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Abstract: Respiratory illnesses, including Acute Respiratory Distress Syndrome (ARDS), asthma, cystic fibrosis, and
Chronic Obstructive Pulmonary Disease (COPD), represent an escalating global health concern, impacting a substantial
segment of the population and ranking among the foremost causes of mortality worldwide. A critical aspect of managing
these conditions is the occurrence of flare-ups, which mark a sudden and severe aggravation of symptoms like shortness of
breath, palpitation, and persistent cough, demanding urgent medical care. These acute episodes are often triggered by
airway inflammation (bronchitis), alveolar damage (emphysema), and exposure to various environmental irritants such as
dust, smoke, chemicals, and fumes. To address this clinical challenge, a model has been presented that aims to uncover the
most influential causative factors behind flare-ups and accurately classify a patient’s risk of experiencing them based on
distinct prognostic markers.
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. INTRODUCTION

Respiratory diseases are an important cause of disease
and death worldwide. Over the years, the number of hospital
admissions has grown due to respiratory diseases. In 2021,
Chronic  Obstructive Pulmonary Disease (COPD) was
responsible for approximately 3.5 million deaths globally,
representing 5% of all worldwide mortality and positioning it
as the fourth leading cause of death (World Health
Organization, 2023). It is estimated that 262 million people
suffer from asthma (World Health Organization, 2024), more
than 200 million people have COPD, 65 million endure
moderate-to-severe COPD (World Health Organization -
Burden of COPD, 2014), 1-6% of the adult population (more
than 100 million people) experience sleep disordered breathing
(World Health Organization, 2014), 8.7 million people develop
Tuberculosis (TB) annually (World Health Organization,
2018), millions live with pulmonary hypertension (World
Health Organization, 2014) and more than 50 million people
struggle with occupational lung diseases, totaling more than 1
billion people suffering from chronic respiratory conditions
(World Health Organization, 2018). Globally, at least two
billion individuals face exposure to the toxic effects of biomass
fuel consumption, with an additional one billion exposed to
outdoor air pollution and ancther one billion to tobacco smoke.
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Each year, 4 million people die prematurely from chronic
respiratory disease (World Health Organization, 2018). Flare-
ups result in sudden worsening of symptoms due to exposure
to causative factors, often leading to hospital admissions and,
in some cases, to death.

This manuscript reports a novel analysis to identify the
prognostic markers leading to flare-ups. A model has been
trained to classify a patient’s probability of having flare-ups
based on the reduced factors. A case study has been performed
to deduce the dominant factors causing flare-ups using various
machine learning and statistical techniques.

This paper is organized into seven sections. Section |
introduces the research presented. Section Il then provides a
concise overview of the paper’s main objective. Next, Section
111 reviews existing literature on respiratory diseases, focusing
on flare-ups and their contributing factors. Section IV
meticulously details the methodology employed to identify
prognostic markers for flare-ups and to classify a patient’s risk
of experiencing them. A case study illustrating the analysis is
presented in Section V. The key findings and results are then
discussed in Section VI, and Section VII concludes the paper,
also outlining future research directions.

WWW.ijisrt.com 1563


http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25sep783

Volume 10, Issue 9, September — 2025
ISSN No:-2456-2165

1. OBJECTIVE

This paper presents a case study of patients with
respiratory diseases, identifying the dominant factors
contributing to respiratory flare-ups. A classification model
has been proposed that predicts a patient’s likelihood of
experiencing flare-ups based on a reduced set of key features.
This streamlined feature set not only enhances model
efficiency but also serves as crucial prognostic markers,
directly highlighting the factors most impactful to flare-up
occurrences. Ultimately, this model offers a valuable tool for
clinicians, enabling them to proactively suggest personalized
precautionary measures to high-risk patients. From a
pulmonologist’s perspective, this accelerates the diagnostic
process and significantly advances patient care.

I1. RELATED WORK

In the USA, COPD affects approximately 24 million
Americans, results in about 155,000 deaths a year, and is now
the fourth leading cause of death (Xu et al., 2018). COPD
poses a substantial threat to the healthcare industry worldwide;
it is one of the major causes of morbidity, mortality, and poor
health status (Donaldson et al., 2002). Exacerbation
contributes to dangerous consequences like premature death
(PasseportSante, 2019), abasement of quality of life (Naim et
al., 2007), regression of respiratory functions (Burt and
Corbridge, 2013). To date, there is no cure for exacerbation
resulting from COPD. The existing medication distends the
bronchi, allowing for greater oxygen absorption by alveoli
(Soci et’e Canadienne de Thoracologie, 2010). As we continue
to reap the consequences of the 20th century tobacco smoking,
COPD remains one of the prevalent diseases (Chapman et al.,
2006). Cigarette smoking is the leading cause of COPD
worldwide (Agarwal et al., 2023).

Under-diagnosis of COPD due to negligence in African-
Americans is commonly observed (Chapman, 2018).
Azithromycin is sometimes used in COPD patients to prevent
acute exacerbations. Recent studies have demonstrated that
azithromycin helps prevent COPD exacerbations (Uzun et al.,
2014) (Albert et al., 2011). While azithromycin helps with
COPD exacerbations, we need a study to analyze the causative
factors causing exacerbations so that they can be
independently targeted. A recent projection from the World
Health Organization shows that COPD caused 3.5 million
deaths in 2021, which was approximately 5% of the total
global death count, making it the 4th leading cause of fatality
worldwide. Also, COPD is the 8th leading cause for poor
health globally (World Health Organization, 2024).

Context Relevant Prediction models using Bayesian
Belief Network have been developed to predict the
exacerbation in COPD with an accuracy of 81.5% using 17
relevant attributes (Hamid et al., 2017). An Artificial Neural
Network (ANN) model has been developed which predicted
an exacerbation within a 13-day window frame with an Area
Under Curve (AUC) 0.89 (95% Confidence Interval 0.89-
0.90) and identified an exacerbation median (interquartile
range) 7 (5 to 9) days before clinical diagnosis (Yousuf et al.,
2024).
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Coronavirus Disease (COVID) has also impacted COPD
adversely. The incidence of hospitalization and disease
severity in patients with prior respiratory diseases, such as
COPD, is much higher in patients with COVID-19 than with
seasonal influenza (Beltramo et al., 2021).

V. METHODS

The analysis utilized a dataset comprising 1985
observations across 62 distinct attributes. This dataset is
partitioned into a training set (1687 entries) and a testing set
(298 entries), with the latter intentionally excluding the
response variable. The dependent variable, designated as
‘Flare Up’, is binary categorical, where a value of ‘1’ denotes
the presence of a flare-up and ‘0’ indicates its absence. Figure
1 outlines the comprehensive workflow for classifying the
‘Flare Up’ condition. The methodological approach,
consistent with previous work (Bhattacharya et al., 2019)
[Unpublished Work], broadly encompasses data pre-
processing, feature selection, classifier training, and
subsequent prediction of the response.
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Fig 1. Framework for Classifying ‘Flare Up’ Condition

As a prerequisite, data pre-processing has been conducted to
suitably condition the dataset for analysis. No missing values
have been identified across any attributes, and continuous data
have already been normalized to a standardized range of [0, 1].
Pearson’s product-moment correlation coefficient has been
computed for all continuous variables to mitigate redundancy
and reduce model complexity. Variables exhibiting a
correlation magnitude exceeding 0.85 have been subsequently
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eliminated (Figure 2). The resulting filtered data has then been
supplied as input to the feature selection phase, where the most
salient variables for classifier training have been identified.
Model development has incorporated repeated K-fold cross-
validation (K = 10) combined with resampling techniques, and
classification accuracy has been derived from the contingency
table. The methodological approach employed in this
manuscript has aligned with that previously reported in
(Bhattacharya et al., 2017).

s corr_removed
[1] "LungFun$" "LungFun13" "LungFun14" "LungFun3" "RespQuesl" "Lung

Fun11" "LungFun5" "LungFun20" "LungFun18" "Demod" "LungFunis”

Fig 2. Variables removed after correlation analysis

A. Feature Selection

Feature selection algorithms are crucial for enhancing
model performance by eliminating irrelevant or redundant
attributes that can negatively impact accuracy and efficiency.
A reduced feature set not only enables more efficient model
training but also significantly mitigates overfitting and
improves the overall generalizability of the model. For this
analysis, two distinct feature selection algorithms have been
employed: Genetic Algorithm and Simulated Annealing. These
methods are further explicated in the subsequent subsection.

» Stimulated Annealing

Simulated Annealing (SA) is a meta-heuristic global
optimization technique that employs a probabilistic approach
to efficiently explore large search spaces. As a subset-
selection-based algorithm, it evaluates a different subset of
features in each iteration.

For our analysis, Simulated Annealing has been
integrated as a wrapper around a Random Forest model.
Compared to a Genetic Algorithm, SA’s less aggressive search
strategy aids in reducing overfitting. However, a potential
drawback of Simulated Annealing is its probabilistic nature,
which means it may not always converge to the global
optimum when optimizing the objective function. Figure 3
displays the top 23 features identified by Simulated Annealing.

e Algorithm:

v An initial subset of features is chosen randomly.

v Evaluate the performance of the subset based on an
objective function.

v" Small perturbations are added to the initial candidate
solution, and the performance of the new candidate set is
evaluated.

v' If the performance of the new candidate is greater than the
previous candidate, it is selected for the next iteration.

v’ Else, the probability of accepting a move is calculated
based on the two performance values and the current
iteration of the algorithm. This probability decreases
exponentially with the badness of the move.

v' Steps 3-5 are cyclically executed until the predetermined
iteration count is reached. The optimal solution is attained
eventually from these suboptimal solutions, with the fact
that the solution improves in the subsequent iterations.
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> rf_saSoptVariables
[1] "Demog" "DisHis3Times" "LungFun2" "LungFun1@"
[5] "LungFun12" "LungFun16" "Dis3Times" "ResQuesla"
[9] "ResQueslb”  "ResQueslc" "SmokHis1" "SmokHis3"
[13] "SmokHis4" "Demo1"” "Demo5" "DisHis1"
[17] "DisHis3" "Dis1Treat" "Dis2" "Dis4"
[21] "Dis4Treat" "Dis5Treat” "Disg"

Fig 3. Features Selected by Stimulated Annealing

» Genetic Algorithm

The Genetic Algorithm (GA) is a powerful subset-
selection based feature extraction algorithm, drawing its
principles from biological evolution and natural genetics. Its
operation is fundamentally governed by a cyclical process
involving population selection, fitness allocation, crossover,
and mutation. By accurately approximating important
features, the Genetic Algorithm consistently generates precise
model estimates. Figure 4 illustrates the basic flowchart of the
genetic algorithm.

e Algorithm:

v Arandom initial population is selected.

v Arank-based method is used to evaluate the fitness of each
individual.

v An individual is selected having the highest rank, i.e., an
individual possessing the least selection error.

v New offspring are produced using the pre-defined mutation

and crossover probabilities.

Fitness of the new offspring is evaluated.

The unhealthiest individual in the population is replaced by

the higher-ranking individual.

v’ Steps 3 to 6 are repeated until the specified number of
generations is reached.

AN

Generate Random
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/—) Evaluate Fitness

Best Chromosome
Selection

ICF(SSOVBF & Mutation

ermination condition
reached

Fig 4. Genetic Algorithm Flowchart
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For our analysis, a Genetic Algorithm (GA) has been
employed as a wrapper around a Random Forest model.
Optimal feature selection has been achieved using a crossover
probability of 0.8 and a mutation probability of 0.1. The GA
has been configured with a population size of 50 per
generation and allowed to run for 250 generations. This
process identified 29 top features, as depicted in Figure 5,
which yielded a training accuracy of 87.55%.

> ga_modelSoptVariables
[1] "Demp2" "Demog" "LungFun1" "LungFung" "LungFung"
[6] "LungFuni2" "LungFun16" "LungFun17" "Dis2Times" 'Dis3Times"
[11] "ResQuesla" "ResQueslb” "Resuesic" "ResQues2a" "SmokHis1'
[16] "SmokHis2" "SmokHis4" "Demol" "Demps" "DisHis1"
[21] "DisHisy" "DisHis?"  "DisStagel" "DisStage?" 'LungFuni"
]

[26] "Dis1" "DislTreat” "Dis4" "Dis?"
Fig 5. Features Selected by Genetic Algorithm

The genetic algorithm typically overfits small datasets.
However, our substantial training set is adequate for deriving
optimal, well-generalized results without overfitting.
Although fewer generations could further reduce overfitting,
this trade-off would render the results impractical.

B. Classification

A primary objective of this analysis is constructing a
model capable of classifying a patient’s likelihood of
experiencing flare-ups. Since ‘Flare Up’ is a binary variable,
various classification techniques have been employed to
achieve optimal accuracy. Each of these methods is discussed
subsequently.

» Naive Bayes Classifier

The Naive Bayes Classifier operates on the principles of
Bayes’ theorem of probability to predict dataset classes. It
stands as one of the fastest classification algorithms available
today. Naive Bayes assumes the independence among the
predictors. Essentially, Bayes’ theorem offers a method for
determining the posterior probability from the probability of
the class, the probability of the predictor, and the likelihood of
the predictor given the class.

P(x|c) P(c)

Plelx) =—F O

Here,

P(c|x) is the posterior probability of class given predictor P (c)
is the prior probability of the class
P(x|c) is the probability of predictor given class
P (x) is the prior probability of the predictor

» Decision Tree

A decision tree is a classification and prediction
technique that uses tree-like structures to categorize or forecast
values based on a scoring measure. In these structures, internal
nodes represent tests on an attribute, branches extending from
nodes depict specific outputs, and leaf nodes signify an
outcome. A splitting criterion is responsible for dividing a
node, which can be discrete, continuous, or binary. This
splitting occurs recursively across multiple levels, hence the
term recursive partitioning of trees (rpart). For our analysis,
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we’ve utilized both rpart and classification trees (ctree) to
classify data into discrete binary values.

» Random Forest

Random Forest is a versatile classification and
regression approach that functions as an ensemble method
built upon Classification and Regression Trees (CART). It
operates by constructing multiple decision trees, each trained
on diverse data samples and distinct subsets of initial
variables. The final classification or regression is determined
by aggregating the results from these numerous trees, a
process repeated for a specified number of iterations.

e Algorithm:

v A decision tree is constructed randomly by selecting x
features and y samples from the dataset with replacement.

v" Net error is minimized by tree pruning.

v/ Steps 1 and 2 are repeated for a defined number of
iterations.

v’ The final classification is based on the average of all the
probability scores in the intermediate steps.

> Neural Network

Artificial neural networks (ANNs) mimic the biological
nervous system’s approach to information processing.
Essentially, an ANN is an interconnected system of “neurons”
that work simultaneously to solve a predefined problem.
Neural networks are renowned for their ability to extract
insights from imprecise data, often surpassing what humans or
other computational methods can achieve manually.

Each neuron within the network has an input and an
output. An activation function determines the neuron’s output
by processing its weighted input. In a multi-layer network, the
output from one neuron then serves as an input for subsequent
neurons, with the weights associated with each connection
being updated through a learning process. Figure 6 illustrates
a typical neural network featuring a single hidden layer. For
this analysis, we have employed a back-propagation neural
network model.

Input Layer Hidden Layer Output Layer

Input 1
—_—|

Input 2
N

Fig 6. A Neural Network Model
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» Ada Boost/Bag

Ensemble learning is a powerful technique that combines
multiple algorithms, known as base learners, to create a more
robust model. This approach typically results in higher
accuracy and a reduced generalization error. The most popular
types of ensemble techniques are bagging, boosting, and
stacking, each differing in their implementation, and these are
explained subsequently.

Bagging (Bootstrap Aggregating) essentially involves
averaging the results from different bootstrapped samples fed
into an algorithm. While averaging is common, weighted
averages or majority voting can also be used. Bagging
primarily serves to reduce the variance of a model. A classic
example of bagging is the Random Forest algorithm, which
utilizes variations of trees to make predictions.

Boosting is a sequential learning technique where the
first algorithm trains on the entire dataset, and subsequent
algorithms build upon the performance of the preceding
model. It specifically assigns higher weights to observations
that were not accurately predicted by the previous model,
effectively building a new model using the residuals from the
prior one.

AdaBoost (Adaptive Boosting) is one of the pioneering
boosting algorithms developed for classification problems. Its
core focus is on converting a set of weak classifiers into a
single strong classifier. The generalized equation representing
this classification algorithm is:

s
F(x) = Z on fn(x)
n=1

Here, f, denotes the n™ weak classifier and 6, is the
weight associated with it, making F(x) the weighted sum of all
the weak classifiers.

Algorithm:
v’ Initialize the weights for each data point in the dataset to

w; = 1/n, where n is the total number of data points.

v' The dataset is then fitted to weak classifiers, and the
classifier resulting in the least weighted classification error
is selected.

v" The weight of the n™" weak classifier is calculated as:

v 0, = 2 ln(l_E“), where €, is the error associated with the
2 €n

n'" classifier.

v’ The weight for each data point is updated using an equation
that also uses a normalization factor so that the sum of all
the weights is equal to 1.

v' Steps 2 to 4 are repeated for all n weak classifiers.

For the purpose of this analysis, both AdaBoost and its
modified variation, AdaBag has been used. While AdaBoost
employs a boosting approach, AdaBag incorporates bagging
for its ensemble learning.
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V. CASE STUDY

The dataset comprises 1985 observations with 62 distinct
attributes. A detailed description of these attribute types is
provided in Table 1. The response variable, ‘Flare Up’, is
categorical and binary, taking values of ‘1’ to signify a patient
experiencing a flare-up and ‘0’ for its absence. Model
accuracy has been evaluated using a contingency table.

As a preprocessing step, a few continuous features have
been removed from the dataset due to their high correlation
with other variables. Subsequently, feature selection
algorithms have been employed to extract the most relevant
features for classification. These selected features function as
the prognostic markers for the ‘Flare Up’ condition. Utilizing
these top extracted features, various classification models have
been built, resulting in increased accuracy.

Table 1. Attribute Description
Description
Patient experiences
flare up or not
Age, Gender, Height,
Weight, Race and Nationality
Severity of the disease
(higher implies more severe)
Lung function measurements derived
from spirometry
Specific history of
lung disease symptoms
History of cough, asthma
and other lung ailments
Results of questionnaires
to measure overall well-being in
patients
Patients smoking
habits

Attribute
Flare_Up

Demographics

Disease Stage

Lung Function

Disease History

Other Lung
Diseases
Respiratory
Questionnaire

Smoking History

The dataset comprises 1985 observations with 62 distinct
attributes. A detailed description of these attribute types is
provided in Table 1. The response variable, ‘Flare Up’, is
categorical and binary, taking values of ‘1’ to signify a patient
experiencing a flare-up and ‘0’ for its absence. Model
accuracy has been evaluated using a contingency table.

As a preprocessing step, a few continuous features have
been removed from the dataset due to their high correlation
with other variables. Subsequently, feature selection
algorithms have been employed to extract the most relevant
features for classification. These selected features function as
the prognostic markers for the ‘Flare_Up’ condition. Utilizing
these top extracted features, various classification models have
been built, resulting in increased accuracy.

VI. RESULTS

Feature selection has been performed using both
simulated annealing and a genetic algorithm. Of these, the
genetic algorithm demonstrated greater efficacy, with its
derived feature set proving to be more indicative of flare-up
prognostics. The prominent features identified by the genetic
algorithm are presented in Figure 5.
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In our investigation, various classification models were
developed to predict a patient’s propensity for flare-ups. The
Naive Bayes classifier yielded the lowest accuracy at 81.39%.
While the Decision Tree model offered a respectable accuracy
of 86.54%, the Random Forest algorithm demonstrated
superior performance. This ensemble method enhances
predictive power by constructing multiple decision trees from
diverse data subsets and aggregating their outputs, which
ultimately led to an improved accuracy of 87.73%.
Furthermore, the Random Forest’s inherent ability to reduce
variance and overcome the problem of overfitting, commonly
associated with single decision trees, made it a more robust
solution for this classification task.

Table 2. Classification Results

Model Accuracy
Naive Bayes Classifier 81.39%
Recursive Partitioning of Trees 86.54%
Classification Tree 86.19%
Random Forest 87.73%
Neural Networks 87.01%
Model Average Neural Networks 87.25%
AdaBoost 88.20%
AdaBag 87.07%
Boosted Classification Trees 87.66%

An Artificial Neural Network (ANN) model has then
been used for the classification problem. A back-propagation
neural network with five hidden layers has been trained,
observing that deeper architectures led to overfitting. We also
explored a model-averaged neural network, which enhances
generalization by averaging predictions from models trained
with different random initializations; this model achieved
87.25% accuracy.

Beyond individual ANNs, ensemble methods
substantially improved predictive accuracy. Specifically,
AdaBoost, an algorithm based on boosting, achieved an
accuracy of 88.20%. AdaBag, which employs bagging,
yielded 87.5% accuracy. Additionally, boosted classification
trees demonstrated strong performance with an accuracy of
87.66%. The performance metrics for all models are detailed
in Table 2.

Accuracy

rf 8773

©
°
3 adaboost 88.20
=
boosted-ctree 87.66
0 20 40 60 80 100

Fig 7. Top 3 Models
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Among the models evaluated, AdaBoost, Random
Forest, and Boosted Classification Trees emerged as the top
three classifiers. Figure 7 visually represents the accuracy of
these superior models for predicting a patient’s propensity for
flare-ups.

VII. CONCLUSION AND FUTURE WORK

This research effectively employed various machine
learning techniques and statistical methods to identify the
dominant factors contributing to respiratory flare-ups and
develop a model capable of accurately classifying a patient’s
tendency for these events. The Genetic Algorithm proved
instrumental in selecting key features that serve as crucial
prognostic markers for flare-up conditions. Among the
numerous classification models explored, AdaBoost
consistently vyielded the highest accuracy. This predictive
model offers a valuable tool for medical practitioners, enabling
them to forecast a patient’s likelihood of experiencing flare-
ups based on readily available symptoms and spirometry data.
This capability allows for the proactive implementation of
precautionary measures, ultimately improving patient care and
potentially reducing acute exacerbations.

To further advance this research and enhance the
model’s clinical utility, several key areas warrant future
investigation:

e Dataset Expansion and Enrichment: Expanding to a
substantially larger and more diverse dataset is crucial for
improving the model’s robustness and generalizability.
Future efforts should focus on integrating additional
features, particularly those related to genetic
predispositions or imperfections, which could offer deeper
insights into individual susceptibility to flare-ups.

e In-depth Feature Characterization: A comprehensive
descriptive study of each identified feature is essential.
This would involve a detailed evaluation of their individual
and synergistic impact on flare-up conditions, leading to a
more profound understanding of the underlying
pathophysiological mechanisms.

o Exploration of Deep Learning Architectures: While
traditional machine learning models showed promising
results, applying deep learning techniques to this dataset
should be explored. These advanced architectures may
uncover more complex and nuanced patterns, further
enhancing the model’s predictive power and generalization
capabilities across diverse patient populations.

e Prospective Clinical Validation: To affirm the real-world
applicability and predictive accuracy of the model, future
work must include rigorous prospective validation using
new, unseen patient cohorts over an extended period. This
crucial step will establish its clinical utility and reliability.

e Integration with Electronic Health Records (EHR):
Investigating the seamless integration of this predictive
model directly into existing Electronic Health Record
(EHR) systems could revolutionize clinical workflow.
Such integration would enable real-time risk assessment,
making the model more accessible and actionable for
healthcare providers at the point of care.

e Development of Personalized Intervention Strategies:
Building upon the model’s predictive capabilities, future
research could focus on designing and evaluating
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personalized intervention strategies tailored to individual
patient risk profiles. This would transition the work from
mere prediction to actionable clinical guidelines for
precision medicine.

Health Economic Analysis: A thorough cost-benefit
analysis of implementing this predictive model in routine
clinical practice would be highly beneficial. This analysis
would quantify the potential healthcare savings through
reduced hospitalizations and emergency visits versus the
investment in technology and clinician training.
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