHub,
an open-source Al agent framework that seamlessly combines semantic knowledge retrieval with tool orchestration. This
enables a unified conversational interface for querying, correlating, and acting upon enterprise data. AgentHub
continuously synchronizes knowledge sources into a vector database, integrates live APIs from tools like Jira, GitHub, and
Confluence, and supports secure action execution (e.g., merging approved pull requests). The framework's document
ingestion process is versatile, supporting a wide range of sources including Confluence, web URLs, S3, Google Drive, Azure
Blob Storage, and local file systems, with provisions for end-to-end encryption and exclusion of sensitive files. In this paper,
we detail the system architecture, implementation, and insights from early deployments, highlighting AgentHub’s ability to
minimize context switching, enhance workflow efficiency, preserve institutional knowledge, and facilitate Al-driven
enterprise operations.

Keywords: Multi-Agent Systems, Retrieval-Augmented Generation, Enterprise Al, Workflow Automation, Vector Database, Open-
Source Software.

How to Cite: Oyejide Timothy Odofin; Nurudeen Yemi Hussain; Sunday Adeola Oladosu (2025) AgentHub: A Multi-Source Al
Agent Framework for Enterprise Workflow Orchestration. International Journal of Innovative Science and Research
Technology, 10(9), 1778-1783. https://doi.org/10.38124/ijisrt/25sep878

l. INTRODUCTION e Retrieving and summarizing knowledge from multiple
heterogeneous sources.
Modern software engineering teams depend on e Correlating tasks with associated code changes and
specialized tools, including Jira for issue tracking, GitHub or documentation.
Bitbucket for version control, and Confluence for e Executing actions securely within enterprise tools.
documentation management. Developers frequently switch
between these platforms to retrieve information, monitor task AgentHub bridges this gap by delivering a unified,
statuses, or reference updates, leading to significant pluggable Al framework that orchestrates knowledge
productivity losses [1, 2]. retrieval and tool actions through a natural conversational
interface. As an open-source, extensible solution, it is tailored
Existing Al solutions typically emphasize either for enterprise adoption, promoting scalability, customization,
document retrieval via RAG [3, 4] or tool-specific and knowledge preservation across organizational changes.
automation, such as GitHub Copilot Chat or Jira bots [5]. The framework emphasizes secure integrations, with
However, these approaches seldom offer an integrated administrative controls for configuring connections to
interface capable of: various tools and data sources, ensuring end-to-end

encryption for confidential information and mechanisms to
exclude secret or sensitive files from embedding processes.

JISRT25SEP878 WWW.ijisrt.com 1778

https://doi.org/10.38124/ijisrt/25sep878
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25sep878

Volume 10, Issue 9, September — 2025
ISSN No0:-2456-2165

1. RELATED WORK
> Retrieval-Augmented Generation (RAG):

Pioneered by Lewis et al. [3], RAG integrates neural
models with external knowledge retrieval to enhance
language model performance on knowledge-intensive tasks.
Related advancements include dense passage retrieval
techniques [4].

» Agent-Based Automation:

Multi-agent orchestration frameworks have been
investigated for automating enterprise software tasks,
enabling collaborative Al systems to handle complex
workflows [6, 7].

» Al-Assisted Software Engineering:

Tools like GitHub Copilot and ChatGPT provide code
assistance but are generally limited to single-source
interactions [5, 8].

AgentHub uniquely synthesizes RAG, multi-agent
orchestration, and workflow execution into a cohesive,
extensible framework, addressing limitations in prior work.

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/25sep878

I, SYSTEM ARCHITECTURE
A. Overview

AgentHub is structured around three core layers (see
Figure 1):

e Agent Core: Manages retrieval and tool invocation,
serving as the central orchestrator.
e Retriever Layer: Utilizes a vector database (pgvector in

PostgreSQL) for efficient semantic search over
documents.
e Tool Adapters: Provide pluggable interfaces for

integration with Jira, GitHub, Bitbucket, Confluence, and
extensible support for additional systems such as GitLab.

Supporting Components Include:

e Celery and Redis for asynchronous processing, such as
document ingestion and embedding updates.

e A ReactJS-based frontend offering a session-aware chat
interface with streaming response capabilities.

e Administrative configuration module for setting up
integrations, including API credentials, encryption keys,
and exclusion rules for sensitive data.

Retrieval Layer
Vector DB . Embeddings

Document Sources

Confluence . 53 . Drive . Local FS

Agent Core
Planning . Retrieval . Actions

Tool Adapter
Jira.Github . Confluence/BitBucket

Policies

Fig 1 AgentHub System Architecture

IJISRT25SEP878

WWW.ijisrt.com

1779

https://doi.org/10.38124/ijisrt/25sep878
http://www.ijisrt.com/

Volume 10, Issue 9, September — 2025
ISSN No:-2456-2165

This diagram illustrates the core components of the
AgentHub framework. The Agent Core orchestrates between
the Retriever Layer (semantic search over vectorized
documents) and Tool Adapters (Jira, GitHub, Confluence,
etc.), while frontend interaction is supported through a
conversational chat Ul. Document sources and administrative
configurations ensure secure knowledge ingestion and action
execution.

B. Document Synchronization

AgentHub employs webhook-driven mechanisms to
detect and process updates, ensuring that new or modified
documents are automatically embedded and indexed in real-
time. The document ingestion process is designed to handle
diverse sources, including Confluence pages, web URLs,
AWS S3 buckets, Google Drive, Azure Blob Storage, and
local file systems. Vector embeddings are generated using
models from OpenAl or SentenceTransformers [9]. These
embeddings are stored in pgvector within PostgreSQL,
facilitating rapid semantic similarity searches. Celery, paired
with Redis, handles these tasks asynchronously, reducing
ingestion latency by approximately 30% in our deployment
tests, ensuring responsiveness in dynamic enterprise
environments.

To maintain security, the system supports end-to-end
encryption for data in transit and at rest, particularly for
confidential documents. Administrators can configure
exclusion rules to prevent embedding of secret files (e.g.,
those containing APl keys or proprietary information),
ensuring compliance with enterprise data policies. Future
expansions will include additional integrations for document
sources and enhanced communication protocols with tools
like Jira, Bitbucket, GitHub, and GitLab.

C. Retrieval-Augmented Query Pipeline

The query processing flow begins with user input,
where the Retriever fetches the top-K most relevant
documents based on semantic similarity. The Agent Core
then evaluates whether to invoke tool APIs, query the
knowledge base, or combine both approaches. Finally, a large

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25sep878

language model (LLM) synthesizes the response for delivery
to the frontend.

» Example Query: "What Tasks are Assigned to Oyejide in
Jira?"
The system queries Jira APIs, retrieves related
Confluence documents, and generates a summarized
response with actionable suggestions.

D. Tool Invocation

Tool adapters encapsulate API interactions, including
authentication and safety protocols. For action execution,
such as "Merge PR #45 if approved,” the system verifies
conditions via the GitHub APl and maintains audit logs.
Built-in safety policies mitigate risks by preventing
unauthorized or destructive operations. Communication with
tools like Jira, Bitbucket, GitHub, and GitLab is handled
securely, with administrative oversight for configuration and
encryption.

V. IMPLEMENTATION DETAILS

The backend is built with FastAPI for API endpoints,
Celery and Redis for task queuing, and PostgreSQL with
pgvector for storage. The frontend leverages ReactlS to
create an interactive, session-persistent chat interface.
Embeddings are handled by OpenAl's GPT-4 or
SentenceTransformers models [9]. Tool adapters are
implemented as modular Python classes, allowing seamless
extensions for new integrations.

A. Project Structure

To facilitate adoption and contribution to AgentHub’s
open-source codebase, we present the project’s directory
structure, which reflects its modular design and supports
extensibility for enterprise use cases. The structure below
corresponds to AgentHub v1.0, though it may evolve with
future updates.

» Directory Structure:

text
agenthub/
—— backend/
—— app/
—— core/ # app-wide config/bootstrap
—— settings.py # Pydantic settings (env-based)
— logging.py
—— security.py # crypto, key mgmt helpers
—— api/ # FastAPI routers
— vl/
—— chat.py # /chat: query pipeline entry
—— docs.py # /documents: sync/status
—— tools.py # /tools: actions, adapters
—— admin.py # /admin: configs, exclusions
—— deps.py # DI/wiring
—— domain/ # core business logic (framework agnostic)
—— models.py # Pydantic domain models
—— events.py # events for orchestrations
— policies.py # safety checks, ACLs

JISRT25SEP878

WWW.ijisrt.com 1780

https://doi.org/10.38124/ijisrt/25sep878
http://www.ijisrt.com/

Volume 10,

Issue 9, September — 2025

ISSN No:-2456-2165

—— services/

—— agent/

—— planner.py
—— pipeline.py # RAG + tool invocation pipeline
— retriever/ # vector DB interactions

—— embeddings.py # OpenAl/SBERT providers
— index.py # pgvector ops (CRUD/top-K)

orchestration logic (planner)

—— sync.py # webhook-driven ingestion
—— tool_adapters/ # plugin interfaces (extensible)

JISRT25SEP878

— base.py # abstract adapter + audit hooks
—— jira.py
—— github.py
— bitbucket.py
—— confluence.py
—— workers/ # Celery tasks
—— ingestion.py
—— embeddings.py
—— audits.py
— infra/ # runtime glue
—— db.py # SQLAIlchemy/psycopg bootstrap
—— redis.py
—— celery_app.py
schemas/ # API request/response models
—— repositories/ # persistence patterns (if used)
— tests/ # pytest + integration tests
—— main.py # FastAPI app factory
—— migrations/ # Alembic (pgvector, tables)
—— pyproject.toml # package metadata (backend as pkg)
—— frontend/
—— chat/ # React app
—— src/
—— components/
—— pages/
—— api/ # fetchers/SDK
—— state/ # session/thread mgmt
—— package.json
— i/ # shared Ul lib (optional)
—— connectors/ # optional: separate lib for adapters
L— pyproject.toml
— infra/ # deployment
— docker/ # Dockerfiles
—— compose.yaml
— k8s/ # manifests/Helm (secrets via SOPS)
—— terraform/ # if provisioning cloud resources
—— ops/
— ci/ # GitHub Actions / GitLab CI
—— scripts/ # dev tooling, lint, db setup
—— docs/ # sphinx/mkdocs + figures
L— figures/
—— .env.example
—— README.md
—— LICENSE

WWW.ijisrt.com

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25sep878

1781

https://doi.org/10.38124/ijisrt/25sep878
http://www.ijisrt.com/

Volume 10, Issue 9, September — 2025
ISSN No:-2456-2165

V. EXPERIMENTS & EARLY EXPERIENCES

» Deployment

AgentHub was deployed in a mid-sized engineering
team of 20 developers, integrating Jira, GitHub, and
Confluence. The technology stack included pgvector on
PostgreSQL, Redis with Celery for processing, and OpenAl's
GPT-4 for embeddings and generation.

» Use Case

e Task Queries: Correlating Jira tickets with open pull
requests (e.g., "Who merged this PR?").

e Knowledge Clarification: Summarizing Confluence
documentation linked to specific tasks (e.g., "Clarify this
ticket requirement").

e Action Execution: Automating merges of approved pull
requests or updating Jira issue statuses (e.g., "What are the
deployment processes?").

e Onboarding Support: Guiding new joiners through setup
(e.g., "How do I configure my system as a new joiner?").

» Metrics
Early evaluations focused on:

e Task Success Rate: Measured as the percentage of correct
API executions (observed at 92% in initial tests).

e Retrieval Accuracy: Assessed via human judgments of
document relevance (averaging 85% precision).

e User Satisfaction: Surveys indicated a 40% perceived
reduction in context switching time.

VI DISCUSSION

» Institutional Knowledge Preservation

AgentHub’s RAG-based architecture enables long-term
knowledge retention by indexing and retrieving
documentation from various sources, including Confluence,
web URLSs, cloud storage (S3, Google Drive, Azure), and
files. This versatility allows the system to embed virtually any
document format, with future expansions planned for
additional integrations. This capability is particularly
valuable for preserving institutional memory. When
employees leave, AgentHub facilitates seamless knowledge
transfer by providing access to solutions and processes
documented over time. For a century-old organization, the
agent effectively accumulates “100 years of experience,”
enabling it to address queries like “Who merged this PR?” or
“How do I configure my system as a new joiner?” New
joiners benefit from streamlined onboarding, as the system
retrieves and summarizes relevant documentation, ensuring
continuity despite employee turnover.

» Strengths and Challenges

e Strengths:

AgentHub offers a unified interface that alleviates
cognitive load and supports open-source extensibility,
making it adaptable for diverse enterprise environments. Its
secure administrative setup allows for configuring

JISRT25SEP878

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25sep878

integrations with tools like Jira, Bitbucket, GitHub, and
GitLab, complete with end-to-end encryption for confidential
data and rules to exclude secret files from embedding.

e Challenges:

Building user trust in Al-driven actions, scaling to large
organizations, and supporting multi-tenant deployments
remain key hurdles.

e Future Work:

Enhancements could include adaptive agent planning,
domain-specific fine-tuned embeddings, plugin-based
interfaces for broader tool compatibility, and expanded
document sources.

VII. CONCLUSION

AgentHub represents an innovative fusion of RAG and
tool orchestration tailored for enterprise workflows. Insights
from early deployments underscore its efficacy in boosting
task efficiency, curbing context switching, and preserving
institutional knowledge through versatile, secure document
processing. As an open-source initiative, it doubles as a
research platform and a practical Al tool for developers,
paving the way for more intelligent enterprise operations.

REFERENCES

[1]. Czerwinski, M., Horvitz, E., & Wilhite, S. (2004). A
diary study of task switching and interruptions. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 175-182). ACM.

[2]. Mark, G., Gudith, D., & Klocke, U. (2008). The cost
of interrupted work: More speed and stress. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 107-110). ACM.

[3]. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., ... & Kiela, D. (2020). Retrieval-
augmented generation for knowledge-intensive NLP
tasks. Advances in Neural Information Processing
Systems, 33, 9459-9474,

[4]. Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L.,
Edunov, S., ... & Yih, W. T. (2020). Dense passage
retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP)
(pp. 6769-6781). Association for Computational

Linguistics.
[5]. GitHub. (2024). GitHub Copilot Chat Documentation.
Retrieved from

https://docs.github.com/en/copilot/using-github-
copilot/copilot-chat

[6]. Lin, L, Jin, Y., Han, H., & Ma, X. (2024). MAO: A
Framework for Process Model Generation with Multi-
Agent Orchestration. arXiv preprint
arXiv:2408.01916.

[7]. Arsanjani, A. (2025). Multi-Agent Software
Engineering: Orchestrating the Future of Al in
Financial Services (Part 2). Medium. Retrieved from
https://dr-arsanjani.medium.com/multi-agent-

WWW.ijisrt.com 1782

https://doi.org/10.38124/ijisrt/25sep878
http://www.ijisrt.com/
https://docs.github.com/en/copilot/using-github-copilot/copilot-chat
https://docs.github.com/en/copilot/using-github-copilot/copilot-chat
https://docs.github.com/en/copilot/using-github-copilot/copilot-chat
https://docs.github.com/en/copilot/using-github-copilot/copilot-chat
https://dr-arsanjani.medium.com/multi-agent-sofwtare-engineering-orchestrating-the-future-of-ai-in-financial-services-part-2-d14cee8a4d54
https://dr-arsanjani.medium.com/multi-agent-sofwtare-engineering-orchestrating-the-future-of-ai-in-financial-services-part-2-d14cee8a4d54
https://dr-arsanjani.medium.com/multi-agent-sofwtare-engineering-orchestrating-the-future-of-ai-in-financial-services-part-2-d14cee8a4d54

Volume 10, Issue 9, September — 2025 International Journal of Innovative Science and Research Technology
ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep878

sofwtare-engineering-orchestrating-the-future-of-ai-
in-financial-services-part-2-d14cee8a4d54

[8]. OpenAl. (2023). GPT-4 Technical Report. arXiv
preprint arXiv:2303.08774.

[9]. Reimers, N., & Gurevych, I. (2019). Sentence-BERT:
Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP) (pp. 3982-
3992). Association for Computational Linguistics.

JISRT25SEP878 WWW.ijisrt.com 1783

https://doi.org/10.38124/ijisrt/25sep878
http://www.ijisrt.com/
https://dr-arsanjani.medium.com/multi-agent-sofwtare-engineering-orchestrating-the-future-of-ai-in-financial-services-part-2-d14cee8a4d54
https://dr-arsanjani.medium.com/multi-agent-sofwtare-engineering-orchestrating-the-future-of-ai-in-financial-services-part-2-d14cee8a4d54

	AgentHub: A Multi-Source AI
	Agent Framework for Enterprise
	Workflow Orchestration
	Abstract: Enterprise software development relies on diverse tools and knowledge sources, such as issue trackers (e.g., Jira), version control systems (e.g., GitHub, Bitbucket), and documentation platforms (e.g., Confluence). Developers often encounter...
	I. INTRODUCTION
	II. RELATED WORK
	III. SYSTEM ARCHITECTURE
	A. Overview
	B. Document Synchronization
	C. Retrieval-Augmented Query Pipeline
	D. Tool Invocation

	IV. IMPLEMENTATION DETAILS
	A. Project Structure

	V. EXPERIMENTS & EARLY EXPERIENCES
	 Deployment
	 Use Case
	 Metrics

	VI. DISCUSSION
	 Institutional Knowledge Preservation
	 Strengths and Challenges

	VII. CONCLUSION
	REFERENCES

