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Abstract: Falls are a major safety risk for older adults and individuals with reduced mobility, making prompt detection 

essential to reduce the likelihood of serious outcomes. This paper presents a real-time fall detection system built around two 

ESP32-WROOM-32 microcontroller units (MCUs) arranged in a sender–receiver configuration. An MPU6050 inertial 

measurement unit (IMU) is connected to the sender via the I²C protocol to obtain motion data, which is subsequently 

transmitted using the ESP-NOW protocol. The receiver processes this data to perform activity inference using a pre-

deployed Multilayer Perceptron (MLP) model trained and tested in Edge Impulse. Detection of a fall triggers the automatic 

dispatch of an SMTP email notification to caregivers. A testing accuracy of 82.53% demonstrates the system’s viability for 

autonomous, cloud-independent, and resource-efficient wearable health monitoring. 
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I. INTRODUCTION 

 

The convergence of embedded systems and machine 

learning has enabled significant advances in autonomous 

health monitoring technologies. Wearable fall detection 

systems have become essential for safeguarding elderly 

individuals and patients with motor or neurological 

impairments. Falls represent a major health risk due to the 

potential for severe injury, prolonged hospitalization, or fatal 

outcomes if left unassisted. Conventional detection methods, 

including camera-based monitoring and manual alert 

mechanisms, face limitations such as privacy concerns, 

dependency on fixed infrastructure, and delayed intervention. 

Wearable sensor-based systems offer an effective alternative 

by providing portability, real-time responsiveness, and 

enhanced user autonomy. Among available sensors, the 

MPU6050 inertial measurement unit (IMU), which integrates 

a 3-axis accelerometer and a 3-axis gyroscope, is widely 

adopted due to its compact size, cost-effectiveness, and 

reliable motion sensing capabilities. 

 

This paper presents a real-time fall detection system 

utilizing two ESP32-WROOM-32 microcontrollers (MCUs). 

One MCU acts as a sender node interfaced with the MPU6050 

via the I²C protocol, continuously capturing raw tri-axial 

acceleration and angular velocity data. The other functions as 

a receiver node that wirelessly acquires this data using the 

low-latency ESP-NOW protocol. On-device inference is 

performed by the receiver through a pre-deployed, 

regularized deep multilayer perceptron (MLP) model trained 

and validated via Edge Impulse. Upon detection of a fall 

event, the system promptly transmits an email alert via the 

SMTP protocol to notify caregivers. The proposed system 

operates fully autonomously from startup, executing sensing, 

data transmission, inference, and alerting entirely on-device. 

This design ensures minimal latency, preserves user privacy, 

and eliminates reliance on cloud infrastructure, thereby 

enhancing system robustness and user acceptance. The 

primary contributions of this work include: integration of 

ESP-NOW communication with Edge Impulse for embedded 

activity inference using a regularized deep MLP; 

development of a cloud-independent, low-latency fall 

detection prototype deployable on resource-constrained 

hardware; and establishment of a modular architecture 

conducive to scalable wearable health monitoring 

applications. 

 

The remainder of this paper is organized as follows: 

Section II reviews relevant literature; Section III details the 

design and infrastructure; Section IV describes methodology 

and implementation; Section V presents results and 

discussion; and Section VI concludes with future work. 

https://doi.org/10.38124/ijisrt/25sep394
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25sep394


Volume 10, Issue 9, September– 2025                                    International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                               https://doi.org/10.38124/ijisrt/25sep394 

 

 

IJISRT25SEP394                                                                www.ijisrt.com                                  575   

II. LITERATURE REVIEW 

 

Wearable sensors have been increasingly studied for 

automatic fall detection, yet many existing systems are 

limited in accuracy, responsiveness, or suitability for 

embedded deployment. LSTM-based approaches with 

MPU6050 sensors achieved accurate detection in controlled 

settings but were restricted to fall-versus-non-fall 

classification and were unsuitable for embedded deployment 

[1]. Back-propagation networks processing accelerometer 

and gyroscope data provided only modest accuracy, required 

substantial computation, and lacked class-imbalance 

handling [3]. Wireless alert systems via Wi-Fi or GSM/SMS 

enabled real-time notification but depended on external 

networks and could not perform on-device classification [4] 

[7]. Microcontroller-based TinyML implementations allowed 

falls to be identified in real time, yet they were limited to 

simple fall detection and did not capture fall direction or 

support continuous monitoring [2]. Low-cost tri-axial 

accelerometer systems offered simplicity but suffered from 

low sampling rates and minimal activity differentiation [5] 

[6] [8]. 

 

The present work addresses these gaps by enabling fully 

embedded, continuous fall detection with fine-grained 

classification—including walking, stair ascent/descent, and 

forward, backward, leftward, and rightward falls—while 

delivering real-time alerts on resource-constrained platforms. 

 

III. DESIGN AND INFRASTRUCTURE 

 

The detailed system design, including the architecture 

and data flow, is shown in Fig. 1. The infrastructure consists 

of hardware components, communication protocols, and 

software tools and development environments, as described 

below. 

 

The hardware includes the ESP32-WROOM-32: A low-

power SoC with dual-core processing, Wi-Fi, Bluetooth, and 

peripheral interfaces, suitable for IoT and edge computing; 

and MPU6050: A 6-axis IMU with an accelerometer and 

gyroscope for motion sensing, used in fall detection and 

gesture recognition. 

 

The communication protocols include ESP-NOW: A 

low-power, peer-to-peer protocol enabling direct 

communication between ESP32 and ESP8266 devices without 

requiring a Wi-Fi network, ideal for sensor networks and real-

time data transmission; I²C (Inter-Integrated Circuit): A serial 

protocol that facilitates short-distance communication 

between multiple devices using two wires, commonly used in 

embedded systems for connecting sensors and 

microcontrollers; and SMTP (Simple Mail Transfer Protocol): 

A protocol for automating the sending of emails and reports, 

typically used in IoT systems to facilitate alerts and remote 

monitoring. 

 

The software tools and development environments 

include Arduino IDE (v2.3.5): An integrated development 

environment used for writing, compiling, and uploading code 

to Arduino boards. It includes an updated interface, built-in 

debugging tools, and support for multiple platforms, making 

it efficient for rapid embedded system prototyping; Edge 

Impulse Studio: A cloud-based solution for developing and 

deploying machine learning models, providing a 

comprehensive pipeline from data acquisition and 

preprocessing to deployment on edge devices with minimal 

latency and optimized power efficiency; Python with 

TensorFlow/Keras: A framework for developing machine 

learning models, enabling tasks such as image classification 

and time-series analysis in both cloud and embedded 

environments; and Tera Term (v5.3): A terminal emulator 

used for communication over serial ports, SSH, and Telnet, 

offering advanced capabilities for real-time data monitoring, 

debugging, and diagnostics in embedded system applications. 

 

 
Fig 1 Architecture and Data Flow 
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IV. METHODOLOGY AND IMPLEMENTATION 

 

The experimental setup involved interfacing the 

MPU6050 sensor with the sender ESP32 via I²C, using GPIO 

21 (SDA) and GPIO 22 (SCL) for communication, and 

powering the sensor at 3.3V to match the ESP32’s logic 

levels. The sender captured inertial data and transmitted it to 

the receiver ESP32 using ESP-NOW. The receiver was 

connected to a laptop through USB, supplying power and 

facilitating serial communication. Data packets were 

monitored using either the Arduino IDE Serial Monitor or 

Tera Term, with Tera Term being primarily used for logging 

and data collection due to its larger buffer and data export 

capabilities. This configuration ensured reliable transmission 

and real-time monitoring of sensor data. The entire setup is 

illustrated in Fig. 2 for the sender and Fig. 3 for the receiver. 

 

The MPU6050 integrates three sensing units: a three-

axis accelerometer, a three-axis gyroscope, and an internal 

temperature sensor. The accelerometer measures linear 

acceleration along the X, Y, and Z directions finally in terms 

of g (where 1g = 9.81 m/s²), while the gyroscope measures 

angular velocity about the same axes finally in degrees per 

second (°/s). Each unit provides 16-bit signed outputs ranging 

from −32,768 to +32,767, which are converted into physical 

values through sensitivity scaling. 

 

 
Fig 2 Sender Unit 

 

 
Fig 3 Receiver Unit 
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Sensitivity defines how many digital steps, or Least 

Significant Bits (LSB), represent one unit of measurement. 

For a 16-bit resolution (65,536 levels), this range is linearly 

mapped to the chosen physical span. For example, at ±2g 

(total range 4g) the sensitivity equals 65,536/4 = 16,384 

LSB/g, and at ±500°/s it equals 65.5 LSB/°/s. More generally, 

higher ranges reduce sensitivity, while lower ranges increase 

resolution. In this study, the accelerometer was configured at 

±4g to capture both routine movements and high-impact 

events such as falls. The gyroscope was set to ±500°/s, which 

effectively records angular velocities typical of daily human 

motions without signal saturation. The temperature sensor 

was not used, as it does not directly contribute to motion 

analysis. To improve accuracy, the sensor is calibrated to 

remove axis-specific biases introduced by manufacturing 

tolerances, electrical noise, or slight orientation errors. 

Calibration is performed with the device placed flat and 

motionless. In this state, the accelerometer should read 0 g on 

the X and Y axes and +1 g on the Z-axis, while the gyroscope 

should register 0 °/s on all axes. Any deviation from these 

values is determined by averaging a large set of stationary 

readings (about 1000 samples per axis) and treating the result 

as the offset. These offsets are then subtracted from all 

subsequent measurements, producing corrected outputs. The 

procedure is executed automatically during startup, ensuring 

that all data collected during operation are bias-compensated 

from the beginning. Mathematically, this is given for 

accelerometer as: 

𝐴𝑋𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑  =  
1

𝑆𝐴

 .  (𝐴𝑋𝑟𝑎𝑤  −  ∑ 𝐴𝑋𝑘

𝑁

𝑘=1

)  .  𝑔                 (1) 

 

Similarly for AY. And for AZ, it’s shown as: 

 

𝐴𝑍𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑  =  (
1

𝑆𝐴

. (𝐴𝑍𝑟𝑎𝑤  −  
1

𝑁
∑ 𝐴𝑍𝑘

𝑁

𝑘=1

) + 1)  .  𝑔  (2) 

 

And for gyroscope, it’s given as: 

 

𝐺𝑋𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑  =  
1

𝑆𝐺

 .  (𝐺𝑋𝑟𝑎𝑤  −  ∑ 𝐺𝑋𝑘

𝑁

𝑘=1

)                       (3) 

 

Similarly, for GY and GZ, where 

 

AXcalibrated: Calibrated acceleration value along the X axis, in 

meters per second squared (m/s²). 

 

AXraw: Raw accelerometer reading along the X axis, in least 

significant bits (LSB) or counts. 

 

AXk: Accelerometer calibration samples for the kth reading (k 

= 1 to N), used to calculate sensor biases. 

 

SA: Accelerometer sensitivity in LSB per g (gravitational 

acceleration), specific to the full-scale range used. 

 

GXcalibrated: Calibrated angular velocity value along the X axis, 

in degrees per second (°/s). 

 

GXraw: Raw gyroscope reading along the X axis, in least 

significant bits (LSB) or counts. 

 

GXk: Gyroscope calibration samples for the kth reading (k = 

1 to N), used to calculate sensor biases. 

 

SG: Gyroscope sensitivity in LSB per degree per second, 

specific to the full-scale range used. 

 

N: Number of calibration samples used to compute average 

sensor bias. 

 

g: Standard gravitational acceleration constant (9.81 m/s²), 

used to convert acceleration from g to m/s². 

 

Following automatic calibration at startup, motion data 

was collected from four participants: three males aged 24, 26, 

and 55, and one female aged 47. All participants were briefed 

on the study objectives and provided informed consent before 

participation. For consistency, the sensor was strapped to the 

left wrist using a wristband, with the Y-axis aligned along the 

forearm and the X-axis pointing outward. This orientation 

enabled reliable recording of arm movements across all 

sessions. Each participant performed one activity per session, 

including walking, stair ascent, stair descent, or simulated 

falls in the forward, backward, left, or right direction. Non-

fall activities were performed in controlled environments free 

of obstacles. For falls, safety was ensured by using a mattress 

to cushion the impact, minimizing the risk of injury. Fig. 4 

and Fig. 5 compare this process for non-fall and fall activities 

respectively. During each session, calibrated acceleration 

(m/s²) and angular velocity (°/s) values along the three axes 

were continuously recorded. After data collection, activity 

segments were labeled immediately to ensure accurate 

ground truth. For instance, data from a walking trial was 

tagged as “Walking,” and similar labeling was applied for all 

other activities. Data sampling rates were chosen based on 

activity type: 100 Hz for rapid fall events and 50 Hz for 

routine movements. Timestamps, initially included, were 

later removed during preprocessing to simplify the dataset. 

The cleaned dataset was structured into an Excel sheet 

containing acceleration, angular velocity, and activity labels. 

After preprocessing and consolidation, the final dataset 

comprised 43,523 rows across seven classes: Walking 

(19,802 rows), Upstairs (5,095), Downstairs (4,908), Front 

Fall (3,056), Back fall (3,219), Left Fall (5,801), and Right 

Fall (1,642). The finalized dataset was exported in CSV 

format for analysis. 

 

Once data collection was complete, the next phase 

involved training a deep neural network to recognize activity 

patterns in real time. This was carried out on Edge Impulse, a 

platform designed for embedded machine learning 

development. The deployment target was the Espressif ESP-

EYE (ESP32, 240 MHz), ensuring compatibility with the 

intended hardware. The CSV dataset consisting of 43,523 

labeled samples was uploaded to the platform. An automatic 

split created two sets: 80% (34,929 samples) for training and 

20% (8,594 samples) for testing. The impulse, representing  

the end-to-end data processing pipeline, was configured with 

three blocks:
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Fig 4 Walking, Upstairs, Downstairs 

 

 
Fig 5 Front Fall, Back Fall, Left Fall, Right Fall 
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 Input Block: Configured to accept six sensor-derived 

features: linear accelerations (AX, AY, AZ) and angular 

velocities (GX, GY, GZ). Each sample was thus 

represented as a six-dimensional vector: 

 

𝑋𝑖  =  [𝐴𝑋𝑖 , 𝐴𝑌𝑖 , 𝐴𝑍𝑖 , 𝐺𝑋𝑖 , 𝐺𝑌𝑖 , 𝐺𝑍𝑖] ∈ ℝ6                   (4) 

 

Where i is the sample index. 

 

 Processing Block: Set to Raw Data, passing the input 

vectors directly to the learning block without applying 

filtering, windowing, or normalization. This preserved the 

calibrated physical units (m/s² for acceleration, °/s for 

angular velocity). On-device performance analysis for the 

target confirmed negligible overhead, with an estimated 

processing time of 1ms and RAM usage of 24 B. 

 

 Learning Block: Implemented as a Classification module, 

mapping the six input features onto seven activity classes: 

 

𝑓 ∶  ℝ6  →  𝑌                                                                     (5) 

 

Where Y is a 7-dimensional one-hot encoded vector 

corresponding to the class set {Back Fall, Downstairs, 

Front Fall, Left Fall, Right Fall, Upstairs, Walking}. For 

example, if the activity is Walking, the output is represented 

as {0, 0, 0, 0, 0, 0, 1}, while Front Fall is encoded as {0, 0, 1, 

0, 0, 0, 0}. 

 

A Deep Multi-Layer Perceptron (MLP) model was 

trained to learn complex decision boundaries among seven 

activity classes using six input features (AX, AY, AZ, GX, 

GY, GZ). The network followed a pyramidal structure with 

three hidden layers of 168, 84, and 42 neurons, designed to 

capture rich representations in the initial layer and 

progressively compress them to reduce over fitting. ReLU or 

Rectified Linear Unit activations (an activation introduces 

non-linearity to a neuron’s output) were applied to all hidden 

layers to maintain computational efficiency and stable 

training. This is given by: 

𝑅𝑒𝐿𝑈 (𝑥) =  𝑚𝑎𝑥 (0, 𝑥)                                                          (6) 
 

Where x is the pre-activation value of a neuron. The 

output layer consisted of seven neurons with Softmax 

activation to generate normalized class probabilities, defined 

as 

𝑃𝑖,𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗  (𝑍𝑖) =
𝑒𝑍𝑖,𝑗

∑ 𝑒𝑍𝑖,𝑘
𝐶

𝑘 =1

 ∀ 𝑖 ∈ {1, . . . , 𝐵}, 𝑗

∈ {1, . . . , 𝐶}                                                 (7) 

 

Where 

 

Pi, j is the predicted probability of sample i belonging to class 

j. 

 

Zi, j is the logit (pre-activation score) for class j of sample i. 

 

C is the total number of output classes. 

 

B is the batch size. 

 

 
Fig 6 MLP Model Architecture
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Weights (control the strength of input signals) were 

initialized using HeNormal initializer for hidden layers 

(suited to ReLU) and GlorotUniform initializer for the output 

layer, and biases (provide a constant offset to the activation) 

were set to zero, ensuring balanced signal variance. These 

initializations are defined for HeNormal as: 

𝑊 

∼ 𝒩 (0, √
2

𝑓𝑎𝑛𝑖𝑛

)                                                                   (8) 

 

And for GlorotUniform as: 

𝑊 ∼ 𝒰 (−√
6

𝑓𝑎𝑛𝑖𝑛 +  𝑓𝑎𝑛𝑜𝑢𝑡

, √
6

𝑓𝑎𝑛𝑖𝑛 +  𝑓𝑎𝑛𝑜𝑢𝑡

)       (9) 

 

Where 

 

W denotes the weight matrix connecting two layers in a 

neural network. 

 

fanin refers to the number of input units to a neuron or 

layer (i.e., the number of incoming connections). 

 

fanout refers to the number of output units from a neuron 

or layer (i.e., the number of outgoing connections). 

 

To further control overfitting, empirically tuned L2 

regularization penalties (0.0005, 0.0003, 0.0002, and 0.0001 

for successive layers) were applied. Training used the Adam 

optimizer with a learning rate of 0.00075, chosen for its 

robustness to sparse gradients, along with a class-weighted 

categorical cross-entropy loss to account for the imbalance 

between frequent activities and rarer fall events. This can be 

shown as: 

 

𝑤𝑐 =  
𝑁𝑡

𝐶 . 𝑁𝑐

                                                                             (10) 

 

Where 

 

wc is the class weight for class c. 

 

Nt is the total number of samples in the training set. 

 

C is the number of output classes. 

 

Nc is the number of samples of class c. 

 

The training set of 34,929 samples was split into 80% 

(27,943) for training subset and 20% (6,986) for validation 

subset. Training proceeded in mini-batches of 256 samples, 

so that each epoch (a full pass through the training subset) 

consisted of about 27,943/256 = 109 batch updates. For the 

first batch of the first epoch, the model parameters (weights 

and biases) were initialized. For each batch, inputs were 

passed forward through the network to compute predictions, 

the batch loss and batch accuracy were calculated, and 

gradients were back propagated. The Adam optimizer then 

updated the parameters. After completing all batches in an 

epoch, the average batch loss and average batch accuracy 

were computed. The updated parameters from that epoch 

were then used to evaluate the untouched validation subset, 

yielding the validation loss and validation accuracy. This 

process was repeated for 1,500 epochs. The mathematical 

formulation of the generalized training flow for each batch is 

presented as follows: 

 

During the forward pass, for the input layer, let 

 

𝐴0  =  𝑋𝐵×𝐷                                                                              (11) 

 

Where 

 

X is the input matrix of order BxD. 

 

A0 is the input activation. 

 

B is the batch size. 

 

D is the input feature size. 

 

And for hidden layers (h = 1 to H), it’s 

 

[𝑍ℎ]𝐵×𝑈ℎ  =  ([𝐴ℎ−1]𝐵×𝑈ℎ−1  ·  [𝑊ℎ]𝑈ℎ−1×𝑈ℎ  
+  [𝑏ℎ]1×𝑈ℎ)𝐵×𝑈ℎ                                     (12) 

 

And 

𝐴ℎ  =  𝑅𝑒𝐿𝑈 (𝑍ℎ)                                                                    (13) 
 

Where 

 

H is the number of hidden layers. 

 

Zh is the pre-activation values for hidden layer h. 

 

Ah is the post-activation outputs for layer h. 

 

Wh is the weight matrix for hidden layer h. 

 

bh is the bias vector for hidden layer h. 

 

Uh is the number of neurons in hidden layer h. 

 

At the output layer, it’s 

 

[𝑍𝐶 ]𝐵×𝐶  =  ([𝐴𝐻]𝐵×𝑈ℎ  ·  [𝑊ℎ]𝑈ℎ×𝐶  +  [𝑏ℎ]1×𝐶)𝐵×𝐶     (14) 

 

And 

 

𝑃 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑍𝐶)                                                               (15) 

 

 

Where P is the predicted class probabilities (after 

Softmax). The categorical cross entropy loss function is 

expressed as: 

ℒ𝐶𝐶𝐸 =
−1

𝐵
∑ ∑ 𝑤𝑐

𝐶

𝑐=1

𝐵

𝑖=1

 . [𝑌𝑖,𝑐]
𝐵×𝐶

 . 𝑙𝑜𝑔 ([𝑃𝑖,𝑐]
𝐵×𝐶

)   (16) 
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L2 regularization is applied as: 

 

ℒ2
h  =  λh . ∥ Wh ∥2 =  λh . ∑ ∑(Wi,j

h)
2

                (17)

Uh

j=1

Uh−1

i=1

 

 

ℒL2  =  ∑ ℒ2
h

H

h= 1

 +  𝜆𝑜𝑢𝑡 . ∥ WC ∥2                                      (18) 

 

The total loss is then computed as: 

 

ℒ  =  ℒ𝐶𝐶𝐸  +  ℒL2                                                                  (19)  
   

Where 

 

L2
h is the L2 regularization loss for the hidden layer h. 

 

LL2 is sum of L2 losses over all layers (hidden + output). 

 

λh is the L2 regularization coefficient for layer h. 

 

λout is the L2 regularization coefficient for the output layer. 

 

The notation || . || is the squared L2 norm of the weight 

matrix, i.e., the sum of the squares of all its elements. 

Back propagation updates network parameters by 

propagating the error from the output layer back through the 

hidden layers. The gradient at the output is: 

 
𝜕ℒ

𝜕𝑍𝐶
 =  (𝑃 −  𝑌)𝐵×𝐶  ⊙  (𝑊𝑐𝑙𝑎𝑠𝑠)𝐵×𝐶                                (20) 

 

Where 

 
⊙represents the element-wise (component-wise) 

multiplication of two matrices or vectors of the same 

dimensions. 

 

Y is the one-hot encoded true class labels of the current 

batch. 

 

Wclass is a weight matrix with each element Wclass[i, c] = 

wc. 

 

For hidden layer gradients from h = H down to 1: 

 
𝜕ℒ

𝜕𝐴ℎ
 =  

𝜕ℒ

𝜕𝑍ℎ+1
 ·  (𝑊ℎ+1)𝑇                                                    (21) 

 
𝜕ℒ

𝜕𝑍ℎ
 =  

𝜕ℒ

𝜕𝐴ℎ
 ⊙  𝑅𝑒𝐿𝑈′(𝑍ℎ)                                                (22) 

 

Regularization gradients are incorporated as: 

 
𝜕ℒ

𝜕𝑊ℎ
 + =  2 ·  𝜆ℎ . 𝑊ℎ                                                         (23) 

 

Where ReLU’ (Z) = 1, if Z > 0, otherwise 0. 

An optimizer is an algorithm that updates a model’s 

parameters during training to minimize the loss function and 

improve performance. The Adam optimizer (Adaptive 

Moment Estimation) is an advanced optimization algorithm 

that integrates the benefits of momentum and adaptive 

learning rates to ensure efficient and stable convergence 

during neural network training. It computes the first moment 

(mean) and second moment (uncentered variance) of 

gradients for each parameter, applies bias correction, and 

updates the parameters with a controlled step size. Let the 

hyper parameters of this algorithm be: 

 

Learning rate α. 

 

First moment decay β1 = 0.9. 

 

Second moment decay β2 = 0.999. 

 

Numerical stability constant ε = 10-7. 

 

Then, the update rule for parameter θ (weights or biases) 

at step t is: 

 

𝑔𝑡  =  𝛻𝜃ℒ𝑡                                                                                 (24) 

 

𝑚𝑡  =  𝛽1 . 𝑚𝑡−1  +  (1 −  𝛽1) . 𝑔𝑡                                        (25)  
 

𝑣𝑡  =  𝛽2 . 𝑣𝑡−1  +  (1 −  𝛽2) . 𝑔𝑡
2                                       (26) 

 

𝑀𝑡  =  
𝑚𝑡

1 − 𝛽1
𝑡                                                                        (27) 

 

𝑉𝑡  =  
𝑣𝑡

1 − 𝛽2
𝑡                                                                          (28) 

 

𝜃𝑡+1  =  𝜃𝑡  −  𝛼 .
𝑀𝑡

√𝑉𝑡  +  𝜀
                                                  (29) 

 

Where 

 

g is gradient. 

 

m is first moment estimate; M is its bias corrected version. 

 

v is second moment estimate; V is its bias corrected version. 

 

θt+1 is the parameter update. 

 

The initial values of both moment estimates are set to 

zero. The accuracy of the batch is computed as: 

𝐴𝑐𝑐 =  
1

𝐵
 . ∑ 𝕀(𝑎𝑟𝑔 𝑚𝑎𝑥 (𝑃𝑖)  =  𝑎𝑟𝑔 𝑚𝑎𝑥 (𝑌𝑖))

𝐵

𝑖=1

       (30) 

 

Where 

 

I (⋅) is the indicator function, which equals 1 if the 

condition inside is true (correct prediction) and 0 otherwise. 
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arg max (Pi) is the index of the class with the highest 

predicted probability. 

 

arg max (Yi) is the index of the actual class label. 

 

On-device performance measured via the EON (Edge 

Optimized Neural network) compiler showed an inference 

time of 6ms, peak RAM usage of 2.4 KB, and Flash usage of 

86.9 KB, demonstrating the model’s suitability for embedded 

deployment on the receiver ESP32. The inference on the test 

set was evaluated using the final training output parameters, 

to confirm its ability to generalize to unseen data. This step 

validated that the model retained its performance on data it 

had never seen during training or validation. This tested 

model was then loaded and deployed onto the receiver via the 

generated Arduino library, enabling real-time inference on 

incoming sensor data from the sender module 

. 

V. RESULTS AND DISCUSSION 

 

The final training output was defined as the combination 

of the lowest validation loss, its corresponding validation 

accuracy, and the confusion matrix obtained for that epoch. 

These results were obtained using the unoptimized full-

precision 32-bit floating-point (FP32) model, without 

applying quantization (unlike INT8 quantized models, which 

reduce model size and inference latency by using 8-bit 

integers at the cost of numerical precision). The achieved loss 

was 0.55, with a corresponding accuracy of 82%. This is 

outlined in Fig. 7. 

 

 
Fig 7 Final Training Output 
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Fig 8 Final Testing Output 

 

 
Fig 9 Final Inference Output 
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Fig 10 Final Mail Alert Output 

 

The accuracy and confusion matrix were computed for 

the test set, with the minimum confidence threshold set to 0, 

ensuring that all predictions were mapped to a known label 

and no “uncertain” class occurred. An overall accuracy of 

82.53% was achieved. Fig. 8 presents this. 

 

During inference, each new sensor reading (AX, AY, 

AZ, GX, GY, GZ) is processed individually by the embedded 

model, which classifies it and prints the predicted label 

alongside the raw sensor values on the serial monitor. The 

system continuously monitors for fall-type events—Front 

Fall, Back Fall, Left Fall, or Right Fall—and automatically 

triggers an email alert via SMTP whenever such an event 

occurs, with a 60-second cooldown to prevent repeated 

notifications. Accurate timestamps are generated using the 

onboard real-time clock, ensuring that each alert is time-

stamped. This is visualized in Fig. 9 and Fig. 10. 

 

These results demonstrate that the model operates 

efficiently in a low-power, embedded environment, 

supporting autonomous, continuous classification and 

immediate fall notifications. 

 

 

 

 

VI. CONCLUSION AND FUTURE WORK 

 

This study introduces a real-time fall detection system that 

integrates an MPU6050 IMU with two ESP32-WROOM-32 

MCUs communicating via ESP-NOW. Motion signals are 

processed directly on the receiver MCU using a regularized 

Deep MLP trained and fine-tuned on Edge Impulse. Across 

tests, the system recognized falls toward the front, back, left, 

and right with short response times, operating entirely within 

the MCU’s processing and memory limits. Its small form 

factor and wearable nature make it applicable to elderly 

assistance, workplace hazard prevention, and intelligent 

healthcare systems. Performance gaps remain due to a 

compact dataset, limited coverage of daily activities, and 

occasional confusion between motions with similar 

dynamics, all affected by MCU hardware constraints. Future 

work will focus on enlarging the dataset with varied 

participants and movements, improving model robustness, 

enabling mobile connectivity for added capabilities, and 

assessing endurance through extended deployment in 

uncontrolled real-world conditions. 
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