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Abstract: Echo Vision is a mobile assistive navigation system that uses augmented reality (AR) and edge computing to guide 

visually impaired users. We use ARCore for real-time camera pose tracking on smartphones that support it. If a device does 

not support ARCore, we use ORB-SLAM3. The system constantly checks if the environment is indoor or outdoor using a 

deep scene recognition model (Places365). This information helps select the correct object detection method. A YOLOv8 

model is used for object detection indoors, and an SSD Mobile Net V3 detector is used outdoors for important obstacles. The 

phone sends video frames to a local server over Wi-Fi, and the server returns identified objects with their locations and 

distance ranges (for example, 0–1 m or 1–1.5 m). A sliding memory module on the server combines recent detections and 

creates periodic voice prompts that summarize nearby obstacles. This avoids too many repeated alerts. The client application 

shows visual overlays of the environment and obstacles and gives voice warnings through Android TextToSpeech, with 

vibration alerts for objects closer than 1 m. Tests in hallways and outdoor paths show that EchoVision can adjust its frame 

rate based on changes in the scene. This helps manage network use. This paper describes the architecture, implementation, 

and performance of Echo Vision. It also explains the current features and future steps for an edge-cloud assistive platform. 
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I. INTRODUCTION 

 

Many people with visual impairments face challenges in 

navigating. Traditional tools, such as a white cane, help detect 

obstacles nearby but give limited scene awareness. Recent 

progress in computer vision and mobile computing makes it 

possible to offer a richer understanding of surroundings. 

Earlier work includes wearable vision systems that provide 
audio or haptic feedback. For example, Bourbakis et al. [1] 

presented the Tyflos smart assistant, which uses camera input 

and voice feedback to describe the user’s environment. Lee et 

al. [2] proposed a system with an RGB-D camera to guide a 

user indoors and outdoors by providing tactile signals. These 

solutions often need special hardware or have difficulty 

running in real-time. There is a need for a phone-based 

system that can process the environment and deliver 

important information without delays or too much distraction. 

 

Echo Vision uses smartphone sensors and processing 

together with a local server for extra computing power. The 
system can tell whether the user is indoors or outdoors by 

using a Places365 scene classification network. It then 

activates the right object detection model: YOLOv8 for 

indoor details or an SSD MobileNetV3 model for outdoor 

obstacles. This approach focuses on obstacles that appear in 

each environment without forcing the phone to run multiple 

detection models at once. 

 

Echo Vision uses an edge offloading architecture: the 

phone captures and sends video frames to a nearby server for 
deep learning. The server detects obstacles and estimates how 

close they are, then sends back a short description of what it 

sees. To prevent too many alerts, the server keeps track of 

recent detections in a short memory. It sends summarized 

voice messages every few seconds, so the user does not hear 

repeated warnings for the same obstacle. This design follows 

assistive technology guidelines to limit extra information. 

The user hears these summaries through the phone's speaker 

and can also see visual outlines (for users with some vision) 

and feel vibrations for obstacles that are very close. By 

combining audio, visual, and vibration feedback, EchoVision 

delivers information in multiple ways. 
 

https://doi.org/10.38124/ijisrt/25sep880
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25sep880


Volume 10, Issue 9, September – 2025                                International Journal of Innovative Science and Research Technology 

ISSN No: -2456-2165                                                                                                                     https://doi.org/10.38124/ijisrt/25sep880 

 

 

IJISRT25SEP880                                                                  www.ijisrt.com                                             1229 

Our main contributions are: (1) a smartphone-based aid 

that uses ARCore or ORB-SLAM3 to track position while 
running deep learning to understand the environment, (2) a 

method that recognizes if the user is indoors or outdoors and 

picks the right object detection model, (3) an edge computing 

design that sends heavy vision tasks to a server for real-time 

processing, and (4) a sliding memory approach that 

summarizes voice alerts to avoid too many messages. We 

explain our latest design and show test results in real 

environments. Section II covers related work, Section III 

describes the system, Section IV shows test results, and 

Section V concludes with future plans. 

 

II. RELATED WORKS 

 

Early navigation tools for the visually impaired often 

depended on special hardware, such as ultrasonic sensors or 

RGB-D cameras, and provided basic feedback like beeps or 

vibrations. As computer vision improved, researchers started 

using object detection and scene classification to give more 

detailed information. The YOLO family of detectors is 

popular because it can detect objects quickly and with 

reasonable accuracy. Erdaw et al. [3] used YOLOv2 for real-

time detection of potholes and trash bins. Alsultan et al. [4] 

tried YOLOv7 for recognizing objects around blind users. 
Chaudhary et al. [5] built a YOLOv3-based system that also 

estimated object distances for safer navigation. These studies 

show that single-shot detectors work well in assistive devices, 

especially with distance estimation. EchoVision builds on 

these ideas with YOLOv8, which has an anchor-free structure 

and several model sizes for different deployment needs [6]. 

By running YOLOv8 on the server, EchoVision uses these 

methods without needing a powerful phone. 

 

Scene recognition is also important because it tells the 

system whether the user is inside or outside. Zhou et al. [7] 
introduced the Places database with many images across 

many scene types, allowing deep networks to learn to classify 

scenes. In assistive systems, knowing the scene type helps 

decide which objects matter. Some previous work did not 

consider this context. In EchoVision, we use a Places365 

CNN to identify indoor or outdoor settings in real-time. Then 

we switch detection pipelines. This is somewhat like Lee et 

al. [2], which used different strategies for indoor and outdoor 

guidance. However, our approach uses software to pick the 

right detection model and audio feedback. 
 

Visual SLAM and AR frameworks are often used for 

localization. ARCore can track a smartphone’s position by 

combining camera and inertial data. This can keep track of 

the user’s movement and place virtual information in the right 

spot. Zhang et al. [9] showed that ARCore can help visually 

impaired users by giving stable navigation clues. For older 

devices, ORB-SLAM3 can provide monocular SLAM for 

both indoor and outdoor areas [8]. EchoVision includes both 

ARCore (when available) and ORB-SLAM3 (as a fallback) 

to keep track of the camera’s movement. 
 

Feedback to the user is usually through voice or haptics. 

Spoken information is easy to understand and can include 

object names and positions. But if the system speaks too 

often, it can overwhelm the user. Research recommends 

filtering alerts and focusing on key details. Some systems also 

add vibrations for close objects, because vibrations can catch 

the user’s attention quickly. In EchoVision, we deliver voice 

for overall obstacle information and a vibration alert for very 

close objects. This approach follows the idea of giving 

general information in audio and using haptics for urgent 

warnings. Our sliding memory system reduces repeated 
announcements by only speaking about obstacles that remain 

relevant over time. 

 

Offloading tasks to a local server or cloud can improve 

performance and save phone battery, as many deep learning 

models are large. Network speed must be considered, but 

local servers often have enough bandwidth for real-time 

tasks. Our system sends frames to a server, which runs 

classification, detection, and summarization, and returns 

results. This design can scale in the future if a cloud service 

is used, letting multiple users connect while the phone only 
handles capturing images and playing back audio. 

 

Echo Vision builds on these ideas: AR-based 

localization [9], environment classification [7], object 

detection for assistive tasks [3][4][5][6], and a multi-channel 

interface. By combining them, along with environment-

specific detection and summarized feedback, Echo Vision 

helps people with visual impairments in different conditions. 

We will now describe the system’s design. 

 

Table 1 Literature Survey 

S.No Title of the Research Paper Authors Year Methodology Used Limitations 

1 An Effective Obstacle Detection 
System Using Deep Learning 

Advantages to Aid Blind and 

Visually Impaired Navigation 

A. Ben 
Atitallah et al. 

2024 YOLOv5-based obstacle 
detection system with 

pruning and quantization 

Requires embedded 
optimization for real-time 

use 

2 YOLO by Ultralytics (YOLOv8) G. Jocher et al. 2023 YOLOv8 with improved 

architecture and speed 

Requires high 

computational power for 

training 

3 SSD: Single Shot MultiBox 

Detector 

W. Liu et al. 2016 SSD for object detection 

using multi-scale feature 

maps 

Struggles with detecting 

small objects 

4 ORB-SLAM3: An Accurate 

Open-Source Library 

C. Campos et 

al. 

2021 ORB-SLAM3 for 

simultaneous localization 

and mapping 

Performance degrades in 

dynamic environments 
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5 Searching for MobileNetV3 A. Howard et 

al. 

2019 MobileNetV3 for 

lightweight deep learning 

on mobile devices 

Lower accuracy compared 

to heavier networks 

6 SURF: Speeded Up Robust 
Features 

H. Bay, T. 
Tuytelaars, L. 

Van Gool 

2008 SURF for feature 
extraction and matching 

Less accurate than SIFT in 
some cases; still not 

optimized for deep learning 

7 Distinctive Image Features from 

Scale-Invariant Keypoints 

D. G. Lowe 2004 SIFT (Scale-Invariant 

Feature Transform) for 

keypoint detection 

Computationally 

expensive; not suitable for 

real-time apps 

8 You Only Look Once: Unified, 

Real-Time Object Detection 

J. Redmon, S. 

Divvala, R. 

Girshick, A. 

Farhadi 

2016 YOLO (You Only Look 

Once) single-shot object 

detection 

Less accurate than two-

stage detectors like Faster 

R-CNN 

9 A Comprehensive Review of 

Navigation Systems for Visually 

Impaired Individuals 

M. H. Abidi er 

al. 

2024 A review of various 

navigation systems for 

visually impaired 

Lack of experimental 

validation 

10 Enhancing Accessible 

Navigation: A Fusion of Speech, 

Gesture,Sonification for the 
Visually Impaired 

M. Matei and 

L. Alboaie 

2024 Multimodal approach 

integrating speech 

commands, gestures, and 
sonification 

Requires extensive user 

training; potential latency 

in real-time gesture 
recognition 

 
III. PROPOSED SYSTEM 

 
The EchoVision system has a client-side app and a 

server-side backend. We use an edge-offloading model: the 

phone captures images and sends them out, and the server 

does the heavy processing. 

 

 Client (Smartphone App) 

The client is an Android app that uses AR for tracking 

and has assistive features. On phones that support ARCore, it 
gets camera poses in real-time by combining camera visuals 

with inertial sensors. This allows it to place virtual markers 

in a stable way. If ARCore is not available, the app uses ORB-

SLAM3 instead. ORB-SLAM3 runs on the phone and 

calculates the camera path and a sparse map of the 

environment. We still send frames to the server for detection. 

With either ARCore or ORB-SLAM3, the phone has a pose 

estimate. It checks user movements such as walking or 

turning. 

 

The app captures and sends video frames at a certain 

rate. It encodes frames (with some size reduction) to Base64 
and sends them to the server through a REST API over Wi-

Fi. To avoid slow performance, the app can lower the frame 

rate if the scene does not change much. If the user is moving 

fast or new obstacles appear, the frame rate goes up. This 

balance saves bandwidth and processing time but keeps the 

system responsive. 

 

When the phone receives the server’s detection results, 

it shows bounding boxes and labels (with approximate 

distance) on the camera view. It also displays an icon or text 

that says “Indoor” or “Outdoor,” along with the detection 
model used (YOLO or SSD). The app uses Android 

TextToSpeech to speak the summary from the server, such 

as, “Indoor. Chair on your left, near one meter.” After some 

time, if new objects appear or distances change, it might say, 

“Ahead, table about two meters away.” The phone also has a 

minimum time gap between messages to avoid overlapping 

speech. If an obstacle is within 1 meter, the phone vibrates for  

a moment to warn the user of something very close. 

 

 Server 

 

 
Fig 1 Server Side Processing 
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The server is a Python Flask app on a device in the same 

network. Its tasks include environment classification, object 
detection, and summarizing results. When a frame arrives, the 

server converts the Base64 string into an image. It then uses 

the Places365 model to decide if the scene is indoor or 

outdoor. The model outputs probabilities for various scenes. 

We look at the top predictions and choose indoor or outdoor 

based on them. If the classification stays consistent over a few 

frames, the system sets the environment type. 

We then pick the right detection model. Indoors, we use 

YOLOv8. YOLOv8n (trained on COCO) detects many 
indoor objects. Outdoors, we use SSD MobileNet V3, for 

real-time tasks and focuses on objects like people and 

vehicles. Only one model runs at a time, based on the 

environment type. If the user moves from inside to outside, 

the system switches models (Fig 1). 

 

 
Fig 2 Position Calculation 

 

The detection model produces bounding boxes, labels, 

and confidence scores. EchoVision estimates each object’s 

distance range by using the object’s size on the screen as 

presented in the following Eq. (1) . We have bins like 0–1 m, 

1–1.5 m, 1.5–3 m, and >3 m as seen in Fig 3. These bins were 

chosen through testing. The server makes a list of the objects’ 

labels, box coordinates, and distance bins as seen in Fig 2. 
 

 Estimate Distanced = (f * H_real) / h_pixels (1) 

 f is the Focal Length 

 H_real is the Assumed Real Height 

 h_pixels is the Bounding Box Height  

 

Before sending these results back, the server uses a 

sliding memory module. It keeps track of objects that appear 

over a short time and where they are relative to the user. It 

creates a summary to avoid repeating the same object over 
and over. If a chair has been detected on the left for several 

frames, the system mentions it once until something changes.  
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Fig 3 Distance Estimation 

 

The module also highlights objects that are closer or 

directly in front of the user. It then composes a short message 

that starts with “indoor” or “outdoor,” followed by the main 
obstacles. After it forms this summary, the server sends it to 

the phone along with the objects’ data in JSON. The latency 

is a few hundred milliseconds, depending on the network and 

processing. In our tests, local Wi-Fi and an edge GPU gave 

200–300 ms per cycle, which is enough for walking speed. 

This design is flexible. If there is no local server, we can 

connect to a cloud server with similar processing. The data 

can be encrypted for security. In this prototype, the server 

runs on a private local network. We can also upgrade any part 

without changing the rest. For example, if we have a more 

specialized indoor model, we can switch it in on the server 
side. The summarization logic can also be changed to make 

messages shorter or more detailed. We see EchoVision as a 

system that can improve over time, combining phone-based 

sensors with server-based AI. 

IV. RESULTS OF EXPERIMENTS 

 

We tested Echo Vision indoors and outdoors to check 
detection accuracy, response speed, and how well the 

guidance works. Indoor tests were in an office corridor and a 

room with chairs, tables, doors, and trash bins. Outdoor tests 

were on a residential street with sidewalks, parked cars, 

passing pedestrians, and common road-side objects. 

 

Places365 recognized indoor or outdoor in over 95% of 

frames after a short delay. When moving from a building to 

the street, the system switched modes within about one 

second. This allowed the correct detection model to run most 

of the time. Sometimes, changes in lighting made it uncertain, 
but the system waited for a few frames to confirm before 

switching. 

 

 
Fig 4 Overlay Testing Detection Example 
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Indoors, YOLOv8n detected items like chairs, desks, 

and doors reliably. Thin objects, like narrow poles, were 
sometimes missed, possibly due to COCO training data 

limitations. Outdoors, SSD MobileNet found people, cars, 

and other objects in view. For example, it detected a 

pedestrian at around 20 m (“Far”) and tracked them until they 

passed close (“Near”), triggering vibration. It also detected 

parked cars and lampposts. These tests showed that switching 

models was helpful for focusing on objects that matter in each 

environment. 

 

The simple distance estimation bins gave rough ranges 

that were found helpful. Vibration for objects under 1 m was 
useful outdoors. If a cyclist came close, the phone vibrated 

quickly, even before the audio could play. Indoors, the 

vibration alerted users to a chair blocking a path. Users did 

not get vibration for objects beyond 1 m. 

 

The system gave voice messages about every 3 seconds 

when the user was moving. For example, indoors it would 

say, “Indoor mode. Ahead, the door at five meters,” then later, 

“Doorway one meter ahead.” Outdoors, it might say, 
“Outdoor mode. Vehicle on left, sidewalk clear ahead,” and 

then, “Traffic light pole on your right at two meters.” The 

time-based summaries were enough for understanding the 

scene without too many messages. In crowded areas, the 

summary listed several obstacles, making the audio longer. 

We plan to refine this to focus on the most important 

obstacles. Quick detections that vanished fast were usually 

not announced. This reduced unnecessary messages. 

 

The end-to-end delay from capture to spoken feedback 

was about 150 ms indoors (YOLOv8n) and 120 ms outdoors 
(SSD) with local Wi-Fi and a GPU. We reached about 6–7 

FPS when needed, but the frame rate often stayed around 2–

3 FPS in quiet scenes with the load-aware throttle as seen in 

Fig 5. This saved half or more of the network traffic. If the 

network dropped briefly, we saw that the system should 

handle server unavailability better in the future  

 

 
Fig 5 Smart FPS Throttle 

 

Tracking ran smoothly during many tests. ARCore kept 

bounding boxes in place in the camera view. ORB-SLAM3 

was enough for older phones, but it lost track in areas without 

clear features. The Flask server processed requests and kept 

the memory module within set limits. We will add features to 

notify the user if the connection to the server is lost. 

 
Overall, tests showed that EchoVision can detect 

obstacles and adjust to indoor or outdoor conditions. By using 

the right model for each environment and summarizing 

detections over time, the system gives useful guidance 

without too many alerts. This supports ideas from other 

assistive devices that use context and intelligent filtering 

helps the user. 

 

 

 

 

V. CONCLUSION & FUTURE WORKS 

 

This paper explains EchoVision, a phone-based 

navigation aid for people with visual impairments that uses 

AR tracking, context-aware object detection, and offloading 

to a local server. The main feature is switching between 

indoor and outdoor detection pipelines by using a Places365 
classifier. This allows EchoVision to choose YOLOv8 for 

indoor items or SSD-MobileNet for outdoor objects. ARCore 

helps with localization on newer devices, and ORB-SLAM3 

is available as a backup. 

 

By sending frames to a local server, we can run deep 

learning models that might not fit on a phone. The tests 

suggest that this setup works in real time, and it can be 

expanded in the future. EchoVision also uses a short memory 

to make speech guidance less repetitive. Multimodal 

feedback (visual overlays, voice, and vibration) can assist 
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people with different levels of vision.Our experiments show 

that EchoVision switches environment context and detects 
objects well, guiding users indoors and outdoors. In future 

work, we plan to include depth estimates from ARCore’s 

depth API, test with more participants and try model 

optimization for times when the server connection is weak 

 

We see EchoVision as a flexible platform for improving 

navigation for visually impaired users. 
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