
Volume 10, Issue 9, September– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep394

IJISRT25SEP394 www.ijisrt.com 574

Real-Time Human Fall Detection and Alert

System Using Autonomous Embedded Neural

Network

Jangam Dhanush1; Dr. M. Asha Rani2

1,2Electronics and Communication Engineering, Jawaharlal Nehru Technological, University Hyderabad,

India.

Publication Date: 2025/09/15

Abstract: Falls are a major safety risk for older adults and individuals with reduced mobility, making prompt detection

essential to reduce the likelihood of serious outcomes. This paper presents a real-time fall detection system built around two

ESP32-WROOM-32 microcontroller units (MCUs) arranged in a sender–receiver configuration. An MPU6050 inertial

measurement unit (IMU) is connected to the sender via the I²C protocol to obtain motion data, which is subsequently

transmitted using the ESP-NOW protocol. The receiver processes this data to perform activity inference using a pre-

deployed Multilayer Perceptron (MLP) model trained and tested in Edge Impulse. Detection of a fall triggers the automatic

dispatch of an SMTP email notification to caregivers. A testing accuracy of 82.53% demonstrates the system’s viability for

autonomous, cloud-independent, and resource-efficient wearable health monitoring.

Keywords: Fall Detection, Wearable Health Monitoring, ESP32-WROOM-32, MPU6050, ESP-NOW, Multilayer Perceptron

(MLP).

How to Cite: Jangam Dhanush; Dr. M. Asha Rani (2025) Real-Time Human Fall Detection and Alert System Using Autonomous

Embedded Neural Network. International Journal of Innovative Science and Research Technology, 10(9), 574-585

https://doi.org/10.38124/ijisrt/25sep394

I. INTRODUCTION

The convergence of embedded systems and machine

learning has enabled significant advances in autonomous

health monitoring technologies. Wearable fall detection

systems have become essential for safeguarding elderly

individuals and patients with motor or neurological

impairments. Falls represent a major health risk due to the

potential for severe injury, prolonged hospitalization, or fatal

outcomes if left unassisted. Conventional detection methods,

including camera-based monitoring and manual alert

mechanisms, face limitations such as privacy concerns,

dependency on fixed infrastructure, and delayed intervention.

Wearable sensor-based systems offer an effective alternative

by providing portability, real-time responsiveness, and

enhanced user autonomy. Among available sensors, the

MPU6050 inertial measurement unit (IMU), which integrates

a 3-axis accelerometer and a 3-axis gyroscope, is widely

adopted due to its compact size, cost-effectiveness, and

reliable motion sensing capabilities.

This paper presents a real-time fall detection system

utilizing two ESP32-WROOM-32 microcontrollers (MCUs).

One MCU acts as a sender node interfaced with the MPU6050

via the I²C protocol, continuously capturing raw tri-axial

acceleration and angular velocity data. The other functions as

a receiver node that wirelessly acquires this data using the

low-latency ESP-NOW protocol. On-device inference is

performed by the receiver through a pre-deployed,

regularized deep multilayer perceptron (MLP) model trained

and validated via Edge Impulse. Upon detection of a fall

event, the system promptly transmits an email alert via the

SMTP protocol to notify caregivers. The proposed system

operates fully autonomously from startup, executing sensing,

data transmission, inference, and alerting entirely on-device.

This design ensures minimal latency, preserves user privacy,

and eliminates reliance on cloud infrastructure, thereby

enhancing system robustness and user acceptance. The

primary contributions of this work include: integration of

ESP-NOW communication with Edge Impulse for embedded

activity inference using a regularized deep MLP;

development of a cloud-independent, low-latency fall

detection prototype deployable on resource-constrained

hardware; and establishment of a modular architecture

conducive to scalable wearable health monitoring

applications.

The remainder of this paper is organized as follows:

Section II reviews relevant literature; Section III details the

design and infrastructure; Section IV describes methodology

and implementation; Section V presents results and

discussion; and Section VI concludes with future work.

https://doi.org/10.38124/ijisrt/25sep394
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25sep394

Volume 10, Issue 9, September– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep394

IJISRT25SEP394 www.ijisrt.com 575

II. LITERATURE REVIEW

Wearable sensors have been increasingly studied for

automatic fall detection, yet many existing systems are

limited in accuracy, responsiveness, or suitability for

embedded deployment. LSTM-based approaches with

MPU6050 sensors achieved accurate detection in controlled

settings but were restricted to fall-versus-non-fall

classification and were unsuitable for embedded deployment

[1]. Back-propagation networks processing accelerometer

and gyroscope data provided only modest accuracy, required

substantial computation, and lacked class-imbalance

handling [3]. Wireless alert systems via Wi-Fi or GSM/SMS

enabled real-time notification but depended on external

networks and could not perform on-device classification [4]

[7]. Microcontroller-based TinyML implementations allowed

falls to be identified in real time, yet they were limited to

simple fall detection and did not capture fall direction or

support continuous monitoring [2]. Low-cost tri-axial

accelerometer systems offered simplicity but suffered from

low sampling rates and minimal activity differentiation [5]

[6] [8].

The present work addresses these gaps by enabling fully

embedded, continuous fall detection with fine-grained

classification—including walking, stair ascent/descent, and

forward, backward, leftward, and rightward falls—while

delivering real-time alerts on resource-constrained platforms.

III. DESIGN AND INFRASTRUCTURE

The detailed system design, including the architecture

and data flow, is shown in Fig. 1. The infrastructure consists

of hardware components, communication protocols, and

software tools and development environments, as described

below.

The hardware includes the ESP32-WROOM-32: A low-

power SoC with dual-core processing, Wi-Fi, Bluetooth, and

peripheral interfaces, suitable for IoT and edge computing;

and MPU6050: A 6-axis IMU with an accelerometer and

gyroscope for motion sensing, used in fall detection and

gesture recognition.

The communication protocols include ESP-NOW: A

low-power, peer-to-peer protocol enabling direct

communication between ESP32 and ESP8266 devices without

requiring a Wi-Fi network, ideal for sensor networks and real-

time data transmission; I²C (Inter-Integrated Circuit): A serial

protocol that facilitates short-distance communication

between multiple devices using two wires, commonly used in

embedded systems for connecting sensors and

microcontrollers; and SMTP (Simple Mail Transfer Protocol):

A protocol for automating the sending of emails and reports,

typically used in IoT systems to facilitate alerts and remote

monitoring.

The software tools and development environments

include Arduino IDE (v2.3.5): An integrated development

environment used for writing, compiling, and uploading code

to Arduino boards. It includes an updated interface, built-in

debugging tools, and support for multiple platforms, making

it efficient for rapid embedded system prototyping; Edge

Impulse Studio: A cloud-based solution for developing and

deploying machine learning models, providing a

comprehensive pipeline from data acquisition and

preprocessing to deployment on edge devices with minimal

latency and optimized power efficiency; Python with

TensorFlow/Keras: A framework for developing machine

learning models, enabling tasks such as image classification

and time-series analysis in both cloud and embedded

environments; and Tera Term (v5.3): A terminal emulator

used for communication over serial ports, SSH, and Telnet,

offering advanced capabilities for real-time data monitoring,

debugging, and diagnostics in embedded system applications.

Fig 1 Architecture and Data Flow

https://doi.org/10.38124/ijisrt/25sep394
http://www.ijisrt.com/

Volume 10, Issue 9, September– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep394

IJISRT25SEP394 www.ijisrt.com 576

IV. METHODOLOGY AND IMPLEMENTATION

The experimental setup involved interfacing the

MPU6050 sensor with the sender ESP32 via I²C, using GPIO

21 (SDA) and GPIO 22 (SCL) for communication, and

powering the sensor at 3.3V to match the ESP32’s logic

levels. The sender captured inertial data and transmitted it to

the receiver ESP32 using ESP-NOW. The receiver was

connected to a laptop through USB, supplying power and

facilitating serial communication. Data packets were

monitored using either the Arduino IDE Serial Monitor or

Tera Term, with Tera Term being primarily used for logging

and data collection due to its larger buffer and data export

capabilities. This configuration ensured reliable transmission

and real-time monitoring of sensor data. The entire setup is

illustrated in Fig. 2 for the sender and Fig. 3 for the receiver.

The MPU6050 integrates three sensing units: a three-

axis accelerometer, a three-axis gyroscope, and an internal

temperature sensor. The accelerometer measures linear

acceleration along the X, Y, and Z directions finally in terms

of g (where 1g = 9.81 m/s²), while the gyroscope measures

angular velocity about the same axes finally in degrees per

second (°/s). Each unit provides 16-bit signed outputs ranging

from −32,768 to +32,767, which are converted into physical

values through sensitivity scaling.

Fig 2 Sender Unit

Fig 3 Receiver Unit

https://doi.org/10.38124/ijisrt/25sep394
http://www.ijisrt.com/

Volume 10, Issue 9, September– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep394

IJISRT25SEP394 www.ijisrt.com 577

Sensitivity defines how many digital steps, or Least

Significant Bits (LSB), represent one unit of measurement.

For a 16-bit resolution (65,536 levels), this range is linearly

mapped to the chosen physical span. For example, at ±2g

(total range 4g) the sensitivity equals 65,536/4 = 16,384

LSB/g, and at ±500°/s it equals 65.5 LSB/°/s. More generally,

higher ranges reduce sensitivity, while lower ranges increase

resolution. In this study, the accelerometer was configured at

±4g to capture both routine movements and high-impact

events such as falls. The gyroscope was set to ±500°/s, which

effectively records angular velocities typical of daily human

motions without signal saturation. The temperature sensor

was not used, as it does not directly contribute to motion

analysis. To improve accuracy, the sensor is calibrated to

remove axis-specific biases introduced by manufacturing

tolerances, electrical noise, or slight orientation errors.

Calibration is performed with the device placed flat and

motionless. In this state, the accelerometer should read 0 g on

the X and Y axes and +1 g on the Z-axis, while the gyroscope

should register 0 °/s on all axes. Any deviation from these

values is determined by averaging a large set of stationary

readings (about 1000 samples per axis) and treating the result

as the offset. These offsets are then subtracted from all

subsequent measurements, producing corrected outputs. The

procedure is executed automatically during startup, ensuring

that all data collected during operation are bias-compensated

from the beginning. Mathematically, this is given for

accelerometer as:

𝐴𝑋𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 =
1

𝑆𝐴

 . (𝐴𝑋𝑟𝑎𝑤 − ∑ 𝐴𝑋𝑘

𝑁

𝑘=1

) . 𝑔 (1)

Similarly for AY. And for AZ, it’s shown as:

𝐴𝑍𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 = (
1

𝑆𝐴

. (𝐴𝑍𝑟𝑎𝑤 −
1

𝑁
∑ 𝐴𝑍𝑘

𝑁

𝑘=1

) + 1) . 𝑔 (2)

And for gyroscope, it’s given as:

𝐺𝑋𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 =
1

𝑆𝐺

 . (𝐺𝑋𝑟𝑎𝑤 − ∑ 𝐺𝑋𝑘

𝑁

𝑘=1

) (3)

Similarly, for GY and GZ, where

AXcalibrated: Calibrated acceleration value along the X axis, in

meters per second squared (m/s²).

AXraw: Raw accelerometer reading along the X axis, in least

significant bits (LSB) or counts.

AXk: Accelerometer calibration samples for the kth reading (k

= 1 to N), used to calculate sensor biases.

SA: Accelerometer sensitivity in LSB per g (gravitational

acceleration), specific to the full-scale range used.

GXcalibrated: Calibrated angular velocity value along the X axis,

in degrees per second (°/s).

GXraw: Raw gyroscope reading along the X axis, in least

significant bits (LSB) or counts.

GXk: Gyroscope calibration samples for the kth reading (k =

1 to N), used to calculate sensor biases.

SG: Gyroscope sensitivity in LSB per degree per second,

specific to the full-scale range used.

N: Number of calibration samples used to compute average

sensor bias.

g: Standard gravitational acceleration constant (9.81 m/s²),

used to convert acceleration from g to m/s².

Following automatic calibration at startup, motion data

was collected from four participants: three males aged 24, 26,

and 55, and one female aged 47. All participants were briefed

on the study objectives and provided informed consent before

participation. For consistency, the sensor was strapped to the

left wrist using a wristband, with the Y-axis aligned along the

forearm and the X-axis pointing outward. This orientation

enabled reliable recording of arm movements across all

sessions. Each participant performed one activity per session,

including walking, stair ascent, stair descent, or simulated

falls in the forward, backward, left, or right direction. Non-

fall activities were performed in controlled environments free

of obstacles. For falls, safety was ensured by using a mattress

to cushion the impact, minimizing the risk of injury. Fig. 4

and Fig. 5 compare this process for non-fall and fall activities

respectively. During each session, calibrated acceleration

(m/s²) and angular velocity (°/s) values along the three axes

were continuously recorded. After data collection, activity

segments were labeled immediately to ensure accurate

ground truth. For instance, data from a walking trial was

tagged as “Walking,” and similar labeling was applied for all

other activities. Data sampling rates were chosen based on

activity type: 100 Hz for rapid fall events and 50 Hz for

routine movements. Timestamps, initially included, were

later removed during preprocessing to simplify the dataset.

The cleaned dataset was structured into an Excel sheet

containing acceleration, angular velocity, and activity labels.

After preprocessing and consolidation, the final dataset

comprised 43,523 rows across seven classes: Walking

(19,802 rows), Upstairs (5,095), Downstairs (4,908), Front

Fall (3,056), Back fall (3,219), Left Fall (5,801), and Right

Fall (1,642). The finalized dataset was exported in CSV

format for analysis.

Once data collection was complete, the next phase

involved training a deep neural network to recognize activity

patterns in real time. This was carried out on Edge Impulse, a

platform designed for embedded machine learning

development. The deployment target was the Espressif ESP-

EYE (ESP32, 240 MHz), ensuring compatibility with the

intended hardware. The CSV dataset consisting of 43,523

labeled samples was uploaded to the platform. An automatic

split created two sets: 80% (34,929 samples) for training and

20% (8,594 samples) for testing. The impulse, representing

the end-to-end data processing pipeline, was configured with

three blocks:

https://doi.org/10.38124/ijisrt/25sep394
http://www.ijisrt.com/

Volume 10, Issue 9, September– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep394

IJISRT25SEP394 www.ijisrt.com 578

Fig 4 Walking, Upstairs, Downstairs

Fig 5 Front Fall, Back Fall, Left Fall, Right Fall

https://doi.org/10.38124/ijisrt/25sep394
http://www.ijisrt.com/

Volume 10, Issue 9, September– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep394

IJISRT25SEP394 www.ijisrt.com 579

 Input Block: Configured to accept six sensor-derived

features: linear accelerations (AX, AY, AZ) and angular

velocities (GX, GY, GZ). Each sample was thus

represented as a six-dimensional vector:

𝑋𝑖 = [𝐴𝑋𝑖 , 𝐴𝑌𝑖 , 𝐴𝑍𝑖 , 𝐺𝑋𝑖 , 𝐺𝑌𝑖 , 𝐺𝑍𝑖] ∈ ℝ6 (4)

Where i is the sample index.

 Processing Block: Set to Raw Data, passing the input

vectors directly to the learning block without applying

filtering, windowing, or normalization. This preserved the

calibrated physical units (m/s² for acceleration, °/s for

angular velocity). On-device performance analysis for the

target confirmed negligible overhead, with an estimated

processing time of 1ms and RAM usage of 24 B.

 Learning Block: Implemented as a Classification module,

mapping the six input features onto seven activity classes:

𝑓 ∶ ℝ6 → 𝑌 (5)

Where Y is a 7-dimensional one-hot encoded vector

corresponding to the class set {Back Fall, Downstairs,

Front Fall, Left Fall, Right Fall, Upstairs, Walking}. For

example, if the activity is Walking, the output is represented

as {0, 0, 0, 0, 0, 0, 1}, while Front Fall is encoded as {0, 0, 1,

0, 0, 0, 0}.

A Deep Multi-Layer Perceptron (MLP) model was

trained to learn complex decision boundaries among seven

activity classes using six input features (AX, AY, AZ, GX,

GY, GZ). The network followed a pyramidal structure with

three hidden layers of 168, 84, and 42 neurons, designed to

capture rich representations in the initial layer and

progressively compress them to reduce over fitting. ReLU or

Rectified Linear Unit activations (an activation introduces

non-linearity to a neuron’s output) were applied to all hidden

layers to maintain computational efficiency and stable

training. This is given by:

𝑅𝑒𝐿𝑈 (𝑥) = 𝑚𝑎𝑥 (0, 𝑥) (6)

Where x is the pre-activation value of a neuron. The

output layer consisted of seven neurons with Softmax

activation to generate normalized class probabilities, defined

as

𝑃𝑖,𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗 (𝑍𝑖) =
𝑒𝑍𝑖,𝑗

∑ 𝑒𝑍𝑖,𝑘
𝐶

𝑘 =1

 ∀ 𝑖 ∈ {1, . . . , 𝐵}, 𝑗

∈ {1, . . . , 𝐶} (7)

Where

Pi, j is the predicted probability of sample i belonging to class

j.

Zi, j is the logit (pre-activation score) for class j of sample i.

C is the total number of output classes.

B is the batch size.

Fig 6 MLP Model Architecture

https://doi.org/10.38124/ijisrt/25sep394
http://www.ijisrt.com/

Volume 10, Issue 9, September– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep394

IJISRT25SEP394 www.ijisrt.com 580

Weights (control the strength of input signals) were

initialized using HeNormal initializer for hidden layers

(suited to ReLU) and GlorotUniform initializer for the output

layer, and biases (provide a constant offset to the activation)

were set to zero, ensuring balanced signal variance. These

initializations are defined for HeNormal as:

𝑊

∼ 𝒩 (0, √
2

𝑓𝑎𝑛𝑖𝑛

) (8)

And for GlorotUniform as:

𝑊 ∼ 𝒰 (−√
6

𝑓𝑎𝑛𝑖𝑛 + 𝑓𝑎𝑛𝑜𝑢𝑡

, √
6

𝑓𝑎𝑛𝑖𝑛 + 𝑓𝑎𝑛𝑜𝑢𝑡

) (9)

Where

W denotes the weight matrix connecting two layers in a

neural network.

fanin refers to the number of input units to a neuron or

layer (i.e., the number of incoming connections).

fanout refers to the number of output units from a neuron

or layer (i.e., the number of outgoing connections).

To further control overfitting, empirically tuned L2

regularization penalties (0.0005, 0.0003, 0.0002, and 0.0001

for successive layers) were applied. Training used the Adam

optimizer with a learning rate of 0.00075, chosen for its

robustness to sparse gradients, along with a class-weighted

categorical cross-entropy loss to account for the imbalance

between frequent activities and rarer fall events. This can be

shown as:

𝑤𝑐 =
𝑁𝑡

𝐶 . 𝑁𝑐

 (10)

Where

wc is the class weight for class c.

Nt is the total number of samples in the training set.

C is the number of output classes.

Nc is the number of samples of class c.

The training set of 34,929 samples was split into 80%

(27,943) for training subset and 20% (6,986) for validation

subset. Training proceeded in mini-batches of 256 samples,

so that each epoch (a full pass through the training subset)

consisted of about 27,943/256 = 109 batch updates. For the

first batch of the first epoch, the model parameters (weights

and biases) were initialized. For each batch, inputs were

passed forward through the network to compute predictions,

the batch loss and batch accuracy were calculated, and

gradients were back propagated. The Adam optimizer then

updated the parameters. After completing all batches in an

epoch, the average batch loss and average batch accuracy

were computed. The updated parameters from that epoch

were then used to evaluate the untouched validation subset,

yielding the validation loss and validation accuracy. This

process was repeated for 1,500 epochs. The mathematical

formulation of the generalized training flow for each batch is

presented as follows:

During the forward pass, for the input layer, let

𝐴0 = 𝑋𝐵×𝐷 (11)

Where

X is the input matrix of order BxD.

A0 is the input activation.

B is the batch size.

D is the input feature size.

And for hidden layers (h = 1 to H), it’s

[𝑍ℎ]𝐵×𝑈ℎ = ([𝐴ℎ−1]𝐵×𝑈ℎ−1 · [𝑊ℎ]𝑈ℎ−1×𝑈ℎ
+ [𝑏ℎ]1×𝑈ℎ)𝐵×𝑈ℎ (12)

And

𝐴ℎ = 𝑅𝑒𝐿𝑈 (𝑍ℎ) (13)

Where

H is the number of hidden layers.

Zh is the pre-activation values for hidden layer h.

Ah is the post-activation outputs for layer h.

Wh is the weight matrix for hidden layer h.

bh is the bias vector for hidden layer h.

Uh is the number of neurons in hidden layer h.

At the output layer, it’s

[𝑍𝐶]𝐵×𝐶 = ([𝐴𝐻]𝐵×𝑈ℎ · [𝑊ℎ]𝑈ℎ×𝐶 + [𝑏ℎ]1×𝐶)𝐵×𝐶 (14)

And

𝑃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑍𝐶) (15)

Where P is the predicted class probabilities (after

Softmax). The categorical cross entropy loss function is

expressed as:

ℒ𝐶𝐶𝐸 =
−1

𝐵
∑ ∑ 𝑤𝑐

𝐶

𝑐=1

𝐵

𝑖=1

 . [𝑌𝑖,𝑐]
𝐵×𝐶

 . 𝑙𝑜𝑔 ([𝑃𝑖,𝑐]
𝐵×𝐶

) (16)

https://doi.org/10.38124/ijisrt/25sep394
http://www.ijisrt.com/

Volume 10, Issue 9, September– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep394

IJISRT25SEP394 www.ijisrt.com 581

L2 regularization is applied as:

ℒ2
h = λh . ∥ Wh ∥2 = λh . ∑ ∑(Wi,j

h)
2

 (17)

Uh

j=1

Uh−1

i=1

ℒL2 = ∑ ℒ2
h

H

h= 1

 + 𝜆𝑜𝑢𝑡 . ∥ WC ∥2 (18)

The total loss is then computed as:

ℒ = ℒ𝐶𝐶𝐸 + ℒL2 (19)

Where

L2
h is the L2 regularization loss for the hidden layer h.

LL2 is sum of L2 losses over all layers (hidden + output).

λh is the L2 regularization coefficient for layer h.

λout is the L2 regularization coefficient for the output layer.

The notation || . || is the squared L2 norm of the weight

matrix, i.e., the sum of the squares of all its elements.

Back propagation updates network parameters by

propagating the error from the output layer back through the

hidden layers. The gradient at the output is:

𝜕ℒ

𝜕𝑍𝐶
 = (𝑃 − 𝑌)𝐵×𝐶 ⊙ (𝑊𝑐𝑙𝑎𝑠𝑠)𝐵×𝐶 (20)

Where

⊙represents the element-wise (component-wise)

multiplication of two matrices or vectors of the same

dimensions.

Y is the one-hot encoded true class labels of the current

batch.

Wclass is a weight matrix with each element Wclass[i, c] =

wc.

For hidden layer gradients from h = H down to 1:

𝜕ℒ

𝜕𝐴ℎ
 =

𝜕ℒ

𝜕𝑍ℎ+1
 · (𝑊ℎ+1)𝑇 (21)

𝜕ℒ

𝜕𝑍ℎ
 =

𝜕ℒ

𝜕𝐴ℎ
 ⊙ 𝑅𝑒𝐿𝑈′(𝑍ℎ) (22)

Regularization gradients are incorporated as:

𝜕ℒ

𝜕𝑊ℎ
 + = 2 · 𝜆ℎ . 𝑊ℎ (23)

Where ReLU’ (Z) = 1, if Z > 0, otherwise 0.

An optimizer is an algorithm that updates a model’s

parameters during training to minimize the loss function and

improve performance. The Adam optimizer (Adaptive

Moment Estimation) is an advanced optimization algorithm

that integrates the benefits of momentum and adaptive

learning rates to ensure efficient and stable convergence

during neural network training. It computes the first moment

(mean) and second moment (uncentered variance) of

gradients for each parameter, applies bias correction, and

updates the parameters with a controlled step size. Let the

hyper parameters of this algorithm be:

Learning rate α.

First moment decay β1 = 0.9.

Second moment decay β2 = 0.999.

Numerical stability constant ε = 10-7.

Then, the update rule for parameter θ (weights or biases)

at step t is:

𝑔𝑡 = 𝛻𝜃ℒ𝑡 (24)

𝑚𝑡 = 𝛽1 . 𝑚𝑡−1 + (1 − 𝛽1) . 𝑔𝑡 (25)

𝑣𝑡 = 𝛽2 . 𝑣𝑡−1 + (1 − 𝛽2) . 𝑔𝑡
2 (26)

𝑀𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 (27)

𝑉𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡 (28)

𝜃𝑡+1 = 𝜃𝑡 − 𝛼 .
𝑀𝑡

√𝑉𝑡 + 𝜀
 (29)

Where

g is gradient.

m is first moment estimate; M is its bias corrected version.

v is second moment estimate; V is its bias corrected version.

θt+1 is the parameter update.

The initial values of both moment estimates are set to

zero. The accuracy of the batch is computed as:

𝐴𝑐𝑐 =
1

𝐵
 . ∑ 𝕀(𝑎𝑟𝑔 𝑚𝑎𝑥 (𝑃𝑖) = 𝑎𝑟𝑔 𝑚𝑎𝑥 (𝑌𝑖))

𝐵

𝑖=1

 (30)

Where

I (⋅) is the indicator function, which equals 1 if the

condition inside is true (correct prediction) and 0 otherwise.

https://doi.org/10.38124/ijisrt/25sep394
http://www.ijisrt.com/

Volume 10, Issue 9, September– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep394

IJISRT25SEP394 www.ijisrt.com 582

arg max (Pi) is the index of the class with the highest

predicted probability.

arg max (Yi) is the index of the actual class label.

On-device performance measured via the EON (Edge

Optimized Neural network) compiler showed an inference

time of 6ms, peak RAM usage of 2.4 KB, and Flash usage of

86.9 KB, demonstrating the model’s suitability for embedded

deployment on the receiver ESP32. The inference on the test

set was evaluated using the final training output parameters,

to confirm its ability to generalize to unseen data. This step

validated that the model retained its performance on data it

had never seen during training or validation. This tested

model was then loaded and deployed onto the receiver via the

generated Arduino library, enabling real-time inference on

incoming sensor data from the sender module

.

V. RESULTS AND DISCUSSION

The final training output was defined as the combination

of the lowest validation loss, its corresponding validation

accuracy, and the confusion matrix obtained for that epoch.

These results were obtained using the unoptimized full-

precision 32-bit floating-point (FP32) model, without

applying quantization (unlike INT8 quantized models, which

reduce model size and inference latency by using 8-bit

integers at the cost of numerical precision). The achieved loss

was 0.55, with a corresponding accuracy of 82%. This is

outlined in Fig. 7.

Fig 7 Final Training Output

https://doi.org/10.38124/ijisrt/25sep394
http://www.ijisrt.com/

Volume 10, Issue 9, September– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep394

IJISRT25SEP394 www.ijisrt.com 583

Fig 8 Final Testing Output

Fig 9 Final Inference Output

https://doi.org/10.38124/ijisrt/25sep394
http://www.ijisrt.com/

Volume 10, Issue 9, September– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep394

IJISRT25SEP394 www.ijisrt.com 584

Fig 10 Final Mail Alert Output

The accuracy and confusion matrix were computed for

the test set, with the minimum confidence threshold set to 0,

ensuring that all predictions were mapped to a known label

and no “uncertain” class occurred. An overall accuracy of

82.53% was achieved. Fig. 8 presents this.

During inference, each new sensor reading (AX, AY,

AZ, GX, GY, GZ) is processed individually by the embedded

model, which classifies it and prints the predicted label

alongside the raw sensor values on the serial monitor. The

system continuously monitors for fall-type events—Front

Fall, Back Fall, Left Fall, or Right Fall—and automatically

triggers an email alert via SMTP whenever such an event

occurs, with a 60-second cooldown to prevent repeated

notifications. Accurate timestamps are generated using the

onboard real-time clock, ensuring that each alert is time-

stamped. This is visualized in Fig. 9 and Fig. 10.

These results demonstrate that the model operates

efficiently in a low-power, embedded environment,

supporting autonomous, continuous classification and

immediate fall notifications.

VI. CONCLUSION AND FUTURE WORK

This study introduces a real-time fall detection system that

integrates an MPU6050 IMU with two ESP32-WROOM-32

MCUs communicating via ESP-NOW. Motion signals are

processed directly on the receiver MCU using a regularized

Deep MLP trained and fine-tuned on Edge Impulse. Across

tests, the system recognized falls toward the front, back, left,

and right with short response times, operating entirely within

the MCU’s processing and memory limits. Its small form

factor and wearable nature make it applicable to elderly

assistance, workplace hazard prevention, and intelligent

healthcare systems. Performance gaps remain due to a

compact dataset, limited coverage of daily activities, and

occasional confusion between motions with similar

dynamics, all affected by MCU hardware constraints. Future

work will focus on enlarging the dataset with varied

participants and movements, improving model robustness,

enabling mobile connectivity for added capabilities, and

assessing endurance through extended deployment in

uncontrolled real-world conditions.

https://doi.org/10.38124/ijisrt/25sep394
http://www.ijisrt.com/

Volume 10, Issue 9, September– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25sep394

IJISRT25SEP394 www.ijisrt.com 585

ACKNOWLEDGMENT

The contribution of the four participants is gratefully

acknowledged, as their involvement enabled the collection of

reliable motion data, which was essential for the development

and validation of the proposed fall-detection system.

REFERENCES

[1]. S. -T. Hsieh and C. -L. Lin, "Fall Detection Algorithm

Based on MPU6050 and Long-Term Short-Term

Memory network," 2020 International Automatic

Control Conference (CACS), Hsinchu, Taiwan, 2020,

pp. 1-5.

[2]. D. L. Cong, B. N. Quang, D. T. Minh, D. T. Cao and

M. N. Ngoc, "Continuous Wearable-based Fall

Detection using Tiny Machine Learning," 2024 9th

International Conference on Applying New

Technology in Green Buildings (ATiGB), Danang,

Vietnam, 2024, pp. 339-344.

[3]. Jefiza, E. Pramunanto, H. Boedinoegroho, & M.

Purnomo, "Fall detection based on accelerometer and

gyroscope using back propagation", 2017 4th

International Conference on Electrical Engineering,

Computer Science and Informatics (EECSI), p. 1-6.

[4]. G. Mahesh and M. Kalidas, "A Real-Time IoT Based

Fall Detection and Alert System for Elderly," 2023

International Conference on Advances in

Computation, Communication and Information

Technology (ICAICCIT), Faridabad, India, 2023, pp.

327-331.

[5]. H. R. Kumar, S. Janardhan, D. Prakash and M. K.

Prasanna Kumar, "Fall Detection System using Tri-

Axial Accelerometer," 2018 3rd IEEE International

Conference on Recent Trends in Electronics,

Information & Communication Technology

(RTEICT), Bangalore, India, 2018, pp. 1846-1850.

[6]. C. Nutsathaporn, S. Chomkokard, W. Wongkokua, N.

Jinuntuya, S. Ruengittinun and S. Sasimontonkul,

"Human Fall Prediction and Detection Using Low

Price IMU Sensor," 2022 IEEE 4th Eurasia

Conference on IOT, Communication and Engineering

(ECICE), Yunlin, Taiwan, 2022, pp. 157-159.

[7]. N. A. Syafiqah Mohd Sharif, M. Zaki Ayob and S. B.

Yusoff, "Development of Wearable Fall Detection

Alert for Elderly," 2023 International Conference on

Engineering Technology and Technopreneurship

(ICE2T), Kuala Lumpur, Malaysia, 2023, pp. 311-

315.

[8]. Kurniawan, A. R. Hermawan and I. K. E. Purnama, "A

wearable device for fall detection elderly people using

tri dimensional accelerometer," 2016 International

Seminar on Intelligent Technology and Its

Applications (ISITIA), Lombok, Indonesia, 2016, pp.

671-674.

https://doi.org/10.38124/ijisrt/25sep394
http://www.ijisrt.com/

	I. INTRODUCTION
	II. LITERATURE REVIEW
	III. DESIGN AND INFRASTRUCTURE
	IV. METHODOLOGY AND IMPLEMENTATION
	V. RESULTS AND DISCUSSION
	VI. CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENT
	REFERENCES

