
Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep878

IJISRT25SEP878 www.ijisrt.com 1778

AgentHub: A Multi-Source AI

Agent Framework for Enterprise

Workflow Orchestration

Oyejide Timothy Odofin1; Nurudeen Yemi Hussain2*; Sunday Adeola Oladosu3*

1(Luxoft USA, Irvine, CA)
2(OIT, Texas Southern University)

3(InfoSys Texas, Usa)

Corresponding Author: Nurudeen Yemi Hussain2*; Sunday Adeola Oladosu3*

Publication Date: 2025/09/27

Abstract: Enterprise software development relies on diverse tools and knowledge sources, such as issue trackers (e.g., Jira),

version control systems (e.g., GitHub, Bitbucket), and documentation platforms (e.g., Confluence). Developers often

encounter context fragmentation, cognitive overload, and operational inefficiencies due to navigating these disparate

systems. While retrieval-augmented generation (RAG) has advanced document-based question answering, most existing

solutions fail to integrate live operational tools or orchestrate workflows across multiple sources. We introduce AgentHub,

an open-source AI agent framework that seamlessly combines semantic knowledge retrieval with tool orchestration. This

enables a unified conversational interface for querying, correlating, and acting upon enterprise data. AgentHub

continuously synchronizes knowledge sources into a vector database, integrates live APIs from tools like Jira, GitHub, and

Confluence, and supports secure action execution (e.g., merging approved pull requests). The framework's document

ingestion process is versatile, supporting a wide range of sources including Confluence, web URLs, S3, Google Drive, Azure

Blob Storage, and local file systems, with provisions for end-to-end encryption and exclusion of sensitive files. In this paper,

we detail the system architecture, implementation, and insights from early deployments, highlighting AgentHub’s ability to

minimize context switching, enhance workflow efficiency, preserve institutional knowledge, and facilitate AI-driven

enterprise operations.

Keywords: Multi-Agent Systems, Retrieval-Augmented Generation, Enterprise AI, Workflow Automation, Vector Database, Open-

Source Software.

How to Cite: Oyejide Timothy Odofin; Nurudeen Yemi Hussain; Sunday Adeola Oladosu (2025) AgentHub: A Multi-Source AI

Agent Framework for Enterprise Workflow Orchestration. International Journal of Innovative Science and Research
Technology, 10(9), 1778-1783. https://doi.org/10.38124/ijisrt/25sep878

I. INTRODUCTION

Modern software engineering teams depend on

specialized tools, including Jira for issue tracking, GitHub or

Bitbucket for version control, and Confluence for

documentation management. Developers frequently switch

between these platforms to retrieve information, monitor task

statuses, or reference updates, leading to significant

productivity losses [1, 2].

Existing AI solutions typically emphasize either

document retrieval via RAG [3, 4] or tool-specific

automation, such as GitHub Copilot Chat or Jira bots [5].

However, these approaches seldom offer an integrated

interface capable of:

 Retrieving and summarizing knowledge from multiple

heterogeneous sources.

 Correlating tasks with associated code changes and

documentation.

 Executing actions securely within enterprise tools.

AgentHub bridges this gap by delivering a unified,

pluggable AI framework that orchestrates knowledge

retrieval and tool actions through a natural conversational
interface. As an open-source, extensible solution, it is tailored

for enterprise adoption, promoting scalability, customization,

and knowledge preservation across organizational changes.

The framework emphasizes secure integrations, with

administrative controls for configuring connections to

various tools and data sources, ensuring end-to-end

encryption for confidential information and mechanisms to

exclude secret or sensitive files from embedding processes.

https://doi.org/10.38124/ijisrt/25sep878
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25sep878

Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep878

IJISRT25SEP878 www.ijisrt.com 1779

II. RELATED WORK

 Retrieval-Augmented Generation (RAG):

Pioneered by Lewis et al. [3], RAG integrates neural

models with external knowledge retrieval to enhance

language model performance on knowledge-intensive tasks.

Related advancements include dense passage retrieval

techniques [4].

 Agent-Based Automation:

Multi-agent orchestration frameworks have been

investigated for automating enterprise software tasks,

enabling collaborative AI systems to handle complex

workflows [6, 7].

 AI-Assisted Software Engineering:

Tools like GitHub Copilot and ChatGPT provide code

assistance but are generally limited to single-source

interactions [5, 8].

AgentHub uniquely synthesizes RAG, multi-agent

orchestration, and workflow execution into a cohesive,

extensible framework, addressing limitations in prior work.

III. SYSTEM ARCHITECTURE

A. Overview

AgentHub is structured around three core layers (see

Figure 1):

 Agent Core: Manages retrieval and tool invocation,

serving as the central orchestrator.

 Retriever Layer: Utilizes a vector database (pgvector in

PostgreSQL) for efficient semantic search over

documents.

 Tool Adapters: Provide pluggable interfaces for

integration with Jira, GitHub, Bitbucket, Confluence, and

extensible support for additional systems such as GitLab.

 Supporting Components Include:

 Celery and Redis for asynchronous processing, such as

document ingestion and embedding updates.

 A ReactJS-based frontend offering a session-aware chat

interface with streaming response capabilities.

 Administrative configuration module for setting up

integrations, including API credentials, encryption keys,

and exclusion rules for sensitive data.

Fig 1 AgentHub System Architecture

https://doi.org/10.38124/ijisrt/25sep878
http://www.ijisrt.com/

Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep878

IJISRT25SEP878 www.ijisrt.com 1780

This diagram illustrates the core components of the

AgentHub framework. The Agent Core orchestrates between

the Retriever Layer (semantic search over vectorized

documents) and Tool Adapters (Jira, GitHub, Confluence,

etc.), while frontend interaction is supported through a

conversational chat UI. Document sources and administrative

configurations ensure secure knowledge ingestion and action

execution.

B. Document Synchronization

AgentHub employs webhook-driven mechanisms to

detect and process updates, ensuring that new or modified

documents are automatically embedded and indexed in real-

time. The document ingestion process is designed to handle

diverse sources, including Confluence pages, web URLs,

AWS S3 buckets, Google Drive, Azure Blob Storage, and

local file systems. Vector embeddings are generated using

models from OpenAI or SentenceTransformers [9]. These

embeddings are stored in pgvector within PostgreSQL,
facilitating rapid semantic similarity searches. Celery, paired

with Redis, handles these tasks asynchronously, reducing

ingestion latency by approximately 30% in our deployment

tests, ensuring responsiveness in dynamic enterprise

environments.

To maintain security, the system supports end-to-end

encryption for data in transit and at rest, particularly for

confidential documents. Administrators can configure

exclusion rules to prevent embedding of secret files (e.g.,

those containing API keys or proprietary information),

ensuring compliance with enterprise data policies. Future
expansions will include additional integrations for document

sources and enhanced communication protocols with tools

like Jira, Bitbucket, GitHub, and GitLab.

C. Retrieval-Augmented Query Pipeline

The query processing flow begins with user input,

where the Retriever fetches the top-K most relevant

documents based on semantic similarity. The Agent Core

then evaluates whether to invoke tool APIs, query the

knowledge base, or combine both approaches. Finally, a large

language model (LLM) synthesizes the response for delivery

to the frontend.

 Example Query: "What Tasks are Assigned to Oyejide in

Jira?"

The system queries Jira APIs, retrieves related

Confluence documents, and generates a summarized

response with actionable suggestions.

D. Tool Invocation

Tool adapters encapsulate API interactions, including

authentication and safety protocols. For action execution,

such as "Merge PR #45 if approved," the system verifies

conditions via the GitHub API and maintains audit logs.

Built-in safety policies mitigate risks by preventing

unauthorized or destructive operations. Communication with

tools like Jira, Bitbucket, GitHub, and GitLab is handled

securely, with administrative oversight for configuration and

encryption.

IV. IMPLEMENTATION DETAILS

The backend is built with FastAPI for API endpoints,

Celery and Redis for task queuing, and PostgreSQL with

pgvector for storage. The frontend leverages ReactJS to

create an interactive, session-persistent chat interface.

Embeddings are handled by OpenAI's GPT-4 or

SentenceTransformers models [9]. Tool adapters are

implemented as modular Python classes, allowing seamless

extensions for new integrations.

A. Project Structure

To facilitate adoption and contribution to AgentHub’s

open-source codebase, we present the project’s directory

structure, which reflects its modular design and supports

extensibility for enterprise use cases. The structure below

corresponds to AgentHub v1.0, though it may evolve with

future updates.

 Directory Structure:

text

agenthub/

├── backend/

│ ├── app/

│ │ ├── core/ # app-wide config/bootstrap

│ │ │ ├── settings.py # Pydantic settings (env-based)

│ │ │ ├── logging.py

│ │ │ └── security.py # crypto, key mgmt helpers

│ │ ├── api/ # FastAPI routers

│ │ │ ├── v1/

│ │ │ │ ├── chat.py # /chat: query pipeline entry

│ │ │ │ ├── docs.py # /documents: sync/status
│ │ │ │ ├── tools.py # /tools: actions, adapters

│ │ │ │ └── admin.py # /admin: configs, exclusions

│ │ │ └── deps.py # DI/wiring

│ │ ├── domain/ # core business logic (framework agnostic)

│ │ │ ├── models.py # Pydantic domain models

│ │ │ ├── events.py # events for orchestrations

│ │ │ └── policies.py # safety checks, ACLs

https://doi.org/10.38124/ijisrt/25sep878
http://www.ijisrt.com/

Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep878

IJISRT25SEP878 www.ijisrt.com 1781

│ │ ├── services/

│ │ │ ├── agent/ # orchestration logic (planner)

│ │ │ │ ├── planner.py

│ │ │ │ └── pipeline.py # RAG + tool invocation pipeline

│ │ │ ├── retriever/ # vector DB interactions

│ │ │ │ ├── embeddings.py # OpenAI/SBERT providers

│ │ │ │ ├── index.py # pgvector ops (CRUD/top-K)

│ │ │ │ └── sync.py # webhook-driven ingestion
│ │ │ └── tool_adapters/ # plugin interfaces (extensible)

│ │ │ ├── base.py # abstract adapter + audit hooks

│ │ │ ├── jira.py

│ │ │ ├── github.py

│ │ │ ├── bitbucket.py

│ │ │ └── confluence.py

│ │ ├── workers/ # Celery tasks

│ │ │ ├── ingestion.py

│ │ │ ├── embeddings.py

│ │ │ └── audits.py

│ │ ├── infra/ # runtime glue
│ │ │ ├── db.py # SQLAlchemy/psycopg bootstrap

│ │ │ ├── redis.py

│ │ │ └── celery_app.py

│ │ ├── schemas/ # API request/response models

│ │ ├── repositories/ # persistence patterns (if used)

│ │ ├── tests/ # pytest + integration tests

│ │ └── main.py # FastAPI app factory

│ ├── migrations/ # Alembic (pgvector, tables)

│ └── pyproject.toml # package metadata (backend as pkg)

│

├── frontend/

│ ├── chat/ # React app
│ │ ├── src/

│ │ │ ├── components/

│ │ │ ├── pages/

│ │ │ ├── api/ # fetchers/SDK

│ │ │ └── state/ # session/thread mgmt

│ │ └── package.json

│ └── ui/ # shared UI lib (optional)

│

├── connectors/ # optional: separate lib for adapters

│ └── pyproject.toml

│
├── infra/ # deployment

│ ├── docker/ # Dockerfiles

│ ├── compose.yaml

│ ├── k8s/ # manifests/Helm (secrets via SOPS)

│ └── terraform/ # if provisioning cloud resources

│

├── ops/

│ ├── ci/ # GitHub Actions / GitLab CI

│ └── scripts/ # dev tooling, lint, db setup

│

├── docs/ # sphinx/mkdocs + figures

│ └── figures/
│

├── .env.example

├── README.md

└── LICENSE

https://doi.org/10.38124/ijisrt/25sep878
http://www.ijisrt.com/

Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep878

IJISRT25SEP878 www.ijisrt.com 1782

V. EXPERIMENTS & EARLY EXPERIENCES

 Deployment

AgentHub was deployed in a mid-sized engineering

team of 20 developers, integrating Jira, GitHub, and

Confluence. The technology stack included pgvector on

PostgreSQL, Redis with Celery for processing, and OpenAI's

GPT-4 for embeddings and generation.

 Use Case

 Task Queries: Correlating Jira tickets with open pull

requests (e.g., "Who merged this PR?").

 Knowledge Clarification: Summarizing Confluence

documentation linked to specific tasks (e.g., "Clarify this

ticket requirement").

 Action Execution: Automating merges of approved pull

requests or updating Jira issue statuses (e.g., "What are the

deployment processes?").

 Onboarding Support: Guiding new joiners through setup

(e.g., "How do I configure my system as a new joiner?").

 Metrics

Early evaluations focused on:

 Task Success Rate: Measured as the percentage of correct

API executions (observed at 92% in initial tests).

 Retrieval Accuracy: Assessed via human judgments of

document relevance (averaging 85% precision).

 User Satisfaction: Surveys indicated a 40% perceived
reduction in context switching time.

VI. DISCUSSION

 Institutional Knowledge Preservation

AgentHub’s RAG-based architecture enables long-term

knowledge retention by indexing and retrieving

documentation from various sources, including Confluence,

web URLs, cloud storage (S3, Google Drive, Azure), and

files. This versatility allows the system to embed virtually any

document format, with future expansions planned for

additional integrations. This capability is particularly
valuable for preserving institutional memory. When

employees leave, AgentHub facilitates seamless knowledge

transfer by providing access to solutions and processes

documented over time. For a century-old organization, the

agent effectively accumulates “100 years of experience,”

enabling it to address queries like “Who merged this PR?” or

“How do I configure my system as a new joiner?” New

joiners benefit from streamlined onboarding, as the system

retrieves and summarizes relevant documentation, ensuring

continuity despite employee turnover.

 Strengths and Challenges

 Strengths:

AgentHub offers a unified interface that alleviates

cognitive load and supports open-source extensibility,

making it adaptable for diverse enterprise environments. Its

secure administrative setup allows for configuring

integrations with tools like Jira, Bitbucket, GitHub, and

GitLab, complete with end-to-end encryption for confidential

data and rules to exclude secret files from embedding.

 Challenges:

Building user trust in AI-driven actions, scaling to large

organizations, and supporting multi-tenant deployments

remain key hurdles.

 Future Work:

Enhancements could include adaptive agent planning,

domain-specific fine-tuned embeddings, plugin-based

interfaces for broader tool compatibility, and expanded

document sources.

VII. CONCLUSION

AgentHub represents an innovative fusion of RAG and

tool orchestration tailored for enterprise workflows. Insights
from early deployments underscore its efficacy in boosting

task efficiency, curbing context switching, and preserving

institutional knowledge through versatile, secure document

processing. As an open-source initiative, it doubles as a

research platform and a practical AI tool for developers,

paving the way for more intelligent enterprise operations.

REFERENCES

[1]. Czerwinski, M., Horvitz, E., & Wilhite, S. (2004). A

diary study of task switching and interruptions. In

Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 175-182). ACM.

[2]. Mark, G., Gudith, D., & Klocke, U. (2008). The cost

of interrupted work: More speed and stress. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (pp. 107-110). ACM.

[3]. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,

V., Goyal, N., ... & Kiela, D. (2020). Retrieval-

augmented generation for knowledge-intensive NLP

tasks. Advances in Neural Information Processing

Systems, 33, 9459-9474.

[4]. Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L.,
Edunov, S., ... & Yih, W. T. (2020). Dense passage

retrieval for open-domain question answering. In

Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing (EMNLP)

(pp. 6769-6781). Association for Computational

Linguistics.

[5]. GitHub. (2024). GitHub Copilot Chat Documentation.

Retrieved from

https://docs.github.com/en/copilot/using-github-

copilot/copilot-chat

[6]. Lin, L., Jin, Y., Han, H., & Ma, X. (2024). MAO: A
Framework for Process Model Generation with Multi-

Agent Orchestration. arXiv preprint

arXiv:2408.01916.

[7]. Arsanjani, A. (2025). Multi-Agent Software

Engineering: Orchestrating the Future of AI in

Financial Services (Part 2). Medium. Retrieved from

https://dr-arsanjani.medium.com/multi-agent-

https://doi.org/10.38124/ijisrt/25sep878
http://www.ijisrt.com/
https://docs.github.com/en/copilot/using-github-copilot/copilot-chat
https://docs.github.com/en/copilot/using-github-copilot/copilot-chat
https://docs.github.com/en/copilot/using-github-copilot/copilot-chat
https://docs.github.com/en/copilot/using-github-copilot/copilot-chat
https://dr-arsanjani.medium.com/multi-agent-sofwtare-engineering-orchestrating-the-future-of-ai-in-financial-services-part-2-d14cee8a4d54
https://dr-arsanjani.medium.com/multi-agent-sofwtare-engineering-orchestrating-the-future-of-ai-in-financial-services-part-2-d14cee8a4d54
https://dr-arsanjani.medium.com/multi-agent-sofwtare-engineering-orchestrating-the-future-of-ai-in-financial-services-part-2-d14cee8a4d54

Volume 10, Issue 9, September – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep878

IJISRT25SEP878 www.ijisrt.com 1783

sofwtare-engineering-orchestrating-the-future-of-ai-

in-financial-services-part-2-d14cee8a4d54

[8]. OpenAI. (2023). GPT-4 Technical Report. arXiv

preprint arXiv:2303.08774.

[9]. Reimers, N., & Gurevych, I. (2019). Sentence-BERT:

Sentence Embeddings using Siamese BERT-

Networks. In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP) (pp. 3982-

3992). Association for Computational Linguistics.

https://doi.org/10.38124/ijisrt/25sep878
http://www.ijisrt.com/
https://dr-arsanjani.medium.com/multi-agent-sofwtare-engineering-orchestrating-the-future-of-ai-in-financial-services-part-2-d14cee8a4d54
https://dr-arsanjani.medium.com/multi-agent-sofwtare-engineering-orchestrating-the-future-of-ai-in-financial-services-part-2-d14cee8a4d54

	AgentHub: A Multi-Source AI
	Agent Framework for Enterprise
	Workflow Orchestration
	Abstract: Enterprise software development relies on diverse tools and knowledge sources, such as issue trackers (e.g., Jira), version control systems (e.g., GitHub, Bitbucket), and documentation platforms (e.g., Confluence). Developers often encounter...
	I. INTRODUCTION
	II. RELATED WORK
	III. SYSTEM ARCHITECTURE
	A. Overview
	B. Document Synchronization
	C. Retrieval-Augmented Query Pipeline
	D. Tool Invocation

	IV. IMPLEMENTATION DETAILS
	A. Project Structure

	V. EXPERIMENTS & EARLY EXPERIENCES
	 Deployment
	 Use Case
	 Metrics

	VI. DISCUSSION
	 Institutional Knowledge Preservation
	 Strengths and Challenges

	VII. CONCLUSION
	REFERENCES

