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Abstract: Echo Vision is a mobile assistive navigation system that uses augmented reality (AR) and edge computing to guide
visually impaired users. We use ARCore for real-time camera pose tracking on smartphones that support it. If a device does
not support ARCore, we use ORB-SLAMS3. The system constantly checks if the environment is indoor or outdoor using a
deep scene recognition model (Places365). This information helps select the correct object detection method. A YOLOV8
model is used for object detection indoors, and an SSD Mobile Net V3 detector is used outdoors for important obstacles. The
phone sends video frames to a local server over Wi-Fi, and the server returns identified objects with their locations and
distance ranges (for example, 0-1 m or 1-1.5 m). A sliding memory module on the server combines recent detections and
creates periodic voice prompts that summarize nearby obstacles. This avoids too many repeated alerts. The client application
shows visual overlays of the environment and obstacles and gives voice warnings through Android TextToSpeech, with
vibration alerts for objects closer than 1 m. Tests in hallways and outdoor paths show that EchoVision can adjust its frame
rate based on changes in the scene. This helps manage network use. This paper describes the architecture, implementation,
and performance of Echo Vision. It also explains the current features and future steps for an edge-cloud assistive platform.
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I INTRODUCTION activates the right object detection model: YOLOv8 for
indoor details or an SSD MobileNetV3 model for outdoor
obstacles. This approach focuses on obstacles that appear in
each environment without forcing the phone to run multiple
detection models at once.

Many people with visual impairments face challenges in
navigating. Traditional tools, such as a white cane, help detect
obstacles nearby but give limited scene awareness. Recent
progress in computer vision and mobile computing makes it

possible to offer a richer understanding of surroundings.
Earlier work includes wearable vision systems that provide
audio or haptic feedback. For example, Bourbakis et al. [1]
presented the Tyflos smart assistant, which uses camera input
and voice feedback to describe the user’s environment. Lee et
al. [2] proposed a system with an RGB-D camera to guide a
user indoors and outdoors by providing tactile signals. These
solutions often need special hardware or have difficulty
running in real-time. There is a need for a phone-based
system that can process the environment and deliver
important information without delays or too much distraction.

Echo Vision uses smartphone sensors and processing
together with a local server for extra computing power. The
system can tell whether the user is indoors or outdoors by
using a Places365 scene classification network. It then
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Echo Vision uses an edge offloading architecture: the
phone captures and sends video frames to a nearby server for
deep learning. The server detects obstacles and estimates how
close they are, then sends back a short description of what it
sees. To prevent too many alerts, the server keeps track of
recent detections in a short memory. It sends summarized
voice messages every few seconds, so the user does not hear
repeated warnings for the same obstacle. This design follows
assistive technology guidelines to limit extra information.
The user hears these summaries through the phone's speaker
and can also see visual outlines (for users with some vision)
and feel vibrations for obstacles that are very close. By
combining audio, visual, and vibration feedback, EchoVision
delivers information in multiple ways.
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Our main contributions are: (1) a smartphone-based aid
that uses ARCore or ORB-SLAM3 to track position while
running deep learning to understand the environment, (2) a
method that recognizes if the user is indoors or outdoors and
picks the right object detection model, (3) an edge computing
design that sends heavy vision tasks to a server for real-time
processing, and (4) a sliding memory approach that
summarizes voice alerts to avoid too many messages. We
explain our latest design and show test results in real
environments. Section Il covers related work, Section Il
describes the system, Section IV shows test results, and
Section V concludes with future plans.

1. RELATED WORKS

Early navigation tools for the visually impaired often
depended on special hardware, such as ultrasonic sensors or
RGB-D cameras, and provided basic feedback like beeps or
vibrations. As computer vision improved, researchers started
using object detection and scene classification to give more
detailed information. The YOLO family of detectors is
popular because it can detect objects quickly and with
reasonable accuracy. Erdaw et al. [3] used YOLOV2 for real-
time detection of potholes and trash bins. Alsultan et al. [4]
tried YOLOvV7 for recognizing objects around blind users.
Chaudhary et al. [5] built a YOLOv3-based system that also
estimated object distances for safer navigation. These studies
show that single-shot detectors work well in assistive devices,
especially with distance estimation. EchoVision builds on
these ideas with YOLOV8, which has an anchor-free structure
and several model sizes for different deployment needs [6].
By running YOLOV8 on the server, EchoVision uses these
methods without needing a powerful phone.

Scene recognition is also important because it tells the
system whether the user is inside or outside. Zhou et al. [7]
introduced the Places database with many images across
many scene types, allowing deep networks to learn to classify
scenes. In assistive systems, knowing the scene type helps
decide which objects matter. Some previous work did not
consider this context. In EchoVision, we use a Places365
CNN to identify indoor or outdoor settings in real-time. Then
we switch detection pipelines. This is somewhat like Lee et
al. [2], which used different strategies for indoor and outdoor
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guidance. However, our approach uses software to pick the
right detection model and audio feedback.

Visual SLAM and AR frameworks are often used for
localization. ARCore can track a smartphone’s position by
combining camera and inertial data. This can keep track of
the user’s movement and place virtual information in the right
spot. Zhang et al. [9] showed that ARCore can help visually
impaired users by giving stable navigation clues. For older
devices, ORB-SLAM3 can provide monocular SLAM for
both indoor and outdoor areas [8]. EchoVision includes both
ARCore (when available) and ORB-SLAM3 (as a fallback)
to keep track of the camera’s movement.

Feedback to the user is usually through voice or haptics.
Spoken information is easy to understand and can include
object names and positions. But if the system speaks too
often, it can overwhelm the user. Research recommends
filtering alerts and focusing on key details. Some systems also
add vibrations for close objects, because vibrations can catch
the user’s attention quickly. In EchoVision, we deliver voice
for overall obstacle information and a vibration alert for very
close objects. This approach follows the idea of giving
general information in audio and using haptics for urgent
warnings. Our sliding memory system reduces repeated
announcements by only speaking about obstacles that remain
relevant over time.

Offloading tasks to a local server or cloud can improve
performance and save phone battery, as many deep learning
models are large. Network speed must be considered, but
local servers often have enough bandwidth for real-time
tasks. Our system sends frames to a server, which runs
classification, detection, and summarization, and returns
results. This design can scale in the future if a cloud service
is used, letting multiple users connect while the phone only
handles capturing images and playing back audio.

Echo Vision builds on these ideas: AR-based
localization [9], environment classification [7], object
detection for assistive tasks [3][4][5][6], and a multi-channel
interface. By combining them, along with environment-
specific detection and summarized feedback, Echo Vision
helps people with visual impairments in different conditions.
We will now describe the system’s design.

Table 1 Literature Survey

S.No | Title of the Research Paper Authors Year Methodology Used Limitations
1 An Effective Obstacle Detection A. Ben 2024 | YOLOv5-based obstacle Requires embedded
System Using Deep Learning Atitallah et al. detection system with optimization for real-time
Advantages to Aid Blind and pruning and quantization use
Visually Impaired Navigation
2 YOLO by Ultralytics (YOLOV8) | G. Jocheretal. | 2023 | YOLOvV8 with improved Requires high
architecture and speed computational power for
training
3 SSD: Single Shot MultiBox W. Liuetal. 2016 | SSD for object detection Struggles with detecting
Detector using multi-scale feature small objects
maps
4 ORB-SLAM3: An Accurate C. Camposet | 2021 ORB-SLAMS3 for Performance degrades in
Open-Source Library al. simultaneous localization dynamic environments

and mapping
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5 Searching for MobileNetV3 A. Howard et | 2019 MobileNetV3 for Lower accuracy compared
al. lightweight deep learning to heavier networks
on mobile devices
6 SURF: Speeded Up Robust H. Bay, T. 2008 SUREF for feature Less accurate than SIFT in
Features Tuytelaars, L. extraction and matching some cases; still not
Van Gool optimized for deep learning
7 Distinctive Image Features from D. G. Lowe 2004 SIFT (Scale-Invariant Computationally
Scale-Invariant Keypoints Feature Transform) for expensive; not suitable for
keypoint detection real-time apps
8 You Only Look Once: Unified, | J. Redmon,S. | 2016 | YOLO (You Only Look Less accurate than two-
Real-Time Object Detection Divvala, R. Once) single-shot object stage detectors like Faster
Girshick, A. detection R-CNN
Farhadi
9 A Comprehensive Review of M. H. Abidi er | 2024 A review of various Lack of experimental
Navigation Systems for Visually al. navigation systems for validation
Impaired Individuals visually impaired
10 Enhancing Accessible M. Matei and | 2024 Multimodal approach Requires extensive user
Navigation: A Fusion of Speech, L. Alboaie integrating speech training; potential latency
Gesture,Sonification for the commands, gestures, and in real-time gesture
Visually Impaired sonification recognition
I1. PROPOSED SYSTEM speech. If an obstacle is within 1 meter, the phone vibrates for

The EchoVision system has a client-side app and a
server-side backend. We use an edge-offloading model: the
phone captures images and sends them out, and the server
does the heavy processing.

» Client (Smartphone App)

The client is an Android app that uses AR for tracking
and has assistive features. On phones that support ARCore, it
gets camera poses in real-time by combining camera visuals
with inertial sensors. This allows it to place virtual markers
in a stable way. If ARCore is not available, the app uses ORB-
SLAM3 instead. ORB-SLAMS3 runs on the phone and
calculates the camera path and a sparse map of the
environment. We still send frames to the server for detection.
With either ARCore or ORB-SLAMS3, the phone has a pose
estimate. It checks user movements such as walking or
turning.

The app captures and sends video frames at a certain
rate. It encodes frames (with some size reduction) to Base64
and sends them to the server through a REST API over Wi-
Fi. To avoid slow performance, the app can lower the frame
rate if the scene does not change much. If the user is moving
fast or new obstacles appear, the frame rate goes up. This
balance saves bandwidth and processing time but keeps the
system responsive.

When the phone receives the server’s detection results,
it shows bounding boxes and labels (with approximate
distance) on the camera view. It also displays an icon or text
that says “Indoor” or “Outdoor,” along with the detection
model used (YOLO or SSD). The app uses Android
TextToSpeech to speak the summary from the server, such
as, “Indoor. Chair on your left, near one meter.” After some
time, if new objects appear or distances change, it might say,
“Ahead, table about two meters away.” The phone also has a
minimum time gap between messages to avoid overlapping
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a moment to warn the user of something very close.
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Fig 1 Server Side Processing
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The server is a Python Flask app on a device in the same
network. Its tasks include environment classification, object
detection, and summarizing results. When a frame arrives, the
server converts the Base64 string into an image. It then uses
the Places365 model to decide if the scene is indoor or
outdoor. The model outputs probabilities for various scenes.
We look at the top predictions and choose indoor or outdoor
based on them. If the classification stays consistent over a few
frames, the system sets the environment type.
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We then pick the right detection model. Indoors, we use
YOLOV8. YOLOv8n (trained on COCO) detects many
indoor objects. Outdoors, we use SSD MobileNet V3, for
real-time tasks and focuses on objects like people and
vehicles. Only one model runs at a time, based on the
environment type. If the user moves from inside to outside,
the system switches models (Fig 1).

Detected Obiject

!

Bounding Box Height (pixels)

!

Assumed Real Height (H_real)

!

Use Approx. Focal Length (f)

!

Estimate Distance: d = (f *
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1—1.5m

1

Bin: Close
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{

Bin: Near (O—1m)

¥Which Distance Bin?

!

Unsupportesl markdown:
blockquote

1.5-—3m

4

Bin: Moderate Bin: Far

Fig 2 Position Calculation

The detection model produces bounding boxes, labels,
and confidence scores. EchoVision estimates each object’s
distance range by using the object’s size on the screen as
presented in the following Eq. (1) . We have bins like 0-1 m,
1-1.5m, 1.5-3m, and >3 m as seen in Fig 3. These bins were
chosen through testing. The server makes a list of the objects’
labels, box coordinates, and distance bins as seen in Fig 2.

o Estimate Distanced = (f * H_real) / h_pixels (1)
f is the Focal Length
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H_real is the Assumed Real Height
e h_pixels is the Bounding Box Height

Before sending these results back, the server uses a
sliding memory module. It keeps track of objects that appear
over a short time and where they are relative to the user. It
creates a summary to avoid repeating the same object over
and over. If a chair has been detected on the left for several
frames, the system mentions it once until something changes.

1231


https://doi.org/10.38124/ijisrt/25sep880
http://www.ijisrt.com/

Volume 10, Issue 9, September — 2025
ISSN No: -2456-2165

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25sep880

Actual Bin
Close Near

Moderate

Far

1 '
Near Close

Distance Bin Estimation Confusion Matrix

1
Moderate Far
Predicted Bin

40

30

- 20

- 10

Fig 3 Distance Estimation

The module also highlights objects that are closer or
directly in front of the user. It then composes a short message
that starts with “indoor” or “outdoor,” followed by the main
obstacles. After it forms this summary, the server sends it to
the phone along with the objects’ data in JSON. The latency
is a few hundred milliseconds, depending on the network and
processing. In our tests, local Wi-Fi and an edge GPU gave
200-300 ms per cycle, which is enough for walking speed.
This design is flexible. If there is no local server, we can
connect to a cloud server with similar processing. The data
can be encrypted for security. In this prototype, the server
runs on a private local network. We can also upgrade any part
without changing the rest. For example, if we have a more
specialized indoor model, we can switch it in on the server
side. The summarization logic can also be changed to make
messages shorter or more detailed. We see EchoVision as a
system that can improve over time, combining phone-based
sensors with server-based Al.

20015 AL X -

V. RESULTS OF EXPERIMENTS

We tested Echo Vision indoors and outdoors to check
detection accuracy, response speed, and how well the
guidance works. Indoor tests were in an office corridor and a
room with chairs, tables, doors, and trash bins. Outdoor tests
were on a residential street with sidewalks, parked cars,
passing pedestrians, and common road-side objects.

Places365 recognized indoor or outdoor in over 95% of
frames after a short delay. When moving from a building to
the street, the system switched modes within about one
second. This allowed the correct detection model to run most
of the time. Sometimes, changes in lighting made it uncertain,
but the system waited for a few frames to confirm before
switching.

8 =520 39% &

Environment: indoor
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Fig 4 Overlay Tsting Detection Example
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Indoors, YOLOvV8n detected items like chairs, desks,
and doors reliably. Thin objects, like narrow poles, were
sometimes missed, possibly due to COCO training data
limitations. Outdoors, SSD MobileNet found people, cars,
and other objects in view. For example, it detected a
pedestrian at around 20 m (“Far”) and tracked them until they
passed close (“Near”), triggering vibration. It also detected
parked cars and lampposts. These tests showed that switching
models was helpful for focusing on objects that matter in each
environment.

The simple distance estimation bins gave rough ranges
that were found helpful. Vibration for objects under 1 m was
useful outdoors. If a cyclist came close, the phone vibrated
quickly, even before the audio could play. Indoors, the
vibration alerted users to a chair blocking a path. Users did
not get vibration for objects beyond 1 m.

The system gave voice messages about every 3 seconds
when the user was moving. For example, indoors it would
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say, “Indoor mode. Ahead, the door at five meters,” then later,
“Doorway one meter ahead.” Outdoors, it might say,
“Outdoor mode. Vehicle on left, sidewalk clear ahead,” and
then, “Traffic light pole on your right at two meters.” The
time-based summaries were enough for understanding the
scene without too many messages. In crowded areas, the
summary listed several obstacles, making the audio longer.
We plan to refine this to focus on the most important
obstacles. Quick detections that vanished fast were usually
not announced. This reduced unnecessary messages.

The end-to-end delay from capture to spoken feedback
was about 150 ms indoors (YOLOv8n) and 120 ms outdoors
(SSD) with local Wi-Fi and a GPU. We reached about 67
FPS when needed, but the frame rate often stayed around 2—
3 FPS in quiet scenes with the load-aware throttle as seen in
Fig 5. This saved half or more of the network traffic. If the
network dropped briefly, we saw that the system should
handle server unavailability better in the future

Smart Throttling: FPS vs Motion vs Bandwidth
Frame Rate (FPS)
1751 —a&— Motion Score
—a— Bandwidth (KB/s)
150 Walking
Idle
155 Resumed Motion
Cluttered
Open Area
o 100}
=)
s
75t
50 |
25+
0 - B——s—a— s s e
0 10 20 40 50 60
Time (seconds)
Fig 5 Smart FPS Throttle
Tracking ran smoothly during many tests. ARCore kept V. CONCLUSION & FUTURE WORKS

bounding boxes in place in the camera view. ORB-SLAM3
was enough for older phones, but it lost track in areas without
clear features. The Flask server processed requests and kept
the memory module within set limits. We will add features to
notify the user if the connection to the server is lost.

Overall, tests showed that EchoVision can detect
obstacles and adjust to indoor or outdoor conditions. By using
the right model for each environment and summarizing
detections over time, the system gives useful guidance
without too many alerts. This supports ideas from other
assistive devices that use context and intelligent filtering
helps the user.
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This paper explains EchoVision, a phone-based
navigation aid for people with visual impairments that uses
AR tracking, context-aware object detection, and offloading
to a local server. The main feature is switching between
indoor and outdoor detection pipelines by using a Places365
classifier. This allows EchoVision to choose YOLOV8 for
indoor items or SSD-MobileNet for outdoor objects. ARCore
helps with localization on newer devices, and ORB-SLAM3
is available as a backup.

By sending frames to a local server, we can run deep
learning models that might not fit on a phone. The tests
suggest that this setup works in real time, and it can be
expanded in the future. EchoVision also uses a short memory
to make speech guidance less repetitive. Multimodal
feedback (visual overlays, voice, and vibration) can assist
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people with different levels of vision.Our experiments show
that EchoVision switches environment context and detects
objects well, guiding users indoors and outdoors. In future
work, we plan to include depth estimates from ARCore’s
depth API, test with more participants and try model
optimization for times when the server connection is weak

We see EchoVision as a flexible platform for improving
navigation for visually impaired users.
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