https://doi.org/10.38124/ijisrt/25aug680

 $Volume\ 10, Issue\ 8,\ August-2025$

ISSN No: -2456-2165

The Role of Artificial Neural Network (ANN) Based Unified Power Flow Controller (UPFC) in Reduction of Transmission Line Losses: A Case Study of Nigeria 330 kV 58-Bus Network

Obasi, Richard Ubadire¹; Okonkwo, Innocent I.²; Obinwa, C. I.³

Publication Date: 2025/09/10

Abstract: The Nigeria 330 kV Power transmission network is beset with high losses due to weak transmission lines and greater radial network, resistive as well as losses due to corona. The network consists of 87 transmission lines, 58-buses, 22 generation stations and 36 load buses. To mitigate the losses, power flow was carried out using PSAT to determine the steady state voltage, active power, reactive power, active power loss and reactive power losses which forms input to ANN based UPFC to reduce the active and reactive power losses and also improve voltage profile of the buses. The load flow was based on the singularity of the Jacobian Matrix. The data used was real-time data of the Transmission Company of Nigeria (TCN) Osogbo. The result showed that, the active and reactive power losses without FACTS device was 5.237 MW and 7.03 MW and with UPFC FACTS it was 2.6788 MW and 4.658 MW with ANN based UPFC FACTS 1.2952MW and 1.9150 MW. Also, the active power loss reduction with UPFC FACTS was 33.8% compared with ANN-based UPFC controller, the active power loss reduction was 75.3% and the reactive power loss reduction was 73%. It is therefore evident that ANN-based UPFC controllers reduced active and reactive power losses greatly and should be integrated into 330 kV network.

Keyword: Load Flow, ANN Based Unified Power Flow Controller, Power Loss and Reactive Power Loss.

How to Cite: Obasi, Richard Ubadire; Okonkwo, Innocent I.; Obinwa, C. I. (2025) The Role of Artificial Neural Network (ANN) Based Unified Power Flow Controller (UPFC) in Reduction of Transmission Line Losses: A Case Study of Nigeria 330 kV 58-Bus Network. *International Journal of Innovative Science and Research Technology*, 10(8), 2824-2834. https://doi.org/10.38124/ijisrt/25aug680

I. INTRODUCTION

Transmission lines possess parameters such as resistance, inductance and capacitance. Power transfer along these corridors are limited by those properties. The effective resistance of the transmission line is a function of the current on the line. This is because of the I²R losses producing heat and accounting for the temperature rise in the conductor. This rise in temperature increases the resistance of the conductor and consequently the losses on the line (Ezechukwu *et al.*, 2022). Okonkwo *et al.*, (2020) in their work placed SSSC in Benin – Egbin transmission line and it was found that optimally, the technical loss of the system under study decreased from 257MW to 163MW which is 36.6% technical loss reduction.

Losses can be reduced by reducing either the resistance or overall impedance of the transmission line. This is possible

by selecting a conductor with large cross-sectional area or low resistivity. Another approach is to deploy FACTS devices to control selectively or simultaneously all parameters of the transmission line. FACTS controllers are used to control voltage, impedance, phase angle and power transfer capabilities and ensures that power flows appropriately through the lines in either a simple or complex network.

The electrical grid, which is used to transmit power, includes the combined transmission and distribution network. Effective long-distance electric power transmission requires high voltages (Ezeonye *et al.*, 2024). As a result losses from large currents flow are reduced (Ulasi *et al.*, 2019, Obi *et al.*, 2022). The increment of reactive power demand in distribution system creates manifold challenges especially in loss profile management due to most of the loads consist of reactive leads. This significantly increases the current flow in

¹Department of Electrical & Electronic Engineering, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria.

^{2,3}Department of Electrical & Electronic Engineering, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria.

Volume 10, Issue 8, August – 2025

ISSN No: -2456-2165

https://doi.org/10.38124/ijisrt/25aug680

transmission and distribution system which also increases I^2R and I^2X loses in the line. As reported by Bazilah et al., (2017), about 13% of power delivered from generation to load is lost as resistive losses at the distribution level. According to Badran et al., (2017), 70% of total power losses in power system occurs at distribution level while the remaining 30% occurs at transmission and sub-transmission system. By integrating capacitor, custom power devices or FACTs devices into the network, the power losses produced by reactive currents can be reduced. The reduction of total power losses is significant in order to alleviate the sag problem, increase the capacity of line loading as well as reduce the heating effect in cables. The investigation in reducing power low is one of the most common criteria in selecting the possible location of FACTS devices Ejebe et al., (1979).

Siti et al., (2016), worked on optimal sizing of Static Var Compensator (SVC) based on particle swarm optimization for minimization of transmission line losses considering cost function. Particle Swarm Optimization (PSO) is one of the artificial intelligence search approaches which has potential to solve such a problem. In his work, Static Var Compensator (SVC) was deployed. The work was validated by implementing it on the IEEE 26-bus system. The result obtained showed that, the SVC sizing achieved power loss reduction at several loading conditions to the tune of 7.8% in transmission losses.

II. LOAD FLOW STUDY

Load flow studies are done to ensure that electrical power transfer from generators to consumers through the energy transmission network is stable, reliable and economical. It determines if the system voltage remain within specified limits under various contingency conditions and scenarios. They form the backbone of voltage stability studies.

In this paper power loss reduction for the 330KV Transmission System comprising of 58 buses, 22 generators, 87 transmission lines, one slack bus, and 36 load buses will be X-rayed.

The load flow problem consists of the calculation of power flows and voltages of a network for specified terminal or bus conditions. It is necessary to select one bus, called the slack bus, to provide the additional real and reactive power to supply the transmission losses, since these are unknown until the final solution is obtained.

The Real and Reactive Power at Any Bus P is Given as;

$$P_P - jQ_P = E_P^* I_P \tag{1}$$

And the current is

$$I_P = \frac{P_P - jQ_P}{E_p^*} \tag{2}$$

Where I_P is positive when flowing into the system.

In the formulation of the network equation, if the shunt elements to ground are included in the parameter matrix then equation (2) is the total current at the bus. On the other hand if the shunt elements are not included in the parameter matrix the total current at bus P is

$$I_{P} = \frac{P_{P} - jQ_{P}}{E_{n}^{*}} - Y_{P}E_{P} \tag{3}$$

Where Y_P is the total shunt admittance at the bus $Y_P E_P$ is the shunt current flowing from bus P to ground.

➤ Line Flow Equation

After the iterative solution of bus voltages is completed, line flows can be computed. The current at bus P in the line connecting bus P to q is

$$i_{Pq} = (E_P - E_q)Y_{Pq} + E_P \frac{Y_{Pq}^1}{2}$$
 (4)

Where Y_{Pq} = line admittance

 Y_{pq}^1 = total line charging admittance

 $E_P \frac{Y_{pq}}{2}$ = current distribution at bus P due to line charging

The power flow real and reactive is

$$P_{pq} - jQ_{pq} = E_p^* i_{pq} \tag{5}$$

$$P_{Pq} - jQ_{Py} = E_p^{\prime *} (E_P - E_q) Y_{Pq} + E^* E_p^1 \frac{Y_{pq}^1}{2}$$
 (6)

Where at bus P the real power flow from bus P to q is P_{Pq} and the reactive is Q_{Pq} similarly, at bus q the power flow from

$$q$$
 to p is

$$P_{qp} - jQ_{qp} = E_q^* (E_q - E_p) Y_{pq} + E_q^* E_p^{\frac{\gamma_{pq}^1}{2}}$$
 (7)

The power loss in line P-q is the algebraic sum of the power flows determined from equations (6) and (7).

III. METHODOLOGY

This research paper will utilize PSAT software for the modeling of the 58- bus power system network for the determination of active power flow and losses. MATLAB 2023a will be utilized for the computation and generation of plots of the power system network. Power flow to determine active power, reactive power, active power loss and reactive power loss without UPFC FACTS and with UPFC FACTS tuned with ANN is carried out, UPFC is designed to control selectively or simultaneously all parameters affecting flow of power in a transmission line. The UPFC consists of STATCOM and direct voltage regulator. All losses including ohmic and corona will be taken into account in this paper.

https://doi.org/10.38124/ijisrt/25aug680

ISSN No: -2456-2165

> Mathematical Model to Compute the Power Loss in Transmission Lines

Transmission line losses refer to the reduction in power as electricity travels through power lines. The main types of losses identified are:

- Resistive Losses (I²R loses)
- Corona losses
- Dielectric losses
- Inductive and capacitive losses
- · Radiation losses and skin effect

The major losses are attributed to ohmic and corona losses using the equation below:

(i)
$$P = I^2 R$$
, (w) (1)

P =Power in (kW),

I = Current (A),

R =Resistance of line conductor (Ohms)

• Petersons Formula for determination of corona loss:

$$P_c = \frac{21 \times 10^{-6} f v^2}{(\log_{10} D/r)^2} \times F \frac{kw}{phase} / km$$
 (2)

 P_c = Corona power loss (R \dot{w})

f = System frequency

V =Phase voltage kV ((Rms value)

r = Radius of conductor in metres

D =Spacing between conductors (m)

The total loss on the transmission line becomes:

$$P_{Loss} = P_{ohmic} + P_{corona}(kW)$$

$$P_{Loss} = I^2 R + \frac{21 \times 10^{-6} f v^2}{(log_{10} D/r)^2} \text{ (kW)}$$

The UPFC schematic used in this work is here presented:

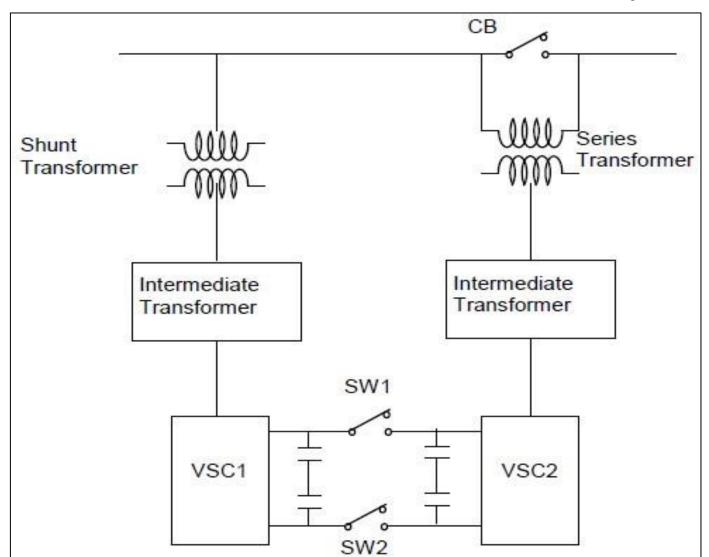


Fig 1 UPFC Schematic

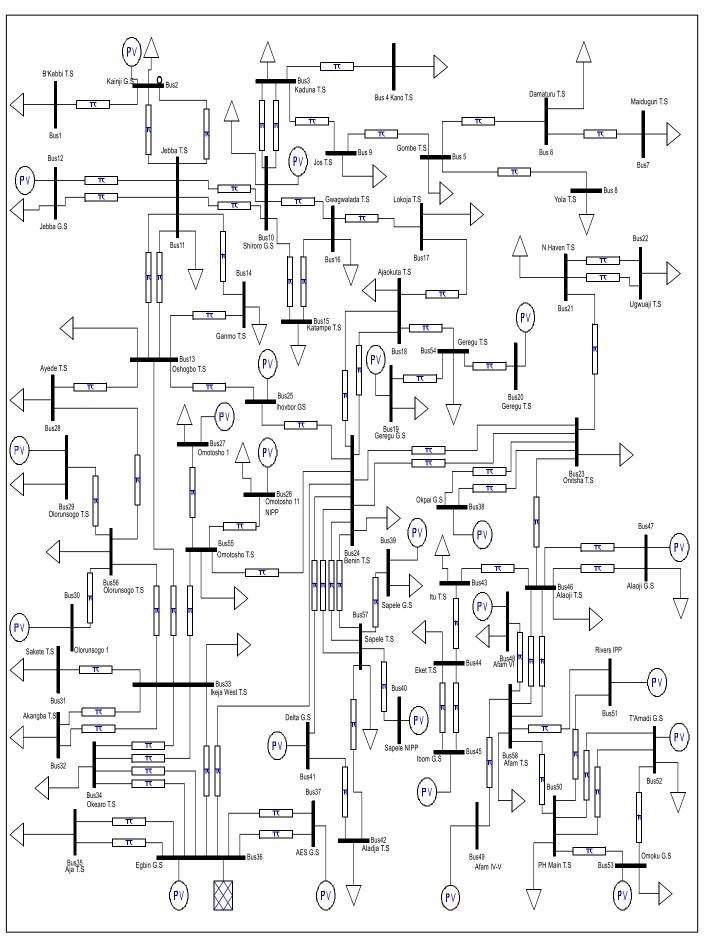


Fig 2 Power System Model of the Nigerian 330 kV Transmission Network In PSAT

Volume 10, Issue 8, August – 2025

ISSN No: -2456-2165

https://doi.org/10.38124/ijisrt/25aug680

IV. RESULTS AND DISCUSSION

This section shows the power flow results comprising of real and reactive power losses on the five identified weak buses of the 58-bus transmission network and are buses 32, 57, 34, 22 and 55 without FACTS, with UPFC FACTS and ANN.

Table 1 Outcome of the Power Flow Analysis of the System Without FACTS

Bus Number	Real Power (MW)	Reactive power (MVar)	Active power loss (MW)	ACTS Reactive power loss (MVar)	
1	87.3163	114.4417	4.5947	7.6016	
2	95.2701	117.1738	4.1241	7.7922	
3	92.5579	93.8096	4.5965	7.1922	
4	95.4396	117.4013	4.0927	7.7680	
5	98.6571	108.9708	5.0109	7.8875	
		92.9262	5.5229	7.0983	
6 7	99.4548 83.8406	98.3549	5.2621	7.4568	
8	82.7775		4.1798	7.4308 7.1535	
9		106.4064 118.7252			
	93.9253		4.1617	6.0517	
10	81.8764	118.9467	5.5545	6.8931	
11	90.5081	94.7284	5.8103	7.2926	
12	90.6069	119.1178	5.0675	7.0424	
13	97.2228	118.7150	4.2183	6.7446	
14	89.6971	104.5613	5.6516	7.8743	
15	87.8691	114.0084	4.6762	7.6591	
16	93.4286	94.2566	4.5879	7.6982	
17	94.8252	102.6528	5.4926	6.7451	
18	90.4010	117.4721	4.0207	7.1864	
19	86.9543	113.7662	4.0969	7.7451	
20	82.9999	118.7848	5.3358	7.8670	
21	91.7218	109.6722	5.2069	7.3369	
22	85.2429	91.0714	5.0522	6.4136	
23	80.8891	115.4739	5.4594	7.3077	
24	95.0987	118.0198	5.4145	6.1441	
25	84.8557	110.3621	5.5628	6.8135	
26	88.8480	112.7322	4.5760	7.3339	
27	93.7559	112.2940	5.3851	7.8675	
28	87.1846	101.7668	5.1133	7.6219	
29	94.7268	109.6643	4.7930	6.9691	
30	87.8941	95.1356	4.1232	7.5135	
31	93.6683	111.1814	5.5604	6.8341	
32	94.0809	90.9550	4.6752	7.9436	
33	88.8461	98.3077	5.2157	7.9759	
34	80.3916	91.3851	5.4825	7.7283	
35	86.6172	92.9140	4.2096	6.7778	
36	88.4862	114.7037	4.2558	6.9095	
37	85.4054	110.8449	5.0991	6.4934	
38	83.9411	99.5130	4.9705	7.5688	
39	96.4344	118.5067	5.7810	7.7657	
40	88.5984	91.0334	5.5979	7.8274	
41	97.7554	103.1623	5.4687	7.1166	
42	87.8237	101.4468	4.1027	7.1977	
43	95.3823	112.9655	4.1458	6.2978	
44	87.9358	113.8560	4.1771	7.7994	
45	96.1703	95.6062	5.5967	6.9008	
46	95.1015	104.6929	5.8860	6.4113	
47	87.5479	103.3676	5.3674	7.7993	
48	84.3204	109.3894	4.2642	7.5252	
49	95.8081	111.2809	5.4454	7.7650	
50	98.9861	112.6406	4.2207	6.5699	
51			4.2350	7.3465	
52			4.2330 5.2814	7.3465 7.3286	
53	93.4233 88.7729	110.3911 109.6529	3.2814 4.6576	6.2456	
54	96.6700	94.8784	5.3076	6.8146	

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25aug680

55	95.3771	93.5699	5.4983	6.5506
56	83.3451	104.9509	5.1664	7.4333
57	97.2396	118.7923	5.4801	6.5668
58	99.7974	100.2116	4.4697	7.7924

The bar chart of the power flow analysis of the system was generated and presented in figure 4.2, figure 4.3, figure 4.4 and figure 4.5 for active power, reactive power, active

power loss and reactive power loss respectively. The average losses at the busses are shown in Table 2 and the average voltage violations is shown in Table 3.

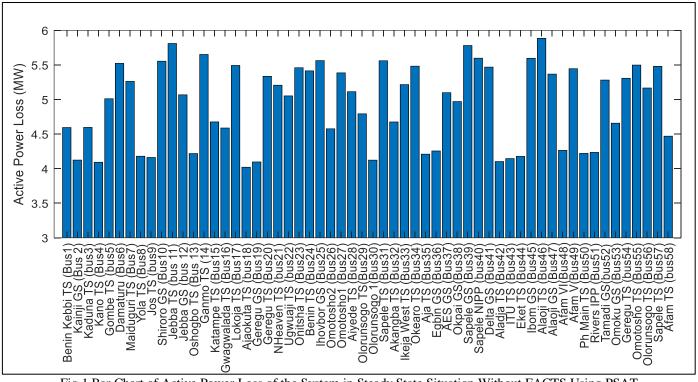


Fig 1 Bar Chart of Active Power Loss of the System in Steady State Situation Without FACTS Using PSAT

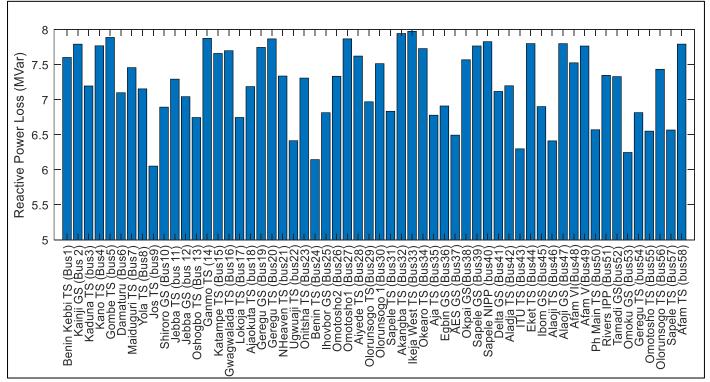


Fig 2 Bar Chart of Reactive Power of the System in Steady State Situation Without FACTS Using PSAT

https://doi.org/10.38124/ijisrt/25aug680

Table 2 Outcome of the Power Flow Analysis of the System with ANN Based UPFC FACTS

Table 2 Outcome of the Power Flow Analysis of the System with ANN Based UPFC FACTS							
Bus Number	Real Power (MW)	Reactive power (MVar)	Active power loss (MW)	Reactive power loss (MVar)			
1	100.9235	126.3853	2.8487	3.0589			
2	100.0782	120.3360	2.8587	4.3055			
3	104.2311	120.6881	2.2497	5.4967			
4	106.5557	123.1960	2.0489	4.8522			
5	107.2292	125.3086	2.5804	4.5604			
6	105.3121	126.5445	2.6350	5.5916			
7	101.0882	124.0762	3.3074	3.2931			
8	106.3177	128.1998	3.9139	5.7242			
9	101.2650	127.1836	3.8715	3.3241			
10	101.3430	129.6865	2.9158	4.5510			
11	100.9859	125.3133	2.4810	3.4295			
12	101.4203	123.2515	3.5278	4.6781			
13	101.6825	121.0563	3.5187	3.0137			
14	101.9625	126.1096	3.4813	5.3000			
15	103.1748	127.7880	3.4874	5.5461			
16	103.1643	124.2345	2.2118	5.7505			
17	102.1756	120.9082	3.3631	5.9609			
18	102.5104	122.6647	2.9265	4.5154			
19	108.9292	121.5366	2.4243	3.8143			
20	107.0322	122.8101	2.1970	3.3023			
21	105.5574	124.4009	3.6471	4.5235			
22	101.8443	125.2714	2.3500	4.7568			
23	102.1203	124.5742	2.3271	5.2887			
24	100.7735	128.7537	3.3320	3.2489			
25	109.1380	125.1805	3.7888	4.9848			
26	107.0672	129.4362	3.0331	4.5509			
27	105.5779	126.3771	3.4054	3.5131			
28	103.1343	129.5769	2.3072	5.8157			
29	101.6620	122.4071	3.9069	4.7714			
30	106.2250	126.7612	3.0818	4.3219			
31	109.8793	122.8906	3.3595	5.8258			
32	101.7043	126.7181	2.0731	4.9677			
33	102.5779	126.9514	3.6184	4.3558			
34	103.9680	120.6799	3.4972	5.5191			
35	100.7399	122.5479	2.2404	4.5979			
36	106.8410	122.2404	3.0501	4.6617			
37	104.0239	126.6783	2.6517	5.0402			
38	109.8284	128.4439	3.0929	4.1016			
39	104.0218	123.4446	2.7978	3.7179			
40	104.0218	127.8052	2.8302	4.7368			
41	101.5437	126.7533	2.3615	5.6007			
42	103.8135	120.0672	2.5108	4.2203			
43	101.6113	126.0217	2.0411	3.3378			
44	107.5811	123.8677	3.8474	4.3315			
45	107.3811	129.1599	3.3074	3.9006			
46	103.5078	120.0115	3.8652	4.2042			
47	106.8554	124.6245	2.3270	5.5001			
48	102.9415	124.2435	3.8422	4.2109			
49	105.3063	124.6092	3.5893	4.1705			
50	108.3242	127.7016	3.1548	4.0813			
51	105.9749	123.2247	2.8801	3.4208			
52	103.3531	127.8474	2.5152	3.7804			
53	103.3331	124.7136	3.5039	3.2604			
54	102.9923	120.3576	2.4573	4.2882			
55	104.3239	120.3376	2.4373	3.7718			
56	104.2263	121.7387	3.5347	3.8927			
57	105.5832	124.7349	3.3424	4.2746			
58							
38	107.4255	121.5272	3.4304	3.3576			

The bar chart of the power flow analysis of the system was generated and presented in figure 1, figure 2, figure 3 and

figure 4 for active power, reactive power, active power loss and reactive power loss respectively.

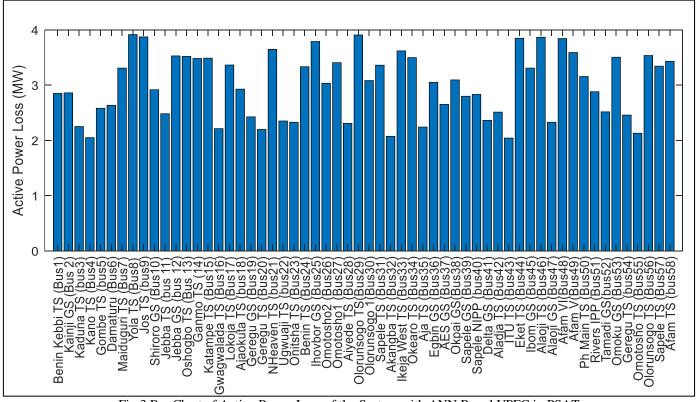


Fig 3 Bar Chart of Active Power Loss of the System with ANN Based UPFC in PSAT

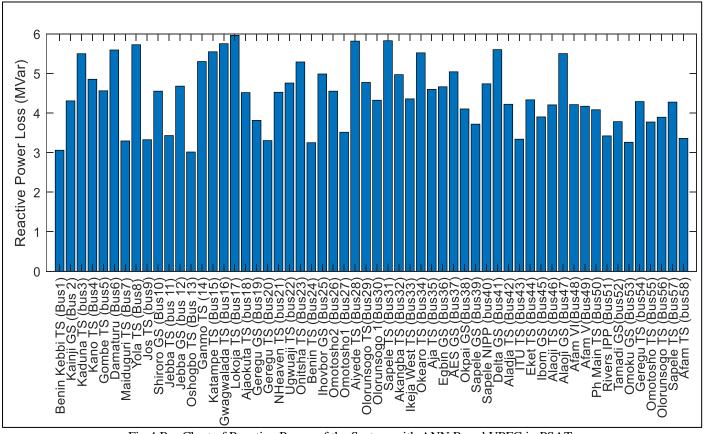


Fig 4 Bar Chart of Reactive Power of the System with ANN Based UPFC in PSAT

https://doi.org/10.38124/ijisrt/25aug680

Table 3 Outcome of the Power Flow Analysis of the System with ANN Based UPFC

			Analysis of the System with ANN Based UPFC			
Bus Number	Real Power (MW)	Reactive power (MVar)	Active power loss (MW)	Reactive power loss (MVar)		
1	126.0890 132.5721		0.5147	2.5175		
2	129.7221	134.4214	1.7648	2.9904		
3	110.5998	132.9401	1.8835	1.3731		
4	120.7133	130.7738	1.6564	2.5623		
5	111.7415	130.9993	0.5640	1.3916		
6	126.0418	132.0348	1.0673	2.9847		
7	129.7829	133.7435	1.5565	2.6045		
8	111.3389	134.1279	1.5943	1.8485		
9	128.7880	133.9498	0.8364	2.4577		
10	110.3636	131.5926	0.9036	1.9967		
11	123.6768	132.6703	1.5095	2.6180		
12	125.6747	130.4498	1.2162	1.7130		
13	120.6828	130.5585	1.4356	1.1465		
14	127.7072	130.6815	0.8547	2.1820		
15	127.9801	133.3933	0.7657	2.8204		
16	122.5188	132.4759	1.7445	1.3875		
17	112.7574	130.9486	1.6504	1.8647		
18	114.3560	132.4750	1.9017	2.4983		
19	113.6428	130.7380	0.6618	1.0784		
20	110.8364	130.2749	0.7733	2.8926		
20 21	112.1388	134.2536	0.7733	2.5273		
21 22	112.1388	134.2536	1.2346	2.5275		
		134.6480	0.7899			
23	128.7932			1.3677		
24	117.0891	133.4833	1.8438	1.9959		
25	118.2126	132.9140	0.6486	2.0357		
26	129.6870	134.0770	0.5662	2.9885		
27	128.9116	134.3951	1.3359	2.7097		
28	123.5329	134.9446	1.6587	2.9248		
29	129.7660	130.0026	0.9679	2.3579		
30	125.3366	134.3272	0.7685	1.8070		
31	116.7340	133.0628	1.0084	2.8700		
32	123.2476	134.9498	0.8152	1.9590		
33	114.8833	132.6384	1.2652	1.4636		
34	115.9101	132.3976	1.8595	1.7926		
35	123.6036	134.0067	1.4434	2.4102		
36	120.5569	131.1392	0.6523	2.1171		
37	118.2319	132.4905	1.0863	2.5133		
38	122.0528	134.5043	0.5819	2.9910		
39	125.0104	132.8733	1.2519	2.9249		
40	121.6707	134.2259	1.1476	2.0701		
41	121.0359	133.6932	1.9963	2.9277		
42	121.6714	132.9299	1.7174	1.2313		
43	120.2364	131.2337	1.2285	1.1029		
44	111.6519	133.3321	1.8417	1.6087		
45	124.3914	130.4174	0.7063	2.1604		
46	129.9231	133.1298	1.0850	2.0619		
47	117.0907	133.3047	1.8910	2.8024		
48	129.4252	133.6488	1.8762	2.0811		
49	116.9290	134.4538	1.5704	1.8640		
50	127.7309	134.9115	1.4275	2.0853		
51	119.0939	133.8451	1.0149	2.4248		
52	118.2685	132.9072	1.9040	1.0333		
53	114.3546	134.6416	0.6872	2.6018		
54	112.5131	132.9005	1.5959	1.2850		
55	116.1783	130.0849	1.4697	1.9569		
56	124.5221	130.6043	1.7497	1.5137		
57	125.6574	134.3136	1.0974	1.7382		
58	123.8758	132.4215	1.6247	2.3235		
30	123.0730	134,4413	1.0247	4.3433		

https://doi.org/10.38124/ijisrt/25aug680

The bar chart of the power flow analysis of the system was generated and presented in figure 5 and figure 6 for active

power, reactive power, active power loss and reactive power loss respectively.

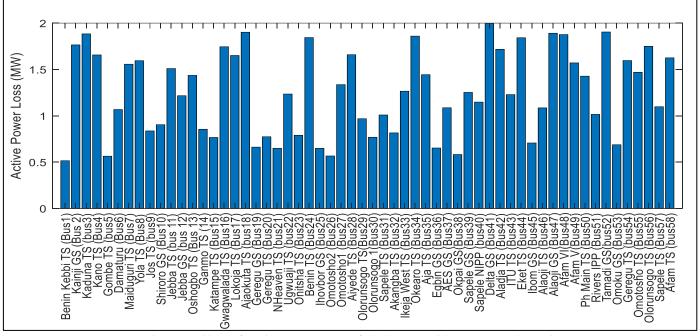


Fig 5 Bar Chart of Active Power Loss of the System with ANN Based UPFC

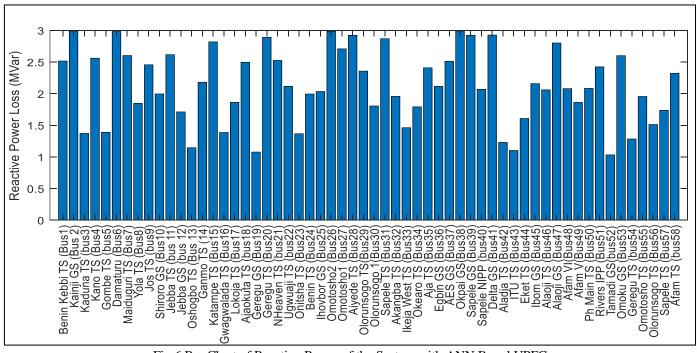


Fig 6 Bar Chart of Reactive Power of the System with ANN Based UPFC

Table 4 Results of Voltage Improvement with Facts and Ann Application on the Five Weak Buses

S/N	BUS	BUS	BUS VOLTAGE	BUS VOLTAGE	BUS VOLTAGE WITH	
	LOCATION	NUMBER	WITHOUT FACTS	WITH UPFC (KV)	ANN (KV)	
			(KV)			
1	Akangba TS	32	300.3 (0.91pu)	324.69 (0.984pu)	327.91(0.993pu)	
2	Sapele NIPP	57	309.59 (0.93pu)	322.97 (0.978pu)	328.47(0.885pu)	
3	Okearo Ts	34	300.46 (0.9pu)	322.75 (0.978pu)	326.45(0.989pu)	
4	Ugwuaji TS	22	300.35 (0.910pu)	321.53 (0.974pu)	327.270.997pu)	
5	Omotosho TS	55	301.19 (0.91pu)	321.31 (0.973pu)	327.990.9939pu)	

The introduction of UPFC FACTS and ANN improved the bus voltages from the (base case) steady state values justifying the need to invest in UPFC and ANN in practical power system network.

S/N	BUS	BUS	ACTIVE	REACTIVE	ACTIVE	REACTIVE	ACTIVE	REACTIVE
	LOCATION	NUMBER	POWER	POWER	POWER	POWER	POWER	POWER
			LOSS	LOSS	LOSS	LOSS	LOSS	LOSS
			(MW)	(MW)	(MW)	(MW)	WITH	(MW)
			WITHOUT	WITHOUT	WITH	WITH	ANN	WITH ANN
			FACTS	FACT S	UPFC	UPFC	(MW)	
					FACTS	FACTS		
1	Akangba TS	32	4.6752	7.9436	2.0731	4.9677	0.8152	1.9590
2	Sapele NIPP	57	5.4801	6.5668	3.3424	4.2746	1.0974	1.7382
3	Okearo Ts	34	5.4825	7.7283	3.4972	5.5191	1.8595	1.7966
4	Ugwuaji TS	22	5.0522	6.4136	2.35	4.7468	1.2346	2.1176
5	Omotosho TS	55	5.4983	6.5506	2.1284	3.7718	1.4697	1.9569
AVERAGE LOSSES			5.2376MW	7.04MW	2.6788MW	4.658	1.2952	1.9150MW

➤ Discussion

The result of this study analyzed the role of ANN based UPFC on the reduction of active and reactive power losses on the Nigeria's 330kV 58-bus network.

V. CONCLUSION

From the power flow analysis of the entire 58-bus network, the active power loss with the introduction of UPFC FACTS was 48.8% and reactive power reduction was 33.8%. With the introduction of ANN based UPFC controller, the active power loss reduction was 75.3% and reactive loss reduction with ANN based controller was 73%.

REFERENCES

- [1]. Badran, O. Mekhilef, H. & Mokhlis, W. D. (2017). "Optimal reconfiguration of distribution system connected with distributed generations: A review of different methodologies" Renew and Sustain. Energy Rev. Vol. 72, pp. 854-867.
- [2]. Bazilah, I., Mohammed, L. O., Kanendra N. V. & Muhammad M. N. (2017). "A comprehensive Review on Optimal location and sizing of Reactive Power Compensation using Hybrid-Based Approaches for power loss reduction, Voltage stability improvement, Voltage Enhancement and Loadability Enhancement IEEE Transaction.
- [3]. Ejebe, G.C. & Wollenberg, B.F. (1979). "Automatic contingency selection" IEEE Trans. On power Apparatus and Syst. Pps- 98, 97.
- [4]. Ezechukwu, O. A., Chukwuagu, M. I., & Ezendiokwelu, C. E. (2022). Evaluation of the Performance of a loss minimization method using ANN based UPFC. International Journal of Innovative Science and Research Technology. Volume. 7, Issue 3, ISSN No: 2456-2165
- [5]. Ezeonye, C.S. Atuchukwu, A.J. and Okonkwo, I.I. (2024). Comparative Effect of Series and Shunt FACTS on the steady state Improvement of Voltage Profile of the Nigerian 330KV Transmission System.

- Journal of Science and Technology Research 6(2); pp. 31-42.
- [6]. Nwohu M. N., Isah A., Usman A. U. and Sadiq A. A. (2016). Optimal Placement of Thyristor Controlled Series Compensator (TCSC) on Nigerian 330kV Transmission Grid to Minimize Real Power Losses. International Journal of Research Studies in Electrical and Electronics Engineering, ISSN 2454-9436
- [7]. Obi, P.I., Okonkwo I.I. & Ogba C.O. (2022). Power Supply Enhancement in Onitsha Distribution Network Using Distribution Generations. Nigerian Journal of Technology (NIJOTECH) 41(2); 318-329.
- [8]. Okonkwo *et al.*, (2020). Technical losses mitigation in 330KV Nigeria transmission network system. *International Research Journal of Modernization in Engineering Technology and Science. Volume* 2, Issue 12; Pp. 1076-1098.
- [9]. Siti, A. J., Ismail, M, & Muhammad, M. O. (2016) transmission loss minimization using SVC Based on particle swarm optimization, IEEE symposium on industrial electronics and applications(ISEA 2016), Langkawi Malaysia, vol.34, No.87, pp.35-78.
- [10]. Ulasi, A. J. Iloh, J. P. and P. I. Obi, (2019) "Application of Linear Sensitivity Factors for Real Time Power System Post Contingency Flow", Iconic Research and Engineering Journals, Vol. 2, No. 11, pp. 46-61, 2019.