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Abstract: Stroke recurrence remains one of the most devastating challenges in managing cerebrovascular disease, adding to 

disability, mortality, and rising healthcare costs worldwide. Being able to predict recurrence early could mean the difference 

between timely intervention and irreversible outcomes. In this study, we explored whether machine learning models - 

Logistic Regression, Random Forest, and XGBoost - could predict recurrence risk using only a small set of routine clinical 

features. Preprocessing involved managing missing values, scaling variables, and applying SMOTE to balance the classes 

without distorting real patient patterns. Models were evaluated across accuracy, precision, recall, F1 Score, and AUC-ROC, 

with greater weight placed on recall and F1 given the clinical need to minimize missed recurrences. Random Forest delivered 

the strongest results, achieving an accuracy of 92.39%, a recall of 94.05%, an F1 Score of 92.56%, and an AUC-ROC of 

97.04%. These findings suggest that even simple, carefully designed predictive models could offer real clinical value, 

particularly in healthcare environments where rich data resources are limited and early warnings could make a critical 

difference for patient care. 
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I. INTRODUCTION 

 
Stroke remains one of the heaviest health burdens 

worldwide, with incidence rates climbing steadily and 

mortality risks still alarmingly high. The strain falls hardest 

on low and middle-income countries, where access to 

preventive care is often patchy at best. Vulnerable 

populations bear the brunt, while health systems already 

stretched thin struggle to keep up. Researchers, practitioners, 

and policymakers cannot afford to look away from the 

growing urgency of this crisis. Recent projections are 

sobering. Deaths from stroke could climb by 50% by 2050, 

nearing 10 million each year. Survivors often live with long-

term disability, creating ripple effects that touch families, 
communities, and economies [1]. These numbers alone tell a 

story, but they barely capture the personal devastation hidden 

behind them. If preventive strategies are not dramatically 

improved, the suffering will be even worse than the statistics 

suggest. 
 

One area demanding urgent focus is the problem of 

recurrent strokes. Patients who make it through a first event 

face much higher odds of a second, and these follow-up 

strokes tend to hit harder. Recovery grows tougher with each 

new event, and the chances of regaining lost function shrink. 

It's a grim cycle, and breaking it depends on finding better 

ways to predict and prevent recurrence before patients fall 

into it. 

 

From a clinical and economic standpoint, recurrent 

strokes are disastrous. Direct medical costs surge with each 
incident, but the indirect costs (lost work, long-term care, 

lowered quality of life) can quietly eclipse even hospital bills. 

Traditional risk prediction tools have not kept pace. They 

often depend on complicated scoring systems that demand 
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detailed clinical inputs, making them tough to use in the real 
world, especially across varied patient groups [2]. Collecting 

all that information takes time, and the models built on it tend 

to miss the complex, tangled relationships between risk 

factors. Stroke risk is rarely a straight line. It bends and twists 

through biology, lifestyle, environment, and luck. Trying to 

pin it down with rigid, linear models leaves gaps wide enough 

for too many patients to fall through. 

 

Lately, a different path has been opening up. Machine 

learning offers tools that can handle complexity without 

getting bogged down by it. With the right algorithms, models 
can pick up faint warning signs hidden in just a handful of 

clinical features. Instead of drowning doctors in data, these 

approaches aim to simplify, making predictive tools faster, 

more accurate, and easier to deploy even in places with 

limited resources. What makes this shift even more promising 

is how adaptable machine learning tools can be. Whether in a 

high-tech urban hospital or a rural clinic where internet access 

is spotty, flexible models could help close the gap between 

who gets preventive care and who does not [3]. No 

technology will fix global health disparities overnight, but 

better prediction is one step toward giving every patient a 

fairer shot. 
 

More researchers are leaning into this idea. Reducing 

model complexity without losing predictive strength has 

become a new priority. When clinical data can be distilled 

into clear, actionable insights, healthcare providers have a 

better chance of identifying high-risk patients early and 

stepping in before disaster strikes [4], [5]. 

 

Driven by this urgent need, the current study sets out 

to evaluate machine learning models that rely on smaller, 

more manageable sets of clinical features. The goal is 
practical: to build prediction tools that actually work in the 

messy, unpredictable world of real clinical practice. Through 

testing and validation across different patient groups, we hope 

to develop models that not only predict recurrence more 

accurately but also fit into the real rhythms of healthcare. 

Because if the tools cannot reach the patients who need them, 

they do not matter. 

 

II. RELATED LITERATURE 

 

Predicting stroke recurrence remains one of the most 

pressing challenges in clinical research, given the enormous 
health burdens it continues to impose. Recurrent strokes not 

only increase patient morbidity and mortality but also amplify 

the financial strain on already stretched healthcare systems. 

Achieving accurate prediction is far from simple, especially 

when clinical datasets are large, complex, and packed with 

high-dimensional features that make models harder to 

interpret and apply in practice. Recent work has been moving 

toward machine learning (ML) approaches that rely on 

minimal clinical features, aiming to balance predictive 

strength with real-world usability [6], [7]. 

 
Across the past few years, a noticeable shift has taken 

place. Researchers are increasingly turning to ML models that 

focus on a smaller set of clinical variables while trying to 

maintain robust prediction. Different algorithms have been 
explored, each bringing a different set of strengths and 

challenges. Logistic regression still appeals for its simplicity 

and interpretability [8], while methods like random forests 

and gradient boosting offer strong performance with built-in 

resistance to overfitting [9], [10]. Neural networks have been 

promising in mapping non-linear relationships, but often at 

the cost of transparency, which can limit clinician trust [11]. 

Commonly selected clinical predictors across studies include 

patient age, blood pressure, medical history details like 

diabetes and smoking, medication use, especially 

anticoagulants, and NIHSS scores, which summarise 
neurological status [12], [13], [14]. 

 

The field has clearly evolved beyond the early 

dependence on traditional statistical methods. Logistic 

regression and similar approaches once dominated the scene, 

linking clinical variables to stroke risk in a straightforward 

manner [15]. More recently, researchers have leaned heavily 

into machine learning, especially as models like random 

forests, support vector machines, and boosting methods have 

shown a greater ability to navigate complex, non-linear data 

[16], [17], [18]. 

 
Studies focusing specifically on stroke recurrence 

have seen strong predictive results even from relatively 

simple models. Some models have reported accuracy rates 

crossing 90%, suggesting that keeping things simple can still 

yield highly relevant clinical insights [19] [18], [20], [21]. For 

instance, [16] compared different methods and found that 

random forests consistently outperformed logistic regression, 

reinforcing the idea that smart, streamlined models might 

better serve clinical needs. 

 

Looking at recent datasets, [6] examined predictive 
scores like Essen and SPI-II across a sample of 1,550 patients. 

They found AUC scores hovering around 0.63 - not terrible, 

but not the level needed for confident clinical use. Similarly, 

[22] studied the ABCD2 score in TIA patients, reporting 

AUCs between 0.592 and 0.683. These results show that 

while traditional scoring systems still have a role, their ceiling 

is visible, and newer approaches are needed to push beyond 

it. 

 

When comparing approaches, the story becomes even 

more layered. [23] showed that machine learning models 

could outperform conventional scores, but only when large, 
well-curated datasets were available. On the other hand, [24] 

applied an interpretable ML framework combining plaque 

burden and demographic data, achieving an AUC of 0.832 - 

a major leap forward using a surprisingly lean feature set. 

These contrasting results speak to an ongoing tension 

between model complexity and clinical practicality, a balance 

that is critical if these tools are ever going to become 

everyday aids for clinicians. 

 

Feature selection remains a huge part of this story. 

Researchers like [25] have shown that biological markers, 
particularly atherosclerotic plaque characteristics, can serve 

as effective minimal predictors for recurrence. 

Dimensionality reduction techniques have also gained 
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traction, with studies like [26] highlighting the predictive 
value of cerebral microbleeds. The shift toward focusing on a 

few well-chosen features seems not just pragmatic but 

necessary, especially if models are to remain both 

interpretable and actionable in clinical settings. 

 

That said, the field still faces several stumbling blocks. 

Many studies rely heavily on high-dimensional feature sets, 

which can make generalisation across patient groups difficult. 

[27] warned that without expanding external validation, 

models risk becoming brittle - strong within one dataset, but 

weak anywhere else. Similarly, even highly optimised 
models, like those built by [28], cannot assume success 

outside their original cohorts without rigorous testing. 

Finding the right balance between accuracy and usability 

remains a missing piece in the current research landscape. 

 

Dataset characteristics vary widely across studies. 

Some researchers work with just a handful of features; others 

push datasets with fifty variables or more [18]. Evaluation 

metrics also differ, though accuracy, precision, recall, F1-

score, and AUC remain the standards [21], [35]. Feature 

selection methods, including chi-square testing and recursive 

feature elimination, have been essential for cutting down 
complexity without sacrificing prediction quality. Some 

groups have gone further by using advanced sampling 

techniques like SMOTE to tackle class imbalance in stroke 

datasets, enhancing both accuracy and fairness [31], [32]. 

 

Despite progress, real gaps remain. There's still too 

much dependence on large, messy feature sets that don't 

easily translate to clinical workflows [18], [29]. Researchers 

are only just starting to give real attention to minimalist 

models that prioritise simplicity and clinical relevance [30], 

[21]. 
 

Validation across different patient populations also 
continues to lag. Clinicians are rightly cautious about relying 

on models that have not been stress-tested outside controlled 

environments. Tools like SHAP are gaining popularity for 

improving model transparency [33], helping clinicians 

understand not just what a model predicts, but why it makes 

those predictions. 

 

Real-world deployment, especially in low-resource 

settings, presents another obstacle. Even the most accurate 

model means little if it cannot be easily implemented. 

Solutions need to be not just effective, but accessible, fitting 
into busy clinics without requiring perfect data or expensive 

infrastructure [19], [34]. 

 

Although machine learning has already reshaped the 

field of stroke recurrence prediction, much of the work feels 

like the beginning rather than the end. Many studies show 

promise, but few have built the kind of models that can easily 

move from theory into practice. Future research needs to 

focus more sharply on developing models that are not only 

accurate but also clinically viable, validated, and interpretable 

- tools that genuinely help providers and patients navigate the 

uncertainties of stroke risk. 
 

III. METHODOLOGY 

 

Our study adopts a step-by-step approach built to 

support accurate and interpretable predictions of stroke 

recurrence. It begins with data acquisition, followed by a 

thorough preprocessing phase to address any quality issues. 

After that, we move into careful feature engineering and 

model development, making sure each step builds cleanly on 

the last. The overall workflow is captured in the architecture 

diagram below, which maps out the journey from initial data 
collection all the way through to model evaluation.

 

 
Fig 1 Architecture Diagram Representing the Stroke Recurrence Prediction Workflow 

 

A. Data Collection 

We based our study on a secondary dataset containing 

anonymized electronic health records from patients assessed 

for stroke events and recurrence. The dataset was drawn from 

a publicly accessible clinical repository that follows 
established privacy standards and ethical data-sharing 

practices, aligning with FAIR principles (Findable, 

Accessible, Interoperable, and Reusable). Even though the 

records were already de-identified, we maintained careful 

attention to patient confidentiality, responsible data use, and 

research reproducibility throughout the project. 

 

The dataset includes over 5,000 individual patient 

records, covering demographic details, medical histories, 

lifestyle factors, and stroke status. For this study, we focused 

only on adult patients aged 18 and older who had complete 

outcome data. Records missing outcome labels or critical 
predictor information were removed during preprocessing, 

leaving a final sample of 4,769 valid cases. 

 

Although the original source did not provide a clear 

description of its sampling strategy, exploratory analysis 

showed a fairly broad distribution of patients across different 

socioeconomic and geographic backgrounds. This diversity 

strengthens the relevance of the findings to wider 
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populations, but the absence of random sampling does leave 
some open questions about how easily the results might 

generalize beyond this dataset. 

 

B. Data Preprocessing 

We applied a multi-stage preprocessing pipeline to 

strengthen data reliability and support better model 

performance. The process involved handling missing values, 

managing outliers, encoding categorical variables, 

normalizing numerical features, and tackling the class 

imbalance present in the target variable. Each step was 

designed to prepare the data carefully without introducing 
unnecessary complexity or losing important information 

along the way. 

 

 Handling Missing Values:  
An audit of the dataset showed missing entries 

scattered across both numerical and categorical variables. 

Among the clinical features, BMI stood out with the highest 

number of missing values. For numerical variables, we chose 

to impute missing values using the median, given its 

robustness against skewed distributions and outliers. On the 

other hand, missing categorical variables like work_type and 

smoking_status were filled using the mode to maintain the 

most common classifications and preserve data consistency. 

By using this two-pronged imputation approach, we made 

sure the original distribution patterns stayed intact. This 
helped prevent the introduction of artificial trends that could 

have distorted model training later on. 

 
Fig 2 Heatmap of Missing Values Across Dataset Features 

 

 Outlier Detection and Validation:  

Outlier detection was carried out using visual 

diagnostics, focusing on boxplots of the main continuous 

variables (age, avg_glucose_level, and bmi). These visual 

tools helped us spot extreme values that might have stemmed 

from measurement errors or reflected unusual health profiles. 

Although a handful of observations fell beyond the 

interquartile range, we chose to retain them to preserve the 

natural heterogeneity of the patient population. 

 

This decision was based on the idea that extreme cases 

often carry important clinical meaning. Excluding them could 

have weakened the ecological validity of the model and 

shifted it toward predicting outcomes only for more typical 

patients, which was not the goal. 
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Fig 3 Boxplots of Numerical Features (Age, Glucose, BMI) 

 

 The primary outcome variable, stroke recurrence, showed a 

strong imbalance, with non-recurrence cases far 
outweighing recurrence cases. This posed a real risk during 

model training, where high overall accuracy could mask 

poor sensitivity in detecting true recurrence events. To 

tackle the issue, we applied the Synthetic Minority Over-

sampling Technique (SMOTE). Unlike simple duplication, 

SMOTE creates new synthetic examples of the minority 

class by interpolating between existing observations with 

similar feature profiles. This helped rebalance the dataset 
without disrupting its overall structure or reducing its 

diversity. Crucially, SMOTE was applied only to the 

training set after a stratified train-test split, carefully 

avoiding any data leakage that could have artificially 

inflated model performance. 

 

 
Fig 4 Class Distribution of Stroke Before and After SMOTE Application 

 

C. Feature Engineering 

Feature engineering combined domain knowledge 

with data-driven insights to boost both model interpretability 

and efficiency. We focused on selecting meaningful 

predictors, encoding categorical variables thoughtfully, and 

scaling numerical features to ensure a balanced contribution 

across the model. 

 

 Feature selection was guided by a focus on clinical 

relevance and practical simplicity. We deliberately chose 

a reduced set of predictors that not only align with known 

stroke risk factors but also support real-world 

deployment, especially in clinical environments where 

access to extensive data might be limited. The final feature 

set included age, hypertension, heart_disease, 

ever_married, work_type, residence_type, 
avg_glucose_level, BMI, and smoking_status. 
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 Selection Decisions Drew from Three Sources:  
Established findings in stroke-related research, 

clinical plausibility based on patient experience, and insights 

gained from a correlation matrix built using a numerically 

encoded version of the dataset. The matrix also helped flag 
potential issues with multicollinearity, ensuring that the final 

set of predictors remained both meaningful and efficient for 

modelling. 

 

 
Fig 5 Correlation Matrix of Selected Features and Target 

 

 Feature Transformation:  

Categorical variables were transformed using one-hot 

encoding, converting each category into binary vectors 

without implying any order among the classes. This approach 

preserved interpretability and ensured compatibility with 
both tree-based and linear models. For the continuous 

variables (age, avg_glucose_level, and bmi) we applied 

standardization using the StandardScaler from Scikit-learn. 

This process normalized each feature to have a mean of zero 

and a standard deviation of one, helping to ensure that no 

single variable dominated the model simply because of its 
scale. 
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Fig 6 Distribution of Numerical Features Before Scaling 

 

D. Model Training and Evaluation 

We implemented three supervised learning algorithms 

(Logistic Regression, Random Forest, and XGBoost) to 

classify stroke recurrence. Each model was chosen to 

represent a different balance between complexity, 

interpretability, and performance, reflecting the practical 

considerations often faced in clinical settings. 
 

 Training Procedure and Cross-Validation:  

The dataset was divided into training and testing sets 

using a stratified 80:20 split, keeping the class distribution 

consistent across both subsets. To further strengthen model 

generalisability and guard against overfitting, we applied a 5-

fold stratified cross-validation approach on the training data. 

Each model was trained and validated across five folds, with 

average performance scores used to guide model selection. 

 

 Model Configuration and Tuning:  

Each machine learning algorithm in this study went 
through a detailed hyperparameter optimization process using 

GridSearchCV. This involved systematically exploring a 

predefined grid of parameter combinations to find the setup 

that produced the best generalisation performance. 

Optimisation was carried out within a five-fold stratified 

cross-validation framework to improve robustness and 

minimise overfitting risks.  

 

For logistic regression, we focused on tuning the 

regularization strength parameter, C, while enabling class 

weighting to help address the imbalance in the target variable. 

With the random forest classifier, we varied the number of 
estimators - the total trees in the ensemble - and the maximum 

depth of those trees to manage model complexity and prevent 

overfitting. In configuring XGBoost, we adjusted the learning 

rate, the number of estimators, and maximum tree depth. We 

also set the evaluation metric explicitly to log loss for 

XGBoost to keep performance tracking consistent across 

iterations, and we disabled early stopping to ensure 

comparable training conditions across all models. 

 

The F1 Score was selected as the primary metric 

throughout the grid search. Given the imbalance in the 

outcome variable, it offered a more meaningful assessment 
than accuracy alone, balancing precision and recall. Focusing 

on F1 helped ensure that models were judged by their ability 

to correctly identify true cases of stroke recurrence, rather 

than simply performing well on the majority class. 

 

Table 1 Summary of Hyperparameter Search Configuration for Each Model 
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 Performance Metrics:  
We used a set of evaluation metrics to assess the 

models' performance from different angles, making sure to 

capture not only overall accuracy but also the ability to detect 

minority-class instances, with stroke recurrence being the key 

clinical concern. Accuracy measures how many predictions 

the model got right across the entire dataset, offering a broad 

view of overall performance. Precision, by contrast, tells us 

how many of the cases predicted as recurrence were actually 

correct, giving insight into the reliability of positive 

predictions. Recall, sometimes referred to as sensitivity, 

looks at how many true recurrence cases the model 
successfully identified, reflecting its capacity to catch events 

that truly matter in a clinical setting. 

 

Given the imbalance between recurrence and non-

recurrence cases, we placed particular emphasis on the F1 

Score. The F1 Score strikes a balance between precision and 

recall, which is crucial when one class heavily outweighs the 

other. It becomes especially important when missing a 

positive case could carry serious clinical consequences. The 

F1 Score is calculated as the harmonic mean of precision and 

recall, using the following formula: 

 

𝐹1 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

The F1 Score only reaches a high value when both 

precision and recall are strong, making it especially useful 

when both false positives and false negatives carry serious 

consequences. Alongside this, the Area Under the Receiver 

Operating Characteristic Curve (AUC-ROC) was used to 

evaluate the models’ discriminative ability across a range of 

classification thresholds. AUC-ROC offers a view of how 

well each model separates recurrence cases from non-

recurrence cases at different probability cut-offs, rather than 
relying on a single point estimate. 

 

Given the focus of this study on identifying patients at 

risk of stroke recurrence early, recall and F1 Score were 

prioritised during model tuning and selection. These metrics 

were better suited to the clinical goal of reducing missed 

detections while maintaining predictions that could be trusted 

in practice. 

 

 

 

Table 2 Definitions and Purpose of Evaluation Metrics 

 
 

 Model Selection Principles:  

Model selection aimed to balance predictive strength, 

generalisability, and interpretability. We evaluated each 

algorithm using consistent scoring metrics from stratified 

cross-validation, with hyperparameter tuning done through 

grid search. Priority was given to models that could handle 

both linear and non-linear relationships without slipping into 

overfitting.  

 
Feature importance analysis was applied to models 

that offered built-in interpretability, especially tree-based 

methods. Instead of treating it as an afterthought, we used it 

to understand which predictors played the biggest role in 

shaping classification outcomes. In clinical machine learning, 

that kind of transparency matters - it helps build trust and 

makes it easier for predictive models to fit into real healthcare 

workflows where explainable results are not just a bonus but 

a necessity. 

IV. RESULTS AND DISCUSSION 

 

The machine learning models (Logistic Regression, 

Random Forest, and XGBoost) were evaluated through a 

framework designed to capture different aspects of 

classification performance. We assessed each model using 

accuracy, precision, recall, F1 Score, and AUC-ROC, paying 

closer attention to the metrics that carry more weight when 

dealing with an imbalanced dataset like this one. 
 

Table 3 shows the test set performance results for all 

three classifiers. Among them, the Random Forest model 

stood out, posting the highest values across nearly all metrics. 

It reached an accuracy of 0.9239, precision of 0.9111, recall 

of 0.9405, an F1 Score of 0.9256, and an AUC-ROC of 

0.9704. Taken together, these results suggest that Random 

Forest offered the strongest and most balanced performance, 

managing to identify stroke recurrence cases effectively 

while keeping both false positives and false negatives under 

control. 
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Table 3 Test Set Performance Metrics Across Models 

 
 

The comparative bar chart in Figure 6 brings these 

numerical results into clearer focus. All three models 
performed strongly, but Random Forest pulled ahead, 

especially in recall and F1 Score. Logistic Regression, while 

statistically consistent, showed slightly weaker sensitivity 

when it came to picking up true recurrence cases. XGBoost, 

despite its powerful boosting approach, came close to 

Random Forest’s performance but still fell a little short on the 
clinical metrics that mattered most. Seeing the models side by 

side highlights not just their strengths, but also the areas 

where each struggled a bit in dealing with class imbalance 

and catching minority-class instances. 

 

 
Fig 7 Comparative Performance Metrics for Logistic Regression, Random Forest, and XGBoost 

 

Further diagnostic insights into the Random Forest 

classifier are shown in its confusion matrix, presented in 

Figure 8. The matrix shows strong diagonal dominance, 

which points to a high number of correctly classified cases. 

What matters more, though, is the model’s low false negative 

rate, crucial in medical settings where missing a true 

recurrence could mean losing the chance to intervene early. 

The balance between true positives and false positives also 

strengthens the model’s clinical value, helping it avoid 

overwhelming practitioners with false alarms while still 

catching the majority of recurrence cases that matter most. 
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Fig 8 Confusion Matrix for Random Forest Model Predictions 

 

ROC curves, shown in Figure 9, offer a view of how 

well the models separate the two classes across different 

threshold settings. The Random Forest classifier achieved the 

highest area under the curve, backing up its stronger 

discriminative ability. Its curve shows a steep initial rise and 

stays close to the top-left corner of the graph, which signals 

that it can correctly identify positive cases while keeping false 

positives low. 

 

 
Fig 9 ROC Curves for All Models 
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Alongside the ROC analysis, precision-recall curves 
were plotted in Figure 10 to give a closer look at how each 

model handled the minority class. The Random Forest model 

showed the largest area under the precision-recall curve, 

reinforcing its strength in detecting stroke recurrence while 

still keeping precision high. That balance matters, especially 
in a clinical setting where the cost of missing a true recurrence 

is much higher than the risk of raising an extra precautionary 

alert. 

 

 
Fig 10 Precision-Recall Curves for All Models 

 

The internal structure of the Random Forest model was 

also examined to assess feature importance. As shown in 

Figure 10, the top predictors were age, average glucose level, 

BMI, and history of hypertension. These findings are 

consistent with established clinical research, suggesting that 

the model identified patterns grounded in clinical relevance. 

The ability to see which features drive predictions improves 

the model’s transparency and offers clinicians clearer insight 

into the factors most associated with recurrence risk. 
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Fig 11 Feature Importance Rankings from the Random Forest Model 

 

Although accuracy was reported as a general indicator, 

it was never the main basis for choosing a model. With the 

class imbalance in this dataset, accuracy alone could easily 

hide serious problems - a model that mostly guesses non-

recurrence would still score well without doing the real job. 

What mattered far more was recall and the F1 Score. Both 

offered a better sense of how the models handled the tougher 
challenge: catching true recurrence cases without getting 

drowned in false positives. Especially in stroke prediction, 

missing a real case could mean missing a chance to intervene, 

and the consequences of that are not something a few extra 

percentage points of accuracy can excuse. 

 

It’s worth pausing here to recall what precision and 

recall actually measure, since they shaped how we judged 

model performance. Precision is defined as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

This measures the proportion of predicted recurrence 

cases that were correct. Meanwhile, recall (or sensitivity) is 

given by: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

High recall reflects how well the model captures all 

true cases of recurrence. In clinical work, that matters more 

than anything, since missing a recurrence could mean missing 

the narrow window for life-saving intervention. 

 

The results of this study point to Random Forest as the 

most effective model for predicting stroke recurrence with a 

minimal feature set. Its stronger recall and F1 Score make it 

a good fit for real-world clinical use, especially in settings 
that rely on routine health records rather than rich, complex 

datasets. The model’s success also supports the broader 

choices made throughout the study - from preprocessing steps 

to feature selection and the validation strategies used during 

training. 

 

More broadly, these findings add to the growing sense 

that machine learning, when built carefully and judged with 

the right metrics, can actually improve clinical risk prediction 

rather than just making things more complicated. Even so, the 

work here is only a step. External validation on new datasets 

and real-world testing in hospital and primary care settings 
will be critical before any tool like this can be fully trusted. 

 

V. LIMITATIONS AND FUTURE WORK 

 

While this study offers promising results for predicting 

stroke recurrence using a minimal set of clinical features, 

there are clear limitations that need to be considered. One of 

the bigger concerns is the reliance on a single dataset from a 

public clinical repository. Although it provided enough depth 

for an initial exploration, model performance could shift 

when tested against different populations or healthcare 
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systems. Without external validation, the findings remain tied 
to the original dataset’s characteristics and might not fully 

capture the broader variability seen in real-world stroke 

recurrence. 

 

Another limitation comes from the static nature of the 

features we used. All variables were drawn from a single 

point in time, without any follow-up or longitudinal tracking. 

That means the model misses the ability to account for 

changes in patient health over time, whether improvement, 

decline, or new risk factors, any of which could affect 

recurrence outcomes. Future work would likely benefit from 
incorporating longitudinal data to add richer clinical context. 

 

Class imbalance also presents a lingering challenge. 

Although SMOTE helped to rebalance the data during 

training, synthetic examples can never fully replicate the 

complexity of true recurrence cases. There’s a risk that this 

balancing could shape model behaviour in ways that don’t 

hold up when exposed to real, naturally imbalanced data. 

Exploring alternative balancing methods, or working with 

naturally balanced datasets when possible, would be worth 

investigating. 

 
Another boundary comes from the type of data we 

used. The model was built entirely on structured tabular 

information, which, while practical, leaves out a great deal of 

nuance found in clinical notes, imaging results, and patient 

narratives. Future models that integrate unstructured data 

through approaches like natural language processing could 

deepen predictive insights. 

 

The deliberate focus on a minimal feature set was 

important for making the model accessible, but it also meant 

leaving out potentially valuable variables. Factors like 
detailed cardiovascular histories, medication adherence 

patterns, or imaging biomarkers could add predictive 

strength. Expanding the feature set carefully might push 

performance even further without losing usability. 

 

Looking ahead, the next steps should involve testing 

the model across external settings - whether hospitals, 

primary care environments, or regional stroke registries - to 

see how well it holds up outside a controlled environment. 

Implementation studies will also be critical, helping to 

understand how the model fits into real-world clinical 

workflows and what adjustments might be needed to support 
its adoption. Building a feedback loop between model 

predictions and clinician insights could turn an experimental 

tool into something truly useful at the bedside 

 

VI. CONCLUSION 

 

This study explored the use of machine learning 

techniques to predict stroke recurrence based on a small set 

of clinically relevant features. By implementing and 

evaluating Logistic Regression, Random Forest, and 

XGBoost models, the analysis showed that strong predictive 
performance is still possible even when the feature space is 

kept deliberately limited. Across all evaluation metrics, 

Random Forest consistently led the way, with its higher recall 

and F1 Score pointing to a better ability to catch recurrence 
cases without introducing too many false negatives. 

 

The approach taken throughout the study aimed to 

keep a balance between interpretability, predictive strength, 

and practical clinical use. This balance showed up in the 

choices made around preprocessing, feature selection, and 

model explainability. By focusing on straightforward but 

powerful models, the study offers a pathway for developing 

decision-support tools that could work both in well-resourced 

and more constrained healthcare environments. The findings 

add to the growing sense that machine learning, when built 
carefully, has the potential to improve secondary stroke 

prevention in meaningful ways. Still, real progress will 

depend on validating these models externally and testing how 

well they actually perform once embedded into everyday 

clinical practice. 
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