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Abstract: Accurate diagnosis of diabetes is crucial for effective management and improved patient outcomes. Traditional 

Support Vector Machine (SVM) classifiers often struggle with accuracy due to parameter optimization challenges and 

unbalanced datasets. These challenges were addressed by developing an improved pheromone update technique for Ant 

Colony Optimization ACO-optimized SVM classifier. To achieve the aforementioned, the research generated a Hybrid 

Adaptive Pheromone Update Technique (HAPUT), Dynamic Exploration-Exploitation Balance (DEEB) and Pheromone 

Influence Factor (PIF). Subsequently, the parameters, BoxConstraint and KernelScale of the Support Vector Machine 

(SVM) classifier were optimized using an Ant Colony Optimization (ACO) approach in which HAPUT was used as the 

ACO pheromone update technique. Hence, each ant selects SVM parameters based on pheromone levels. The model 

developed was run in MATLAB codes using the PIMA Indian Dataset (PID) which composed of 268 diabetic and 500 non-

diabetic samples. The dataset was split into 80/20 for training and validation. Thus, the accuracy of ACO-optimized SVM 

for default and improved pheromone update were compared.The comparative analysis shows that SVM has the optimum 

performance with accuracy, precision and recall of 79.13%, 69.388 % and 50.746%, respectively; while ACO optimized 

with SVM has the optimal accuracy and precision of 83.0435 % and 80.9524 %. Moreso, the results of the ACO-optimized 

SVM with a Default Pheromone Update Technique (DPUT) and ACO-optimized SVM with an Improved Pheromone 

Update Technique (IPUT) shows that IPUT reflected higher performance of 86.520 %, 81.130 % and 67.187 % for 

accuracy, precision and recall, respectively. This outcome is still optimal when compared to results from related studies. In 

conclusion, the model developed converges to the best combination of SVM parameters, BoxConstraint (C)  and 

KernelScale, which yields the highest classification accuracy. 
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I. INTRODUCTION 

 

Diabetes is a chronic metabolic disorder characterized 

by elevated blood glucose levels due to insufficient insulin 

production (type 1 diabetes) or ineffective insulin utilization 
(type 2 diabetes (Addissouky et al., 2024; Taylor, 2024) . 

This condition leads to significant complications affecting 

cardiovascular, ocular, renal, and neurological systems 

(Dórea et al., 2024). In 2019, diabetes was responsible for 

approximately 1.5 million deaths globally, with nearly 48% 

occurring before the age of 70 (WHO, 2020). Between 2000 

and 2019, global age-standardized mortality rates due to 

diabetes increased by 3%, with a more pronounced 13% rise 

in low- and middle-income countries (Khaltaev & Axelrod, 

2021). Although a cure remains unavailable, early diagnosis 

remains critical in managing diabetes and preventing 

complications, with individuals diagnosed with pre-diabetes 

able to take measures to delay or avoid type 2 diabetes onset. 
The etiology of type 1 diabetes remains incompletely 

understood, though family history is a recognized risk factor 

(Pociot & Lernmark, 2016). In contrast, type 2 diabetes risk 

factors are better characterized, including pre-diabetes, 

overweight or obesity, age over 45 years, familial diabetes 

history, and physical inactivity (Xia et al., 2021). Early 

identification of at-risk individuals enhances opportunities 

for intervention and disease management. 

https://doi.org/10.38124/ijisrt/25aug1486
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25aug1486


Volume 10, Issue 8, August – 2025                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25aug1486 

 

 

IJISRT25AUG1486                                                              www.ijisrt.com                                                                                 2805 

Machine learning applications have expanded rapidly 

in medical diagnostics, providing tools to detect complex 

patterns in heterogeneous clinical data (Ahmed et al., 2020). 

Established algorithms such as Support Vector Machines 

(SVM), decision trees, random forests, and neural networks 

have been extensively employed in diabetes classification 

tasks (Kumari & Chitra, 2013). However, challenges such as 

hyperparameter optimization and class imbalance reduce 
traditional SVM classifier accuracy, motivating exploration 

of metaheuristic optimization algorithms like Ant Colony 

Optimization (ACO) to improve diagnostic performance. 

 

 Statement of Research Problem 

Accurate diagnosis of diabetes is crucial for effective 

management and improved patient outcomes. Traditional 

Support Vector Machine (SVM) classifiers often struggle 

with accuracy due to parameter optimization challenges and 

unbalanced datasets, such as the PIMA diabetes dataset 

(Mavrovouniotis et al., 2023; Manakkadu & Dutta, 2024). 
These challenges highlight the need for advanced meta-

heuristic optimization algorithms, such as the Ant Colony 

Optimization (ACO) algorithm. Developing improved 

pheromone update techniques for ACO-optimized SVM 

classifiers could address these challenges and enhance 

classification accuracy, providing a solution to the pressing 

need for more accurate diabetes diagnoses. Hence, the need 

for this study. 

 

This study therefore aims to enhance the accuracy of 

diabetes diagnosis by developing an improved pheromone 

update technique for an ACO-optimized SVM 
classifier.ormance metrics. 

 

II. LITERATURE REVIEW 

 

 Diabetes Mellitus 

Diabetes mellitus is a chronic metabolic disorder 

marked by high blood glucose due to impaired insulin 

secretion or action. It includes three main types: Type 1 

diabetes (autoimmune destruction of pancreatic beta cells), 

Type 2 diabetes (insulin resistance and deficiency), and 

gestational diabetes (Addissouky et al., 2024; Taylor, 2024).  
Globally, diabetes prevalence is rapidly increasing, causing 

significant health burdens such as cardiovascular disease 

and kidney failure. Diagnosis relies on blood glucose and 

HbA1c measurements, but these require invasive sampling 

(Aisha et al., 2024). Emerging non-invasive techniques like 

photoplethysmography (PPG) combined with machine 

learning show promise, potentially enhancing early diabetes 

detection without blood tests (Alghlayini et al., 2025). 

 

The global prevalence of diabetes has been rising at an 

alarming rate, with significant implications for public health 

systems worldwide. As of 2021, approximately 537 million 
adults aged 20-79 years were living with diabetes globally, a 

number projected to rise to 643 million by 2030 and 783 

million by 2045 (Yameny, 2024; Soomro & Jabbar, 2024). 

This escalating prevalence underscores the urgent need for 

effective diagnostic and management strategies to mitigate 

the associated morbidity and mortality. Diabetes is a leading 

cause of cardiovascular diseases, kidney failure, blindness, 

and lower-limb amputations, contributing significantly to 

healthcare costs and economic burden (Ma et al., 2022). 

 

The pathogenesis of diabetes involves a complex 

interplay of genetic, environmental, and lifestyle factors. In 

T1D, autoimmune destruction of pancreatic beta cells leads 

to absolute insulin deficiency. Conversely, T2D is primarily 

driven by insulin resistance, where peripheral tissues fail to 
respond adequately to insulin, coupled with an eventual 

decline in beta-cell function. Risk factors for T2D include 

obesity, physical inactivity, unhealthy diet, advancing age, 

and a family history of diabetes (Serbis et al., 2023). 

Emerging evidence also implicates factors such as sleep 

duration in the development of metabolic disorders, 

including diabetes. Both short and long sleep durations were 

associated with an increased risk of metabolic syndrome, a 

cluster of conditions that elevate the risk for diabetes and 

cardiovascular diseases. The diagnosis of diabetes 

traditionally relies on the measurement of blood glucose 
levels and glycated hemoglobin (HbA1c) (Rahman et al., 

2023). The American Diabetes Association (ADA) criteria 

for diagnosing diabetes include: 

 

 Fasting Plasma Glucose (FPG) ≥ 126 mg/dL (7.0 

mmol/L) 

 2-hour Plasma Glucose ≥ 200 mg/dL (11.1 mmol/L) 

during an Oral Glucose Tolerance Test (OGTT) 

 HbA1c ≥ 6.5% (48 mmol/mol) 

 In a patient with classic symptoms of hyperglycemia, a 

random plasma glucose ≥ 200 mg/dL (11.1 mmol/L) 
 

While these methods are well-established, they may 

not detect early dysglycemia or predict the progression to 

diabetes effectively. Moreover, they require blood samples 

and laboratory analysis, which may not be feasible in all 

settings. Recent advancements in technology have 

introduced non-invasive methods for diabetes detection. 

Photoplethysmography (PPG), an optical technique that 

measures blood volume changes in the microvascular bed of 

tissue, has been explored for this purpose. A study 

developed a machine learning-based approach using PPG 

signal features to classify diabetic and non-diabetic 
individuals. Their model achieved an Area Under the Curve 

(AUC) of 79.2%, indicating the potential of PPG signals in 

non-invasive diabetes detection (Oliveira et al., 2023). 

 

 Machine Learning 

Machine learning, a branch of artificial intelligence, 

focuses on creating algorithms that enable computers to 

learn from data and make predictions or decisions without 

explicit programming Mehrotra, 2019). It encompasses 

supervised learning, where models are trained on labeled 

data; unsupervised learning, which identifies patterns in 
unlabeled data; and reinforcement learning, which involves 

learning through rewards in dynamic environments. 

Supervised learning, the emphasis of this study, includes 

both regression and classification tasks using algorithms 

such as logistic regression, decision trees, random forests, 

support vector machines (SVM), and neural networks 

(Morales & Escalante, 2022). This research specifically 

explores an Ant Colony Optimization (ACO)-optimized 

https://doi.org/10.38124/ijisrt/25aug1486
http://www.ijisrt.com/


Volume 10, Issue 8, August – 2025                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25aug1486 

 

 

IJISRT25AUG1486                                                              www.ijisrt.com                                                                                 2806 

SVM to enhance diabetes diagnosis accuracy, combining 

optimization techniques with traditional classifiers to 

improve predictive performance. 

 

 
Fig 1 Types of Machine Learning (Thanmaikora, 2023). 

 

 Supervised Learning Algorithm 

Supervised Learning Algorithm is the primary 

emphasis of this study. With supervised learning, data from 

previously completed predictions are used to train a model 

for future predictions. Supervised learning can be broken 

down into two categories, regression and classification, 

depending on whether the output value is continuous or 

discrete (El Mrabe et al., 2021).  Regression (both linear and 

logistic), Naive Bayes, K-nearest neighbour, random forest, 
support vector machines, decision trees, linear classifiers, 

and neural networks are all examples of supervised learning 

algorithms (Josephine, 2021). Improved pheromone update 

technique for diabetes diagnosis can be built via a wide 

variety of Machine Learning algorithms such as Logistic 

regression, decision trees, random forests, support vector 

machines (SVM), artificial neural networks (ANN), and 

gradient boosting techniques like XGBoost and LightGBM. 

However, this study will focus on ACO-optimized SVM. 

 

 SVM 
Support Vector Machine (SVM) is a versatile machine 

learning algorithm widely used for classification and 

regression tasks (Saravanan et al., 2023). It represents data 

points in a multi-dimensional space and identifies an 

optimal hyperplane that distinctly separates different classes. 

SVM uses kernel functions such as linear, polynomial, and 

radial basis function (RBF) to transform non-linearly 

separable data into higher dimensions where it becomes 

linearly separable (Aiad et al., 2021). This kernel trick 

enhances SVM’s ability to handle complex datasets 

effectively. SVM aims to maximize the margin between 

classes while minimizing classification errors, which is 

formulated as a convex optimization problem ensuring 

global optimality (Pirouz & Pirouz, 2023). Despite its 

strengths, SVM can be computationally intensive on large 

datasets, and its performance heavily depends on the choice 

of kernel and hyperparameter tuning. Key SVM 
hyperparameters include the kernel type, regularization 

parameter (C), gamma (for RBF kernel), and class weights 

to handle imbalanced datasets (Tsai & Chang, 2023). SVM 

demonstrates robustness against outliers and is widely 

applied in image recognition, text classification, and 

bioinformatics, though interpretability can be a challenge 

with complex kernels. 

 

 Ant Colony Optimization (ACO) 

ACO is a probabilistic technique inspired by the 

foraging behavior of ants, particularly their ability to find 
the shortest path between their colony and a food source 

(Abdulghani & Abdulghan, 2024). Ants deposit pheromones 

on paths they traverse, and the concentration of pheromones 

influences the probability of other ants following the same 

path. Over time, shorter paths accumulate higher pheromone 

concentrations, guiding the colony toward optimal solutions 

(Abdulghani & Abdulghan, 2024). The integration of ACO 

with SVM involves using the ACO algorithm to search for 

https://doi.org/10.38124/ijisrt/25aug1486
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optimal SVM parameters, thereby enhancing the model's 

performance. This approach has been explored in various 

studies, each proposing different methodologies to achieve 

effective parameter optimization (Manakkadu & Dutta, 

2024). Traditional ACO algorithms are designed for discrete 

optimization problems. However, SVM parameter 

optimization involves continuous variables. A continuous 

Ant Colony Optimization (ACOR) algorithm for optimizing 
SVM parameters without discretizing continuous values 

(Zhou et al., 2023). Their approach demonstrated improved 

classification accuracy and computational efficiency 

compared to grid search methods. 

 

 Improved Ant Colony Optimization (IACO) for SVM 

Parameter Optimization 

Improved Ant Colony Optimization (IACO) is a 

technique to optimize SVM parameters. The method was 

evaluated on benchmark datasets and showed enhanced 

performance compared to standard ACO-SVM algorithms 
(Rongali & Yalavarthi, 2015). 

 

 ACO-Based Instance Selection for SVM Speed 

Optimization 

Beyond parameter optimization, ACO has been applied 

to instance selection to improve SVM training speed. In a 

work that proposed an ACO-based instance selection 

algorithm that identifies boundary instances, which are 

crucial for defining the decision surface in SVMs. By 

selecting these instances, the algorithm reduces training time 

without significantly affecting classification accuracy 

(Akinyelu et al., 2020). In the context of SVM parameter 
optimization, each ant in the ACO algorithm represents a 

potential solution, i.e., a set of parameters (C, γ)73. The 

quality of each solution is evaluated based on the 

classification accuracy of the SVM model with those 

parameters. The probability Pij  of an ant moving from 

parameter value i to j is influenced by the pheromone 

concentration τij  and a heuristic value η
ij

 (Al-Shourbaji et 

al., 2022). 

 

Pij=
(τij)

α.(ηij)
β

∑ (τik)α.kϵallowed (ηik)β
                         (1) 

 

Where: 

 

 Α and β are parameters that control the influence of 

pheromone concentration and heuristic information, 

respectively. 

 η
ij

 is typically defined as the inverse of the objective 

function value (e.g., classification error) associated with 

moving from i to j. 

 

After all ants have constructed their solutions, the 

pheromone levels are updated to reflect the quality of the 

solutions found. The pheromone update rule can be 

expressed as: 
 

τij(1-ρ).τij+ ∑ △τij
k

all ants                          (2) 

 

 

 Support Vector Machine Hyperparameter Optimization 

Support Vector Machines (SVMs) are effective for 

classification and regression tasks, but their performance is 

sensitive to the selection of hyperparameters. Key 

hyperparameters include the penalty parameter C, the kernel 

parameter γ (for radial basis function kernels), and other 

kernel-specific parameters (Gamba, 2024). Optimizing these 

parameters involves searching for the configuration that 
maximizes the SVM’s performance on validation data. 

Several optimization techniques Grid Search, Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), and 

Ant Colony Optimization (ACO) are commonly employed 

for this purpose. 

 

SVM aims to find the optimal hyperplane that 

maximizes the margin between two classes. Given a training 

dataset (xi,yi), where xi∈Rn and yi ∈{−1,1}yi the 

optimization problem for a linear SVM is: 

 

min
1

2
‖w‖2+C ∑ ξ

i
N
i=1                        (3) 

 

Subject to: 
 

y
i
(w.xi+b)≥1-ξ

i
,         ξ

i
≥0                         (4) 

 

Here, w is the weight vector, b is the bias, C is the 

penalty parameter controlling the trade-off between margin 

size and misclassification, and  ξ
i
 are slack variables for 

soft-margin SVMs. For non-linear problems, a kernel 

function K(xi, xj) maps data into a higher-dimensional space, 
allowing the SVM to construct non-linear decision 

boundaries. 

 

 Genetic Algorithm (GA) 

GA mimics natural evolution, using selection, 

crossover, and mutation to iteratively improve solutions 

(Othman et al., 2022). For SVM, hyperparameters C and γ 

are encoded as chromosomes. Each chromosome x = (C, γ) 

is evaluated using a fitness function, such as cross-validation 

accuracy: 

 
f(x) = Accuracy (C,γ) 

 

 The GA Process Involves: 

 

 Selection: Choosing top-performing chromosomes based 

on their fitness scores. 

 Crossover: Combining pairs of chromosomes to produce 

offspring: 

 

xoffspring=αxparent1+(1-α)x
parent2

,         α ϵ [0,1]. 

 

 Mutation: Introducing random changes to maintain 

diversity: 

 

xmutated=x+δ,         δ~Ν(0,σ2) 
 

GA effectively explores the search space, avoiding 

local optima while balancing exploration and exploitation84. 
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 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is another popular 

method derived from the collective behavior of swarms 

(Gad, 2022). Each particle represents a candidate solution in 

the search space, and particles adjust their positions based 

on individual and group performance. This algorithm is 

particularly effective in continuous search spaces, offering 

faster convergence than GA while maintaining a balance 
between local and global searches. Studies have 

demonstrated PSO's superiority in optimizing SVM 

hyperparameters, particularly in terms of execution speed 

and computational efficiency (Kalita et al., 2020). PSO is 

inspired by the social behavior of swarms. Each particle 

represents a candidate solution x=(C, γ), with position xt and 

velocity vt at iteration t. Particles update their velocities and 

positions based on personal best (pbest) and global best (gbest) 

solutions: 

 

vt+1=ωvt+c1r1(p
best

-xt)+c2r2(g
best

-xt),        (5) 

 

xt+1=xt+vt+1 
 

Here, ω  is the inertia weight, c1 and c2 are acceleration 

coefficients, and r1,r2 ~ U (0, 1) are random weights. PSO 
balances exploration and exploitation, converging quickly to 

optimal solutions. It has demonstrated superior performance 

in SVM hyperparameter optimization. 

 

 ACO-SVM based Classifiers 

ACO is a probabilistic technique inspired by the 

foraging behavior of ants, particularly their ability to find 

the shortest path between their colony and a food source 

(Choudhary, 2024). Ants deposit pheromones on paths they 

traverse, and the concentration of pheromones influences the 

probability of other ants following the same path. Over time, 
shorter paths accumulate higher pheromone concentrations, 

guiding the colony toward optimal solutions. In the context 

of SVM optimization, ACO uses a graph representation of 

the hyperparameter space and constructs solutions through 

stochastic exploration (Alsarhan et al., 2023). Classifying 

unbalanced datasets presents a significant challenge, as 

traditional Support Vector Machine (SVM) algorithms often 

struggle to deliver accurate results (Manakkadu & Dutta, 

2024). 

 

τc be the pheromone level for box constraint C 
 

τS be the pheromone level for the kernel scale S 
 

To optimize SVM parameters τc and τs using ACO, the 

pheromone update equation for each parameter can be 

adapted as91; 

 

τc←(1-ρ)*τc+ ∑
α

scorek

m
k=1 *Ck                         (6) 

 

τs←(1-ρ)*τs+ ∑
α

scorek

m
k=1 *Sk                      (7) 

 

 τ
c
 and τ

s
 are the pheromone levels associated with the 

SVM parameters C (box constraint) and S (kernel scale). 

 ρ be the evaporation rate 

 score
k
 is the performance score (e.g., accuracy, or its 

negative for minimization) of the kth ant. 

 α be the memory influence factor 

 C
k
 and S

k
 are the specific values of C and S chosen by 

the kth ant. 

 

 Review of Related Studies 

Several studies have demonstrated the successful 

application of ML algorithms in diagnosing diabetes and 

related complications. 

 

Poldrack et al. (2020) highlights the effectiveness of 

machine learning techniques in predicting diabetes using the 

Pima Indian Diabetes Dataset. The primary aim was to 

enhance diagnostic accuracy through robust preprocessing 

and classification methods. Eight machine learning models 
were employed, including Random Forest, Decision Tree 

(J48), Support Vector Machine (SVM), Naïve Bayes, and 

Logistic Regression. Preprocessing methods like feature 

selection, missing value imputation, normalization, and 

standardization were applied to improve model 

performance. Among these models, Random Forest emerged 

as the most accurate, achieving an accuracy rate of 80.87%. 

This was significantly higher compared to other models, 

underscoring its suitability for diabetes prediction. The 

study also focused on comparing the efficiency of various 

preprocessing techniques and their impact on diagnostic 

accuracy. Normalization and feature selection proved crucial 
in enhancing the model's performance. The authors 

emphasized the need for preprocessing steps, as raw data 

often contains noise and missing values, which can lead to 

inaccurate predictions. By addressing these challenges, the 

study successfully demonstrated that machine learning could 

be an effective tool for early diabetes diagnosis. However, 

the authors also highlighted some limitations, such as the 

dependency on dataset quality and the need for external 

validation with diverse datasets. 

 

Thabit et al. (2022) investigated the application of 
machine learning algorithms for early diabetes detection 

using the Pima Indian Diabetes Dataset. The study explored 

the efficacy of various classification algorithms, including 

Logistic Regression (LR), Support Vector Machine (SVM), 

Decision Tree (DT), Random Forest (RF), K-Nearest 

Neighbor (KNN), and Naïve Bayes (NB). To optimize 

model performance, preprocessing techniques like data 

cleaning, feature selection, scaling, and splitting were 

applied. The Random Forest classifier outperformed other 

models, achieving an accuracy of up to 100% during testing. 

This remarkable performance demonstrates the potential of 

Random Forest in medical diagnostics, particularly for 
diabetes. The study’s implementation used Python within 

the ANACONDA environment, leveraging tools like Jupyter 

Notebook and Spyder for data analysis and model building. 

The research also highlighted the importance of 

preprocessing steps in ensuring data quality and improving 

model performance. Features such as glucose levels, BMI, 

and age were identified as critical determinants of diabetes 

risk, making feature selection a pivotal part of the workflow. 

https://doi.org/10.38124/ijisrt/25aug1486
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The study underscores the transformative potential of 

machine learning in healthcare, paving the way for more 

accurate and efficient diagnostic tools for diabetes 

management. 

 

Almahdawi et al. (2022) evaluated the performance of 

machine learning models in predicting diabetes using a 

dataset collected from Iraqi patients. The study tested three 
classifiers: Random Forest, K-Nearest Neighbor (KNN), and 

Multilayer Perceptron (MLP). Two experimental setups 

were employed to assess the impact of feature selection on 

model performance. In the first experiment, all 12 features 

of the dataset were used, with Random Forest achieving the 

highest accuracy of 98.8%. In the second experiment, only 

five features were selected for training, leading to improved 

performance for KNN and MLP. However, Random 

Forest’s accuracy slightly decreased to 97.5%, highlighting 

the importance of comprehensive feature selection. The 

authors emphasized the significance of feature engineering 
in enhancing model performance. Attributes like glucose 

levels, BMI, and family history were identified as key 

predictors of diabetes. Additionally, the study underscored 

the need for robust preprocessing techniques, including data 

cleaning and normalization, to ensure high-quality input for 

machine learning models. 

 

Ahmed et al. (2022) introduced a novel approach to 

diabetes prediction using a hybrid model that combines 

Support Vector Machines (SVM) and Artificial Neural 

Networks (ANN). This fused model leverages fuzzy logic to 

classify patients as diabetic or non-diabetic, achieving a 
prediction accuracy of 94.87%. The study employed a 

dataset divided into 70% training and 30% testing. Outputs 

from the SVM and ANN models were fed into a fuzzy logic 

system, which made the final diagnosis. The hybrid 

approach was stored on a cloud platform, allowing real-time 

predictions based on patient data. The research emphasized 

the importance of integrating multiple machine learning 

models to enhance diagnostic accuracy. By combining the 

strengths of SVM and ANN, the fused model demonstrated 

superior performance compared to standalone models. The 

use of fuzzy logic further improved decision-making by 
accounting for uncertainties in the data. However, the 

authors noted some challenges, such as the computational 

complexity of the fused model and the need for extensive 

training data. Mansouri et al. (2024) explored the use of the 

K-Nearest Neighbors (KNN) algorithm for predicting 

gestational diabetes mellitus (GDM). The study utilized the 

Pima Indian Diabetes Dataset and employed various 

preprocessing steps, including handling missing values, 

feature scaling, and data splitting. The KNN classifier 

achieved an accuracy of 76%, demonstrating its potential for 

early diabetes detection. The study also highlighted the 

importance of hyperparameter tuning and data preprocessing 
in improving model performance. Metrics such as recall, 

precision, and F1-score were used to evaluate the classifier’s 

effectiveness. One of the key contributions of the research 

was its focus on gestational diabetes, a condition often 

linked to prediabetic states and future Type 2 diabetes. The 

findings underscore the need for early detection tools to 

mitigate long-term health risks. The authors acknowledged 

some limitations, including the relatively low accuracy of 

KNN compared to other algorithms and the need for more 

extensive datasets. 

 

Uddin & Ali (2023) examines the application of 

machine learning algorithms for predicting diabetes. 

Utilizing patient data such as glucose levels, BMI, and 

family history, the authors implemented various models, 
including Decision Trees, SVMs, and Neural Networks. The 

dataset encompassed a combination of demographic and 

clinical factors. The research focused on comparing 

algorithm performance using metrics like sensitivity, 

specificity, and AUC-ROC. The Decision Tree and Random 

Forest models demonstrated the highest levels of accuracy 

and sensitivity, with predictions exceeding 90%. Moreover, 

the study emphasized the importance of model optimization, 

including feature selection and hyperparameter tuning, to 

improve predictive outcomes. One of the key contributions 

of this research lies in its emphasis on early detection and 
prevention strategies. By analyzing patient lifestyle data and 

clinical measurements, the study showcases how machine 

learning can provide personalized risk assessments. Such 

applications could significantly impact preventive healthcare 

strategies, allowing for timely interventions. Their study 

reinforces the transformative potential of machine learning 

in diabetes diagnostics, paving the way for innovative tools 

to assist in early detection and management. 

 

Agliata et al. (2023) delved into the role of machine 

learning techniques, particularly artificial neural networks 

(ANN), in diagnosing Type 2 diabetes. The study utilized 
datasets such as NHANES and MIMIC-III to develop a 

binary classifier capable of distinguishing diabetic from 

non-diabetic patients based on clinical and demographic 

data. With a primary evaluation metric of accuracy, the 

ANN-based model achieved a notable performance of 86%, 

complemented by a robust ROC-AUC score of 0.934. The 

study highlighted the utility of ML models in identifying 

nonlinear relationships between various patient attributes 

and diabetes risk, which traditional methods might overlook. 

Additionally, the research emphasized the potential of ANN 

models to support long-term diabetes management by 
integrating predictive analytics into clinical workflows. The 

study also explored the importance of balanced datasets in 

training machine learning models, ensuring unbiased 

predictions across diverse patient groups. 

 

III. METHODOLOGY 

 

 Selection of Datasets 

The study utilized the PIMA Indian Dataset (PID). The 

PID was chosen due to its relevance to modern lifestyles 

characterized by high processed food intake and low 

physical activity. PID, composed of a total of 768 instances, 
with 268 diabetic and 500 non-diabetic samples. The dataset 

features eight key attributes influencing diabetes prediction, 

namely pregnancies, BMI, insulin level, age, blood pressure, 

skin thickness, glucose, and Diabetes Pedigree Function. 

The dataset also contains a label function as shown in Table 

1. The dataset was split 80/20 for training and validation. 
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Table 1 Description of PIMA Indian Dataset Attributes 

No. Selected Attributes Description of Selected Attributes Range 

1 Pregnancy Number of times a participant is pregnant 0 – 17 

2 Glucose Plasma glucose concentration 2 hours after an oral glucose tolerance test 0 – 199 

3 Diastolic Blood Pressure 
Diastolic blood pressure (pressure exerted into arteries between heartbeats) 

(mm Hg) 
0 – 122 

4 Skin Thickness Triceps skinfold thickness (mm), related to collagen content 0 – 99 

5 Serum Insulin 2-hour serum insulin (mu U/ml) 0 – 846 

6 BMI Body mass index (weight in kg/(height in m)^2) 0 – 67.1 

7 Diabetes Pedigree Function A metric used in diabetes prognosis 0.078 – 2.42 

8 Age Age of participants 21 – 81 

9 Outcome 
Diabetes class variable; "Yes" indicates diabetic, "No" indicates non-

diabetic 
Yes/No 

 

 Performance Comparison of Majorly Utilized Machine 

Learning Classification Techniques 

The performance comparison of majorly utilized 

Machine Learning Classification Techniques was appraised 
so that the classification technique with optimal 

performance would be selected. In this regard, 4 ML 

algorirthms was considered; Logistic Regression, Support 

Vector Machine, Naive Bayes and Random Forest. The 

selection of these classifiers was based on high frequency 

utilization of these classifiers in research journals and 

publications. Also, the algorithms for these classifiers were 

coded using MatLab and the snippet codes are highlighted 

below. 

 

%comparison logistic regression, SVM, NB and random 

forest 
 

%include recal, accuracy and precision 

 

clear; clc; 

 
% Load the PIMA Indian Diabetes dataset 

 

data = readtable('diabetes.csv'); % 

 

% Split the data into features (X) and target (y) 

 

X = data{:,1:end-1}; 

 

y = data{:,end}; 

 

 

 
 

 
Fig 2 The Conceptual Diagram for the Research Study Methodologies 
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 Selection of Metaheuristic Optimization Algorithm 

Metaheuristic algorithms are computationally 

intelligent algorithms used for solving sophisticated 

optimization problems (Almufti et al., 2023). Metaheuristic 

algorithms mimic specific animal behaviors or evolutionary 

processes to explore a solution space through randomized 

search methods, ultimately identifying the optimal solution 

through this approach (Darvishpoor et al., 2023). Moreover, 
the Metaheuristic Optimization Algorithms proposed for 

metaheuristic optimization algorithm are; 

 

 Grid Search Optimization Algorithms 

 Particle Swarm Optimization (PSO) Algorithm 

 Ant Colony Optimization (ACO) algorithm and 

 Genetic (Optimization) Algorithms (GA) 

 

The snippet codes utilized to select optimization 

algorithm with optimum performance are; 

 
% Display the best SVM parameters, accuracy, recall, and 

precision 

 

disp(['Best BoxConstraint (C): ', num2str(bestC)]); 

 

disp(['Best KernelScale: ', num2str(bestKernelScale)]); 

disp(['Best accuracy: ', num2str(bestAccuracy)]); 

 

disp(['Best recall: ', num2str(bestRecall)]); 

 

disp(['Best precision: ', num2str(bestPrecision)]); 
 

% Classification and evaluation function 

 

function [accuracy, recall, precision] = 

classifyAndEvaluate(data, target, C, KernelScale) 

 

% Split data into training and testing sets 

 

cv = cvpartition(size(data, 1), 'HoldOut', 0.3); 

 

trainData = data(cv.training, :); 

 
trainTarget = target(cv.training); 

 

testData = data(cv.test, :); 

 

testTarget = target(cv.test); 

 

The outcomes of the optimization algorithm 

performance analysis show that Ant Colony Optimization 

(ACO) algorithm has the optimum performance (details of 

results are in next section), thus, ACO is utilized to form a 

hybrid classifier with SVM. 

 

 Optimization of SVM Hyperparameter using ACO 

Given that 

τc be the pheromone level for box constraint C and τS  be the 

pheromone level for the kernel scale S, thus, to optimize 

SVM parameters τc and τs  using Ant Colony Optimization 

(ACO), the pheromone update equation for each parameter 

can be adapted as; 

 

τc←(1-ρ)*τc+ ∑
α

scorek

m

k=1

*Ck                                            (8) 

 

τs←(1-ρ)*τs+ ∑
α

scorek

m

k=1

*Sk                                             (9) 

 

 τ
c
 and τ

s
 are the pheromone levels associated with the 

SVM parameters C (box constraint) and S (kernel scale). 

 ρ be the evaporation rate 

 score
k
 is the performance score (e.g., accuracy, or its 

negative for minimization) of the kth ant. 

 α be the memory influence factor 

 C
k
 and S

k
 are the specific values of C and S chosen by 

the kth ant. 

 

Meanwhile, accuracy was used for the performance 

score ( scorek ) when performance comparison with an 

existing pheromone update technique (illustrated with 

equation 8) and the proposed improved pheromone update 

technique iterated in equation 9. Thus, the snippet codes 
utilized are shown below. 

 

clear; 

 

% Read the PIMA dataset 

 

data = readtable('diabetes.csv'); 

 

% Display the first few rows of the dataset 

 

disp(head(data)); 
 

% Number of ants 

 

numAnts = 250;%200 

 

% Number of iterations 

 

numIterations = 150;%100 

 

 Generation of an Improved Pheromone Update Rule 

Technique 

The proposed Hybrid Adaptive Pheromone Update 
technique would combine the following techniques: 

 

 Hybrid Pheromone Update: The hybrid technique will 

Combines adaptive pheromone scaling with a memory-

based approach to account for historical best solutions. 

 Dynamic Exploration-Exploitation Balance: This will 

adjust exploration versus exploitation dynamically based 

on solution convergence. 

 Pheromone Influence Factor: This uses a factor to 

prioritize promising regions in the parameter space. 
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The above methodologies were employed on PIMA 

data and the combination of pheromone variables that 

produced optima performance was utilized to generated 

algorithmic model illustrated in equation 10 and 11. The 

snippet codes utilized are: 

 

% Determine the best accuracy, recall, and precision of this 

iteration 
 

[maxAccuracy, maxIndex] = max(accuracies); 

 

maxRecall = recalls(maxIndex); 

 

maxPrecision = precisions(maxIndex); 

 

% Memory update 

 

Memory_C = Memory_C + bestC * bestAccuracyMemory; 

 
Memory_Scale = Memory_Scale + bestKernelScale * 

bestAccuracyMemory; 

 

% Dynamic exploration-exploitation balance 

 

beta = 1 - (std(accuracies) / mean(accuracies)); 

 

 Algorithmic Outline of proposed Hybrid Adaptive 

Pheromone Update Technique 

The algorithmic outline for the pheromone update 

equation proposed for the technique to be adopted is as state 

in equation 3.1. 
 

τc=(1-ρ)τc+ α×Memory
C
+ β×∆τC                                     (10) 

 

τs=(1-ρ)τS+ α×Memory
s
+ β×∆τS                                             (11) 

 

Where 

 

 τc is the pheromone level for box constraint C 
 

τS is the pheromone level for the kernel scale. 
 

ρ is the evaporation rate. 
 

Moreso, the changes ∆τC and ∆τS in pheromone levels 

for C and Kernel Scale are defined as illustrated in equation 

10 & 11. 

 

∆τC = (
   accuracy

ant

   accuracy
best

) × Cant×
accuracy

best

100
                   (12) 

 

 ∆τS= (
   accuracy

ant

   accuracy
best

) × Scaleant×
accuracy

best

100
             (13) 

 

Where 

 
 ∆τC  and ∆τS are the changes in pheromone levels for C and Kernel Scale 

 

Accuracy
best

 is the best accuracy found so far 

 

Accuracy
ant

 is the accuracy of the current ant 

 
Cant and  Scaleant be the parameters chosen by the current ant 

 

α be the memory influence factor 
 

β be the exploration-exploitation balance factor 
 

In addition, the memory-based influence and the 

dynamic exploration-exploitation balance are defined as 

stated in equations 14 and 16. 

 

 Memory-Based Influence:  
This will incorporate historical best pheromone levels,  

 

Where: 

 

Memory
C

=Memory
C
+ BestMemory

C
×bestAccuracyMemory      (14) 

 
Memory

Scale
=Memory

Scale
+ BestMemory

Scale
×bestAccuracyMemory       (15) 

 

 Dynamic Exploration-Exploitation Balance 

Adjust the balance factor β  based on convergence 
using the equation below 

 

β=1-
std(accuracies)

mean(accuracies)
                                                        (16) 

 

The snippet codes for the aforementioned procedures 

are below. Full programming code is in appendix I; 

 

% Update pheromone for SVM parameters with hybrid 

approach 

 

pheromoneC = (1 - initialEvaporationRate) * 

pheromoneC + alpha * Memory_C + beta * 
((accuracies(maxIndex) / maxAccuracy) * Cs(maxIndex) * 

(maxAccuracy / 100)) 

 

pheromoneScale = (1 - initialEvaporationRate) * 

pheromoneScale + alpha * Memory_Scale + beta * 

((accuracies(maxIndex) / maxAccuracy) * Scales(maxIndex) 

* (maxAccuracy / 100)) 

 

 Algorithmic Outline for the Improved ACO Pheromone 

Update Technique 

The parameters, BoxConstraint and KernelScale of the 
Support Vector Machine (SVM) classifier was optimized 

using an Ant Colony Optimization (ACO) approach. The 

proposed hybrid adaptive pheromone update technique will 

be used as the ACO pheromone update technique. Below is 

the step-by-step algorithmic outline of the process: 

 

 Step 1: Initialization 

 

 Dataset Loading 

 

D=readDataset(‘PIMA_DIABETICS.csv’)                    (17) 
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Here D is the dataset read from a.csv file 

 Normalization 

 

X=normalize(D[:,1:n-1])                                                  (18) 

 

Where X is the normalized feature matrix, 

 

y=D[:,1:n])                                                                           (19) 

 

Where y is the target vector. 

 

 ACO Parameters: set ACO parameters (numerical 

values given below will be utilized in this work) 

 

numAnts=200 

 

numIterations=100 

 

initialEvaporationRate (ρ
i
)=0.3 

 

α=0.5 

 

bestAccuracyMemory=0.1 

 

memoryFactor=0.05 

 

 Pheromone Initialization: 

 

τ
c
=1,       τ

S
=1 

 

Where τc and τS are the pheromone levels for the SVM 

parameters BoxConstraint (C) and KernelScale. 

 
 Memory Initialization: 

 

Memory
C

=0,      Memory
Scale

=0 

 

 Best Parameter Initialization: 

 

bestC=1,  bestKernelScale=1,  bestAccuracy=0 

 

 Step 2: Iterative Optimization Loop 

For each iteration (iteration = 1 to numIterations): 

 

 Ant Parameter Selection 

 

C
i
=τ

C
*rand(),                                                        (20) 

 

KernelScale
i
= τ

S
*rand() 

 

Where Ci  and KernelScalei  are the SVM parameters 

selected by the i-th ant. 

 

 SVM Classification and Evaluation 

 

Accuracy
i
=classifyAndEvaluate (X,y,C

i
,KernelScale

i
)   (21) 

 

 

 Best Accuracy Determination: 

 

maxAccuracy= max (Accuracy
i
) ,    maxIndex=argmax(Accuracy

i
) 

 

The best accuracy and corresponding index are 

determined from the current iteration. 
 

 Memory Update: 

 

Memory
C

=Memory
C
+bestC*bestAccuracyMemory         (22) 

 

Memory
S
=Memory

S
+bestKernelScale*bestAccuracyMemory     (23) 

 

 Dynamic Exploration-Exploitation Balance (β): 
 

β=1- (
σ(Accuracy

i
)

μ(Accuracy
i
)
)                       (24) 

 

Where σ() and μ() represent the standard deviation and 

mean of the accuracies, respectively. 

 

 Pheromone Update: 

 

τ
C

= (1-ρ
i
) τ

C
+αMemory

C
+ β (

Accuracy
maxIndex

maxAccuracy
×C

maxIndex
×

maxAccuracy

100
)3.13(a) 

 
τS=(1-

ρ
i
)τS+αMemory

S
+ β (

Accuracy
maxIndex

maxAccuracy
×KernelScalemaxIndex×

maxAccuracy

100
) (25) 

 

 Update Best Parameters: 

 

if maxAccuracy>bestAccuracy, then: 

 

 
 

 Step 3: Display Results 

After all iterations, display the best SVM parameters 

and their corresponding accuracy: 

 

Best BoxConstraint (C):bestC 

 

Best KernelScale:bestKernelScale 

 

Best accuracy:bestAccuracy 

 

The snippet codes for the aforementioned procedural 

outline are shown below. 

 

% Classification and evaluation function 

 

function [accuracy, recall, precision] = classify And 

Evaluate(data, target, C, KernelScale) 

 

% Split data into training and testing sets 

 
cv = cvpartition(size(data, 1), 'HoldOut', 0.3); 

 

https://doi.org/10.38124/ijisrt/25aug1486
http://www.ijisrt.com/


Volume 10, Issue 8, August – 2025                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25aug1486 

 

 

IJISRT25AUG1486                                                              www.ijisrt.com                                                                                 2814 

trainData = data(cv.training, :); 

 

trainTarget = target(cv.training); 

 

 Implementation of MatLab Codes for the Algorithmic 

Procedures 

The coding of the algorithmic procedures stated in 

aforementioned equations would be generated using MatLab 
R2024b version. This version of the MatLab is selected due 

to the following major updates, transitions and features: 

 

 5G Toolbox: This will explore 6G waveform generation; 

the Wireless Waveform Analyzer app will also perform 

signal quality assessments of the acquired 5G 

waveforms. 

 DSP HDL Toolbox: Uses the interactive DSP HDL IP 

Designer app to customize, configure DSP algorithms, 

and generate HDL code and verification components. 

 Simulink Control Design: Design and implement 

nonlinear and data-driven control techniques such as 

sliding mode and iterative learning control. 

 System Composer: Edit sub-setted views; describe 

system behaviour with activity and sequence diagrams. 

 Embedded Coder: As of R2024b, the SoC Blockset 

Support Package for Infineon® AURIX™ 

Microcontrollers has been merged into the Embedded 
Coder Support Package for Infineon® AURIX™ TCx4 

Microcontrollers. 

 

IV. RESULT AND ANALYSIS 

 

 Results on Performance Comparison of Majorly Utilized 

ML Classification Techniques 

The Machine Language (ML) classification techniques 

majorly reviewed and programmed for optimum 

performance were Logistic Regression, Support Vector 

Machine (SVM), Naive Bayes and Random Forest. 
 

Table 2 Comparative Results of ML Classification Techniques 

Classifier Accuracy (%) Precision (%) Recall (%) 

Logistic Regression 78.261 65.455 53.731 

Support Vector Machine 79.13 69.388 50.746 

Naive Bayes 74.348 56.01 55.224 

Random Forest 74.348 56.01 55.224 

 

The performance of major machine learning 

classification techniques Logistic Regression, Support 

Vector Machine (SVM), Naive Bayes, and Random Forest 

was evaluated based on accuracy, precision, and recall 

metrics. Logistic Regression, a robust statistical method for 

binary classification, demonstrated simplicity and 

interpretability, achieving an accuracy of 78.26%, precision 

of 65.46%, and recall of 53.73%. Its strength lies in clearly 

identifying influential features and providing probabilistic 
outputs. 

 

Support Vector Machine (SVM) showed competitive 

performance with an accuracy of 79.13%, precision of 

69.39%, and recall of 50.75%. SVM is effective for both 

classification and regression, particularly in complex, non-

linearly separable datasets, using kernels such as radial basis 

function (RBF) to map data into higher dimensions. The 

choice of kernel and parameter tuning significantly impacts 

its performance. Naive Bayes, known for its computational 

efficiency and scalability, assumes feature independence, 

simplifying calculations. It achieved an accuracy of 74.35%, 

precision of 56.01%, and recall of 55.22%. Despite its naïve 

assumption, it performs well for certain data types, 

especially text-related tasks. Random Forest, an ensemble 

method combining multiple decision trees, offers high 
accuracy and robustness against overfitting. It reported 

accuracy, precision, and recall metrics matching those of 

Naive Bayes (74.35%, 56.01%, and 55.22%, respectively), 

benefiting from majority voting and handling missing data 

effectively. Overall, SVM was selected as the preferred 

classifier for this study due to its superior overall accuracy 

and precision in handling the PIMA Indian diabetes dataset. 

 

 
Fig 3 Comparative Analysis of ML Classifiers 
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 Performance Comparison of SVM Hyperparameter’s 

Optimization Accuracy 

The performance comparison of the accuracy of SVM 

hyperparameters optimization using grid search, Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO) and 

Ant Colony Optimization (ACO) techniques shows that 

ACO optimized SVM shows the optimal accuracy and 

precision of 83.0435 % and 80.9524%. The results on other 

SVM optimized classifier are shown in Table 3 and 

illustrated in Figure 4. 

 

Table 3 Performance of SVM Optimized Classifiers 

Classifier Accuracy (%) Precision (%) Recall (%) 

Grid search optimized SVM 80.208 78.713 60.241 

GA optimized SVM 81.510 62.687 80.000 

PSO optimized SVM 78.385 52.985 78.022 

ACO optimized SVM 83.0435 80.9524 65.3846 

 

 
Fig 4 SVM Optimized Classifiers Performance 

 

 Performance Comparison of an ACO-optimized SVM on 

Pheromone Update Techniques 

The research study generated an ACO-optimized SVM 

for the improved pheromone update technique.  The 

algorithm for the newly generated pheromone update 

technique is depicted in equation 25 & 26. 

 

τc=(1-ρ)τc+ α×Memory
C
+ β×∆τC         (26) 

 

τs=(1-ρ)τS+ α×Memory
s
+ β×∆τS                             (27) 

 

Where 

 

 τc is the pheromone level for box constraint C 
 

τS is the pheromone level for the kernel scale. 
 

ρ is the evaporation rate. 
 

The comparative analysis of the ACO-optimized SVM 

with a Default Pheromone Update Technique (DPUT) and 
ACO-optimized SVM with an Improved (proposed) 

Pheromone Update Technique (IPUT) shows that IPUT 

reflected higher performance characteristics. The Accuracy, 

Precision and Recall are 83.0435 % 80.9524 % and 65.3846 

% respectively. This is comparatively  illustrated  in Figure 

5. 
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Fig 5 Performance Comparison of an ACO-optimized SVM on Default Pheromone Update Technique and Improved (Proposed) 

Pheromone Update Techniques 

 

 Performance Comparison of IPUT with Similar 

Published Researches 

The comparative analysis of the ACO-optimized SVM 

with an Improved (proposed) Pheromone Update Technique 

(IPUT) generated was carried out with respect to similar 

published research works. The ACO optimized SVM with 

the improved (proposed) pheromone update technique has 

Accuracy, Precision and Recall of 86.520  %, 81.130 % and 

67.187 %, respectively. All the analysis were run using the 

MATLAB code as illustrated in in Appendices A1 and A2. 

 

Table 4 Performance Comparison with some Similar Published Works (PIMA dataset) 

SVM Classifier Accuracy (%) Precision Recall (%) 

Reza, et. al., 2023 85.5 87 83.4 

Anggoro & Permatasari, 2023. (polynomial kernel) 80 65 74 

Shrestha, et. al., 2023 85.64 - - 

ACO optimized SVM with the proposed pheromone update technique 86.52 81.13 67.187 

 

V. CONCLUSION AND RECOMMENDATION 

 

This study successfully enhanced the performance of 
Support Vector Machine (SVM) classifiers for diabetes 

diagnosis using an improved pheromone update technique 

within the Ant Colony Optimization (ACO) framework. By 

initializing pheromone trails and incorporating memory, the 

algorithm enabled ants to select optimal SVM parameters, 

balancing exploration and exploitation while leveraging 

historical accuracy. This hybrid approach effectively 

converged to the best parameter combination including 

KernelScale resulting in superior classification accuracy. 

The proposed improved pheromone update technique 

(IPUT) outperformed both the default pheromone update 

and similar published methods, achieving notable gains in 
accuracy, precision, and recall on the PIMA Indian Diabetes 

dataset. These results confirm the viability and effectiveness 

of metaheuristic optimization to enhance machine learning 

classifiers in medical diagnosis tasks. 

 

 Recommendations 

Building on these findings, future research should 

explore the application of the improved ACO-optimized 
SVM approach to other medical classification problems and 

diverse datasets to validate its generalizability. Additionally, 

investigating other metaheuristic algorithms such as Particle 

Swarm Optimization and Genetic Algorithms in 

combination with advanced hyperparameter tuning could 

further enhance classifier performance. Research could also 

focus on integrating feature selection techniques to reduce 

dimensionality and improve interpretability. 
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	 Ant Colony Optimization (ACO)
	ACO is a probabilistic technique inspired by the foraging behavior of ants, particularly their ability to find the shortest path between their colony and a food source (Abdulghani & Abdulghan, 2024). Ants deposit pheromones on paths they traverse, and...
	 Improved Ant Colony Optimization (IACO) for SVM Parameter Optimization
	Improved Ant Colony Optimization (IACO) is a technique to optimize SVM parameters. The method was evaluated on benchmark datasets and showed enhanced performance compared to standard ACO-SVM algorithms (Rongali & Yalavarthi, 2015).
	 ACO-Based Instance Selection for SVM Speed Optimization
	Beyond parameter optimization, ACO has been applied to instance selection to improve SVM training speed. In a work that proposed an ACO-based instance selection algorithm that identifies boundary instances, which are crucial for defining the decision ...
	 Support Vector Machine Hyperparameter Optimization
	 Genetic Algorithm (GA)
	GA mimics natural evolution, using selection, crossover, and mutation to iteratively improve solutions (Othman et al., 2022). For SVM, hyperparameters C and γ are encoded as chromosomes. Each chromosome x = (C, γ) is evaluated using a fitness function...
	III. METHODOLOGY
	 Selection of Datasets
	The study utilized the PIMA Indian Dataset (PID). The PID was chosen due to its relevance to modern lifestyles characterized by high processed food intake and low physical activity. PID, composed of a total of 768 instances, with 268 diabetic and 500 ...
	Table 1 Description of PIMA Indian Dataset Attributes
	 Performance Comparison of Majorly Utilized Machine Learning Classification Techniques
	The performance comparison of majorly utilized Machine Learning Classification Techniques was appraised so that the classification technique with optimal performance would be selected. In this regard, 4 ML algorirthms was considered; Logistic Regressi...
	%comparison logistic regression, SVM, NB and random forest
	%include recal, accuracy and precision
	clear; clc;
	% Load the PIMA Indian Diabetes dataset
	data = readtable('diabetes.csv'); %
	% Split the data into features (X) and target (y)
	X = data{:,1:end-1};
	y = data{:,end};
	 Selection of Metaheuristic Optimization Algorithm
	The outcomes of the optimization algorithm performance analysis show that Ant Colony Optimization (ACO) algorithm has the optimum performance (details of results are in next section), thus, ACO is utilized to form a hybrid classifier with SVM.
	The proposed Hybrid Adaptive Pheromone Update technique would combine the following techniques:
	The snippet codes for the aforementioned procedures are below. Full programming code is in appendix I;
	The parameters, BoxConstraint and KernelScale of the Support Vector Machine (SVM) classifier was optimized using an Ant Colony Optimization (ACO) approach. The proposed hybrid adaptive pheromone update technique will be used as the ACO pheromone updat...
	 Step 1: Initialization
	 Dataset Loading
	D=readDataset(‘PIMA_DIABETICS.csv’)                    (17)
	Here D is the dataset read from a.csv file
	 Normalization
	X=normalize,D,:,1:n-1..                                                  (18)
	Where X is the normalized feature matrix,
	y=D,:,1:n.)                                                                           (19)
	Where y is the target vector.
	 ACO Parameters: set ACO parameters (numerical values given below will be utilized in this work)
	numAnts=200
	numIterations=100
	initialEvaporationRate (,ρ-i.)=0.3
	α=0.5
	bestAccuracyMemory=0.1
	memoryFactor=0.05
	 Pheromone Initialization:
	,τ-c.=1, ,      τ-S.=1
	Where ,τ-c. and ,τ-S. are the pheromone levels for the SVM parameters BoxConstraint (C) and KernelScale.
	 Memory Initialization:
	,Memory-C.=0, ,     Memory-Scale.=0
	 Best Parameter Initialization:
	bestC=1,  bestKernelScale=1,  bestAccuracy=0
	 Step 2: Iterative Optimization Loop
	For each iteration (iteration = 1 to numIterations):
	 Ant Parameter Selection
	,C-i.=,τ-C.*rand(),                                                        (20)
	,KernelScale-i.= ,τ-S.*rand()
	Where ,C-i. and ,KernelScale-i. are the SVM parameters selected by the i-th ant.
	 SVM Classification and Evaluation
	,Accuracy-i.=classifyAndEvaluate (X,y,,C-i.,,KernelScale-i.)   (21)
	 Best Accuracy Determination:
	maxAccuracy=,max-,,Accuracy-i...,    maxIndex=argmax(,Accuracy-i.)
	The best accuracy and corresponding index are determined from the current iteration.
	 Memory Update:
	,Memory-C.=,Memory-C.+bestC*bestAccuracyMemory         (22)
	,Memory-S.=,Memory-S.+bestKernelScale*bestAccuracyMemory     (23)
	 Dynamic Exploration-Exploitation Balance (β):
	β=1-,,σ,,Accuracy-i..-,μ(Accuracy-i.)..                      (24)
	Where σ() and μ() represent the standard deviation and mean of the accuracies, respectively.
	 Pheromone Update:
	,τ-C.=,1-,ρ-i..,τ-C.+α,Memory-C.+ β,,,Accuracy-maxIndex.-maxAccuracy.×,C-maxIndex.×,maxAccuracy-100..3.13(a)
	,τ-S.=,1-,ρ-i..,τ-S.+α,Memory-S.+ β,,,Accuracy-maxIndex.-maxAccuracy.×,KernelScale-maxIndex.×,maxAccuracy-100..(25)
	 Update Best Parameters:
	if maxAccuracy>bestAccuracy, then:
	 Step 3: Display Results

	Best BoxConstraint ,C.:bestC
	Best KernelScale:bestKernelScale
	Best accuracy:bestAccuracy
	The snippet codes for the aforementioned procedural outline are shown below.
	The coding of the algorithmic procedures stated in aforementioned equations would be generated using MatLab R2024b version. This version of the MatLab is selected due to the following major updates, transitions and features:
	 5G Toolbox: This will explore 6G waveform generation; the Wireless Waveform Analyzer app will also perform signal quality assessments of the acquired 5G waveforms.
	 DSP HDL Toolbox: Uses the interactive DSP HDL IP Designer app to customize, configure DSP algorithms, and generate HDL code and verification components.
	 Simulink Control Design: Design and implement nonlinear and data-driven control techniques such as sliding mode and iterative learning control.
	 System Composer: Edit sub-setted views; describe system behaviour with activity and sequence diagrams.
	 Embedded Coder: As of R2024b, the SoC Blockset Support Package for Infineon® AURIX™ Microcontrollers has been merged into the Embedded Coder Support Package for Infineon® AURIX™ TCx4 Microcontrollers.
	Fig 5 Performance Comparison of an ACO-optimized SVM on Default Pheromone Update Technique and Improved (Proposed) Pheromone Update Techniques
	 Performance Comparison of IPUT with Similar Published Researches
	The comparative analysis of the ACO-optimized SVM with an Improved (proposed) Pheromone Update Technique (IPUT) generated was carried out with respect to similar published research works. The ACO optimized SVM with the improved (proposed) pheromone up...
	Table 4 Performance Comparison with some Similar Published Works (PIMA dataset)

