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Abstract: This electronic document represents a smart, proactive vehicle maintenance predictor system designed to 

transform the traditional ownership experience by optimizing performance, reducing downtime, and enhancing safety. By 

integrating advanced data analytics, machine learning, and IoT technology, the system continuously monitors critical vehicle 

parameters such as engine oil and filter, air cleaner filter, fuel filter, coolant, and more. The goal is to bring a data-driven, 

user-centric approach to vehicle maintenance and performance monitoring. Real-time data is collected via sensors and 

visualized through an intuitive mobile or interactive web application, which also issues alerts for issues like overheating or 

low oil levels. The system applies predictive maintenance techniques using historical data to forecast potential problems and 

schedule service tasks based on usage patterns and manufacturer guidelines. It maintains a log of previous services and 

sends automated reminders for upcoming maintenance. Additionally, the integration of telematics enables tracking of 

driving behavior to promote eco-friendly habits and record fuel efficiency and trip history. A simulation model was built 

using Python libraries and the Twilio API to demonstrate the concept. It tracks parameters like speed, fuel level, and gear 

status, triggering maintenance alerts—such as engine oil changes every 2000 km and gear oil changes every 6000 km—along 

with real-time notifications. The system effectively showcases the use of predictive analytics and real-time communication 

to ensure timely maintenance, improve reliability, and lower long-term vehicle repair costs. With automated reminders, 

comprehensive maintenance logs, and intelligent analysis of driving behavior, it supports better decision-making for vehicle 

owners. The integration with telematics not only enhances maintenance precision but also encourages eco-friendly driving 

by analyzing acceleration, braking, and speed patterns. Overall, the project demonstrates a scalable and impactful solution 

for smart vehicle management. 
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I. INTRODUCTION 
 

A. Paradigm Shift in Automotive Maintenance: 

In today's fast-paced world, vehicle downtime translates 

directly to economic losses for businesses and inconvenience 

for individuals. Traditional maintenance approaches, often 

based on fixed intervals, fail to account for the unique 

operating conditions and wear patterns of each vehicle. This 

leads to either over-maintenance, incurring unnecessary 

costs, or under-maintenance, risking unexpected breakdowns 

and costly repairs. 

 

The "Real time Scheduling of an Automotive 

Maintenance" project seeks to address these challenges by 
implementing a proactive and data-driven approach to 

maintenance scheduling. By harnessing the power of IoT, 

machine learning, and real-time data analytics, this system 

aims to optimize maintenance intervals, minimize downtime, 

and maximize vehicle lifespan. 

 

The Vehicle Maintenance Predictor is an interactive 

web application built with Streamlit that helps users predict 
when their SUV will need maintenance based on their driving 

patterns and conditions. 

 

The application uses machine learning to provide 

personalized maintenance recommendations by analysing 

factors such as: 

 

 Average speed  

 Daily driving duration  

 Number of driving days per month  

  Gear usage patterns  

  Road type (City, Highway, Rural, etc.)  
 Weather conditions  

 Traffic conditions 

 Vehicle load 

 

The result will be a dynamic and intelligent maintenance 

system that empowers vehicle owners and fleet managers to 

optimize their maintenance budgets, enhance vehicle 
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reliability, and improve overall operational efficiency. This 

system will not only reduce maintenance costs but also 

enhance safety and minimize environmental impact by 

optimizing vehicle performance and reducing emissions. 

 

B. Key Improvements: 

 

 Stronger Emphasis on Problem: 
 Highlighted the economic and operational impacts of 

traditional maintenance methods. 

 

 Clearer Articulation of the Solution:  
Emphasized the use of advanced technologies like IoT, 

machine learning, and real-time data analytics. 

 

 Enhanced Focus on Benefits: 

 Emphasized the benefits beyond cost reduction, such as 

improved safety, environmental impact, and operational 

efficiency. 

 

This study includes hardware capable of interfacing 
with the vehicle's ECU to gather real-time data, IoT solutions 

to establish seamless connectivity with the cloud, and 

leveraging cloud computing platforms such as AWS or 

Microsoft Azure for advanced data analysis. The data 

analysis pipeline would incorporate machine learning and AI 

modules to ensure high accuracy and real-time processing. 

Additionally, user-friendly iOS and Android applications 

would serve as the interface for users, complemented by 

robust notification services for timely updates and alerts. 

 

This can be successful through the development of a 
holistic, end-to-end ecosystem. Achieving this requires a 

strategically structured, multi-layered approach: 

 

 Data Acquisition  

 

 Hardware Integration: 

Efficient integration of hardware components with the 

vehicle's Electronic Control Unit (ECU) is essential. These 

components serve as a robust data gateway, facilitating the 

seamless collection of real-time data streams from a wide 

range of vehicle sensors.  

 
The hardware must support diverse sensor types to 

ensure comprehensive monitoring of parameters such as 

engine performance, tire pressure, fuel consumption, and 

more.  

 

 Optimal Sensor Selection: 

Strategic selection of sensors is critical to guarantee 

precise and reliable data collection. The choice of sensors 

should align with the specific monitoring objectives, 

encompassing parameters like temperature, humidity, 

vibration, pressure, and other key metrics.  
 

Advanced sensors with high accuracy and durability 

should be prioritized to ensure the integrity and reliability of 

the data, particularly under varying environmental and 

operational conditions.  

 Data Connectivity: 
 

 Hardware Integration: 

Harnessing advanced IoT solutions is pivotal for 

enabling seamless and secure connectivity between the 

vehicle's hardware and the cloud platform. 

 

This involves selecting the most suitable 

communication protocols, such as cellular networks for wide-
area coverage, Wi-Fi for high-speed local connectivity, or 

Bluetooth for short-range, low-power communication. 

 

Ensuring consistent and reliable data transmission is 

key, necessitating redundancy mechanisms and fail-safe 

designs to handle potential disruptions. 

 

Integration with IoT platforms should also prioritize 

scalability, allowing the system to accommodate increasing 

data volumes and additional connected devices as the 

ecosystem grows. 

 

 Data Processing and Analysis: 

 

 Cloud Computing: 

Leveraging powerful cloud computing platforms such 

as AWS, Azure, or Google Cloud ensures the scalability, 

flexibility, and computational capacity required to manage 

and analyze the immense data streams generated by modern 

vehicles. 

 

These platforms provide robust infrastructure for 

storing, processing, and visualizing data, enabling seamless 
integration with other components of the monitoring and 

scheduling ecosystem 

 

 AI/ML Integration: 

Embedding cutting-edge machine learning (ML) and 

artificial intelligence (AI) algorithms into the cloud-based 

data pipeline unlocks transformative capabilities, including: 

 

 Predictive Maintenance:  
Utilizing historical data and real-time sensor readings to 

predict and pre-empt potential failures, reducing downtime 

and maintenance costs.  

 

 Anomaly Detection:  
Detecting irregularities or deviations in vehicle 

performance, allowing for early identification of potential 

issues before they escalate. 

 
 Driving Behavior Analysis:  

Examining driving patterns to optimize fuel efficiency, 

enhance safety, and encourage better driving habits. AI/ML 

models continuously improve through feedback loops, 

ensuring greater accuracy and adaptability over time. 

 

 User Interface and Interaction  
 

 Intuitive Applications: 
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Designing highly responsive and user-friendly mobile 

applications for iOS and Android platforms ensures seamless 

access to vehicle data, maintenance schedules, and real-time 

alerts. 

 

These applications should prioritize an intuitive layout, 

customizable dashboards, and easy navigation to enhance 

user engagement and satisfaction. 
 

 Dynamic Notification System:  

Deploying a robust and adaptable notification 

framework guarantees timely updates on vehicle health, 

maintenance requirements, and potential issues. 

 

Notifications can be delivered through multiple 

channels, including push notifications, SMS, and email, to 

suit user preferences. 

 

 Data Security and Privacy: 
 

 Comprehensive Security Framework:  
Establishing a multi-layered security framework is 

essential to safeguard sensitive vehicle and user data from 

unauthorized access and potential cyber threats. The Key 

measures include: 
 

 Data Encryption 

 Access Controls 

 Regular Security Audits 

 

 Privacy-Centric Design: 

Adopting privacy-by-design principles ensures user 

data is collected, processed, and stored in compliance with 

regulatory standards like GDPR or CCPA. 

 

Features such as data anonymization, user consent 

mechanisms, and transparent data usage policies build trust 
and enhance user confidence in the system. 

 

This approach involves integrating various systems 

through seamless communication between hardware 

components. Real-time data streams, including engine RPM, 

speed (in km/h), temperature, and past maintenance/service 

records, are collected from the vehicle. This data is then 

analyzed in conjunction with pre-determined or imposed 

standard data sets.  

 

The analysis, potentially utilizing machine learning 
algorithms, identifies potential anomalies or deviations from 

expected vehicle behavior. Based on these insights, the 

system generates real-time alerts and notifications through a 

user-friendly interface (e.g., mobile app, dashboard), 

informing the driver or vehicle owner about potential issues 

or the need for upcoming maintenance.  

 

Developing a complete ecosystem for [specific purpose, 

e.g., real-time vehicle monitoring] can be resource-intensive, 

requiring significant time, energy, and financial investment. 

To efficiently validate the core concepts and feasibility, a 

proof-of-concept (POC) can be developed using software 

tools deployed on PCs or laptops.  

 

This approach allows for rapid prototyping and 

experimentation while minimizing initial costs. The POC will 

serve as a foundational step to demonstrate the core 

functionalities, test key assumptions, and gather valuable 

insights before investing heavily in a full-scale 
implementation. 

 

II. METHODOLOGY 

 

This research focuses on designing and implementing 

an advanced real-time vehicle data monitoring and 

Maintenance Predictor, an interactive web application built 
with Streamlit that helps users predict when their SUV will 

need maintenance based on their driving patterns and 

conditions. The application uses machine learning to provide 

personalized maintenance recommendations by analyzing 

factors such as: Average speed, Daily driving duration, 

Number of driving days per month, Gear usage patterns etc. 

 

The outlined objectives can be effectively realized by 

developing a comprehensive end-to-end ecosystem. This 

includes hardware capable of interfacing with the vehicle's 

ECU to gather real-time data, IoT solutions to establish 

seamless connectivity with the cloud, and leveraging cloud 
computing platforms such as AWS or Microsoft Azure for 

advanced data analysis. The data analysis pipeline would 

incorporate machine learning and AI modules to ensure high 

accuracy and real-time processing. Additionally, user-

friendly iOS and Android applications would serve as the 

interface for users, complemented by robust notification 

services for timely updates and alerts. This necessitates a 

multi-layered approach. 

 

This approach consists of the following subsystems. 

 

 
Fig 1 Methodology 
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III. BACKEND SYSTEM TO MONITOR AND 

SCHEDULE AN AUTOMOTIVE 

MAINTANANCE-APPLICATION 

 

This method focuses on the integration of multiple 

systems through efficient communication among hardware 

components. Real-time data, such as engine RPM, vehicle 

speed (km/h), temperature, and historical maintenance or 
service records, is gathered directly from the vehicle. The 

collected data is then analyzed alongside predefined or 

standardized datasets to derive meaningful insights. 

 

Building a comprehensive ecosystem for [specific 

purpose, e.g., real-time vehicle monitoring] is a demanding 

endeavor, necessitating substantial commitments of time, 

effort, and financial resources. 

 

To effectively validate core concepts and assess 

feasibility, a proof-of-concept (POC) can be developed 

utilizing software tools deployed on PCs or laptops. This 
strategy enables rapid prototyping and iterative 

experimentation while keeping initial costs low. The POC 

acts as a foundational step, showcasing essential 

functionalities, testing critical assumptions, and providing 

valuable insights that inform further development before 

committing to a full-scale implementation. The POC involves 

the below mentioned sub system in order to achieve outlined 

objectives, testing critical assumptions, and providing 

valuable insights that inform further development before 

committing to a full-scale implementation. The POC involves 

the below mentioned sub system in order to achieve outlined 
objectives. 

 

This approach allows for rapid prototyping and 

experimentation while minimizing initial costs. The POC will 

serve as a foundational step to demonstrate the core 

functionalities, test key assumptions, and gather valuable 

insights before investing heavily in a full-scale 

implementation. 

 

A Python-based application server, hosted on a PC or 

laptop, will serve as the core data processing hub. It will 

continuously receive simulated vehicle parameters, including 

speed (in km/h), temperature, historical maintenance records, 
etc. This data will then be analyzed and processed to identify 

potential issues and generate relevant insights. 

 

 
Fig 2 Backend System to Monitor and Schedule an 

Automotive Maintanance-Application 

 

 

This application consists of the following components: 

 

A. Main Application (app.py) – Streamlit Web Interface 
 
 Purpose: 

Essentially, app.py serves as the central hub through 

which users like vehicle owners or fleet managers directly 

interact with your predictive maintenance system. Think of it 

as the cockpit of the project, providing a clear and intuitive 

view into the health and future needs of their vehicles. Its 

primary purpose is to translate the complex data and 

predictions generated in the back-end into an understandable 

and actionable format for the user. Instead of raw sensor 

readings or cryptic algorithm outputs, app.py presents this 

information in a visually appealing and easily digestible way 

through its Streamlit web interface. 
 

Furthermore, app.py isn't just about displaying 

information; it also empowers users with a degree of control 

and personalization. By allowing them to input vehicle details, 

service history, and driving preferences, the application can 

tailor its predictions and recommendations more accurately to 

their specific context. 

 

Finally, app.py acts as a communication bridge, 

delivering timely alerts and notifications about potential issues 

or upcoming maintenance needs. It also facilitates the 

management of service records and even offers guidance on 

eco-friendly driving, enhancing the overall user experience 

and the value of your predictive maintenance system. In short, 

it's the face and voice of your project, making its powerful 
capabilities accessible and useful to the end-user. 

 

B. Maintenance Predictor (maintenance_predictor.py) 

Predictive Logic: 
At its core, maintenance_predictor.py is the brain of your 

predictive maintenance system. Its fundamental purpose is to 

analyze data and determine when a vehicle component is likely 

to require maintenance in the future. It moves beyond simple 

reactive maintenance by proactively identifying potential 

issues before they lead to breakdowns or costly repairs. 
 

 Predictive Intelligence Engine:  

This script houses the crucial logic for forecasting 

maintenance needs. It takes in various forms of data – both 

historical (past maintenance records, failure data) and real-

time (sensor readings, driving behavior) – and processes it 

using the loaded machine learning model to generate 
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predictions. This allows the system to anticipate problems 

rather than just reacting to them. 

 
 Decision-Making Hub:  

maintenance_predictor.py doesn't solely rely on the ML 

model. It intelligently combines the model's probabilistic 

predictions with established, rule-based checks. For example, 

even if the ML model doesn't flag an immediate oil change, 

the system will still recommend one based on a fixed mileage 

interval (like every 2000 km). This hybrid approach adds a 

layer of reliability and incorporates industry best practices. 

 

 Personalization and Adaptation Layer:  

A key purpose is to tailor maintenance recommendations 

to specific circumstances. By considering the SUV 
brand/model (which influences expected wear and tear 

patterns) and individual user driving habits (e.g., frequent hard 

braking, long idling times), the script ensures that the 

predictions and alerts are more relevant and accurate for each 

user. This moves away from a one-size-fits-all approach to 

maintenance. 

 

 Insight Generation:  

Raw sensor data can be meaningless to the average user. 

Therefore, maintenance_predictor.py plays a vital role in 

interpreting these raw values and translating them into clear, 
actionable insights. Instead of just reporting a coolant 

temperature of 110°C, it converts this into a user-friendly 

message like "Coolant temperature is above the optimal 

range," along with potential implications or recommended 

actions. 

 

In essence, maintenance_predictor.py is the engine that 

drives the predictive capabilities of your system. It takes in 

data, applies sophisticated logic (both learned and rule-based), 

personalizes the analysis, and generates meaningful insights 

that empower users to proactively manage their vehicle's 
maintenance needs. 

 

C. Data Generator (data_generator.py) – Simulated 

Telematics Feed 

The fundamental purpose of data_generator.py is to 

provide a controlled and flexible source of simulated real-time 

vehicle data. In situations connecting to actual vehicle 

telematics or live sensor feeds is impractical (like during the 

initial development, testing, or demonstration phases of your 

project), this script steps in to mimic the continuous stream of 

information that a real vehicle would produce. It acts as a 

virtual vehicle, allowing you to build, test, and showcase your 
predictive maintenance system without needing a physical 

fleet of connected cars. 

 

 Working: 
 

 Creating Realistic Synthetic Data:  

The script employs methods to generate data points for 

various vehicle parameters that are statistically plausible. This 

can range from simple random number generation within 

realistic ranges (e.g., speed between 0 and 180 km/h) to more 

sophisticated algorithms that introduce correlations between 
parameters (e.g., higher RPM generally corresponds to higher 

fuel consumption and potentially increasing engine 

temperature). This ensures that the simulated data behaves in 

a somewhat lifelike manner. 

 

 Simulating Temporal Dynamics:  

data_generator.py can go beyond just generating single 

data points. It's designed to simulate vehicle operation over 

time. This means it can produce a sequence of data points that 

represent a driving session, including periods of acceleration, 

cruising at a steady speed, idling at traffic lights, and 

eventually shutting down the engine. This temporal aspect is 

crucial for testing how your predictive models react to trends 

and changes in data over time. 

 

 Enabling Custom Test Scenarios: 
A significant advantage of a data generator is its ability 

to reproduce specific, often rare, events or edge cases on 

demand. Instead of waiting for a real vehicle to experience a 

sudden oil leak or a rapid overheating event, you can program 

data_generator.py to simulate these scenarios directly. This 

allows you to rigorously test the robustness and 

responsiveness of your predictive maintenance system to 

unusual or critical situations and ensure it triggers the correct 

alerts and recommendations. 

 

In essence, data_generator.py is a vital tool for 

decoupling the development and testing of your system from 
the availability of real-world vehicle data. It provides a 

reliable, controllable, and customizable data source that 

accelerates the development process, facilitates thorough 

testing of various scenarios (including edge cases), and 

enables effective demonstrations of your project's capabilities. 

It's like having a virtual test fleet at your fingertips. 

 

D. Utilities (utils.py) – Helper Functions: 
The primary purpose of utils.py is to serve as a central 

repository for reusable code and backend functionalities that 
are needed across different parts of your predictive 

maintenance system (app.py, maintenance_predictor.py, and 

potentially others). It promotes code organization, reduces 

redundancy, and makes your codebase more maintainable and 

efficient by housing common tasks in one place. Think of it as 

the toolkit that provides essential tools and services to all the 

other modules. 

 

This utils.py acts as the glue that binds the different parts 

of your system together by providing essential shared 

functionalities. It promotes code reuse, ensures data 
consistency, handles external integrations, and manages 

crucial temporal information, ultimately contributing to a 

more organized, efficient, and robust predictive maintenance 

system. 

 

E. Maintenance Data (maintenance_data.py) – Brand-

Specific Schedules: 

The primary purpose of maintenance_data.py is to serve 

as a structured repository for manufacturer-recommended 

maintenance schedules that are specific to different vehicle 

brands and models. Think of it as a digital library of official 

servicing guidelines. This module provides a baseline or a set 
of default expectations for when certain maintenance tasks 

should typically be performed based on factors like mileage or 
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time intervals, as advised by the vehicle manufacturers 

themselves. Here's a more detailed breakdown of its purpose: 

 
 Providing Foundational Maintenance Information:  

This script acts as a source of reliable, industry-standard 

maintenance guidelines. Instead of relying solely on the 

machine learning model's predictions (which are based on 

usage patterns), it incorporates the expert knowledge and 

recommendations of the vehicle manufacturers. This ensures 

that essential maintenance tasks, regardless of driving style, 

are considered. 

 

 Enabling Brand and Model Customization:  
By storing schedules based on specific brands and 

models, maintenance_data.py allows the system to tailor 

maintenance recommendations right from the start. Different 

manufacturers have varying service intervals for components 

like oil changes, filter replacements, and fluid flushes. This 
module ensures that the system accounts for these inherent 

differences. 

 
 Supporting Rule-Based Checks:  

As mentioned earlier in the context of 

maintenance_predictor.py, the system likely combines ML 

predictions with rule-based checks. maintenance_data.py 

provides the data for these rule-based checks, such as "change 

oil every 12 months or 15,000 kilometres, whichever comes 

first" for a specific vehicle model. 

 

 Serving as a Reference Point:  
This module can act as a reference point for users to 

compare the system's predictions against the manufacturer's 

recommendations. It can also be used to initialize or inform 

the machine learning models about typical maintenance 

patterns. 
 

 Facilitating System Updates:  

When manufacturers release updated maintenance 

schedules for their vehicles, maintenance_data.py can be 

updated accordingly, ensuring that the system's baseline 

recommendations remain current and accurate. 
 

In essence, maintenance_data.py grounds your predictive 

maintenance system in the established best practices of vehicle 

manufacturers. It provides a crucial layer of brand and model-

specific information that complements the dynamic 

predictions generated by the machine learning models, leading 

to more comprehensive and reliable maintenance 

recommendations. It ensures that essential maintenance tasks 
are not overlooked and that recommendations align with 

industry standards. 

 

F. Machine Learning Model – Predictive Engine: 

The fundamental purpose of this component is to act as 

the intelligent core of your predictive maintenance system. It 

moves beyond static rules and leverages the power of data to 

learn patterns and relationships within historical vehicle data. 

This learning enables it to forecast future maintenance needs 

in a dynamic and data-driven way, offering significant 

advantages over traditional, schedule-based maintenance. A 
deeper dive into its purpose based on the workflow you've 

described: 

 Data-Driven Forecasting:  
The primary aim is to predict when specific vehicle 

components are likely to require maintenance or fail. Instead 

of simply adhering to fixed intervals, the ML model analyses 

a multitude of factors – such as accumulated mileage, patterns 

in how the vehicle is driven (e.g., aggressive acceleration, 

frequent hard braking), fluctuations in environmental 
conditions (like extreme temperatures), and the history of past 

servicing – to identify subtle indicators of impending issues. 

This allows for more accurate and timely maintenance 

recommendations. 

 
 Proactive Maintenance Planning:  

By predicting future failures or degradation, the model 

enables proactive maintenance planning. This means users can 

be alerted to potential problems before they lead to 

breakdowns or safety concerns, allowing them to schedule 

maintenance at a convenient time and potentially prevent more 

costly repairs down the line. This minimizes vehicle downtime 
and enhances overall vehicle reliability. 

 

 Personalized Maintenance Schedules:  
Because the model learns from the specific data of 

vehicles (or similar vehicles), it can contribute to more 

personalized maintenance schedules. Instead of a generic 

recommendation, the model can suggest an oil change sooner 

for a vehicle that consistently experiences high engine 

temperatures or predict brake wear based on the driver's 

braking habits. 

 

 Continuous Improvement:  
The "Adaptability" aspect highlights a key purpose: 

ongoing improvement of prediction accuracy. As the system 

collects more data from the vehicles it monitors, this new 

information can be used to retrain or fine-tune the machine 

learning model. This continuous learning loop allows the 

model to adapt to evolving usage patterns, environmental 
conditions, and even vehicle-specific characteristics, leading 

to increasingly precise and reliable predictions over time. 

 

In essence, the Machine Learning Model – Predictive 

Engine is the brainpower behind your system's ability to 

anticipate maintenance needs. It transforms raw data into 

actionable insights, enabling a shift from reactive repairs to 

proactive prevention. By learning from the past, it empowers 

users to make informed decisions about their vehicle's upkeep, 

ultimately leading to cost savings, reduced downtime, and 

improved safety. It's the engine that drives the "predictive" 

aspect of your predictive maintenance system. 
 

In General 

 

 Main Application (app.py): 

 
 Interactive Stream lit dashboard for real-time vehicle 

monitoring. 

 Displays predictions, alerts, trip history, and driving 

behaviour. 

 Allows manual input of service logs and vehicle selection. 

 Integrates all backend modules into a user-friendly 

interface. 
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 Maintenance Predictor (maintenance_predictor.py): 

 

 Contains logic for predicting maintenance needs using ML 
models. 

 Analyses sensor data and driving patterns to forecast 

service tasks. 

 Combines fixed intervals with dynamic, data-driven alerts. 

 Customizes predictions based on vehicle brand and usage. 

 

  Data Generator (data_generator.py): 

 

 Simulates live vehicle sensor data for development and 

testing. 

 Generates values like speed, fuel level, and engine 
temperature. 

 Enables testing of system responses to different scenarios. 

 Supports time-based simulations and stress testing. 

 

  Utilities (utils.py): 

 

 Provides helper functions for model loading, notifications, 

etc. 

 Manages WhatsApp alerts via Twilio API. 

 Handles data formatting, unit conversion, and time stamps. 

 Keeps codebase modular and clean with reusable 

functions. 
 

 Maintenance Data (maintenance_data.py): 

 

 Stores brand-specific service intervals for SUV models. 

 Provides a reference for comparing predicted vs 

recommended tasks. 

 Easily extendable for more vehicles or updated guidelines. 

 Used by the predictor module for customized alerting. 

  Machine Learning Model: 

 Trained on historical and simulated vehicle maintenance 

data. 
 Predicts component wear and service needs based on 

usage. 

 Supports personalized maintenance over fixed schedules. 

 Enhances reliability and reduces unnecessary servicing. 

 

A. Prerequisites: 

To run this application, we need: 

 

 Python 3.7 or Higher:  
Python runs all the code — the user interface, the 

data processing, and the machine learning predictions. 

 
 Pip (Python Package Installer):  

pip is a tool that lets you install all the Python libraries 

the app needs to work. This project uses external Python 

libraries like: streamlit (for the web interface), scikit-learn (for 
machine learning), twilio (for sending WhatsApp alerts). 

 

 Internet Connection:  
An internet connection is required for two main reasons: 

 

 Lottie Animations:  

The app uses animations (like loading spinners or alert 

icons) from the internet to make the interface more    engaging. 

These are fetched live from the web. 

 Twilio WhatsApp Alerts:  

The app sends maintenance reminders or alerts via 

WhatsApp using Twilio’s online API. This only works when 
you’re connected to the internet. 

 

B. Dependencies (Python Libraries): 

A Python library is a collection of pre-written code 

(functions, classes, and tools) that you can use in your own 

programs to save time and effort. These libraries must be 

installed for our application to work properly. 

 

 Stream Lit:  
A fast way to build interactive web apps using Python. 

It powers the entire front-end of your application. It creates 

dashboards, forms, charts, and real-time data displays 

without needing HTML/CSS/JS. 

 

 Pandas:  
A powerful data manipulation and analysis library. To 

load, filter, and manipulate vehicle maintenance data and 

sensor logs. It Helps manage structured data like service 

history, vehicle schedules, and prediction results. 

 

 Numpy:  
A numerical computing library for arrays and 

mathematical operations. It used for calculations related to 

mileage, temperature analysis, and other numeric operations. 
It works behind the scenes with pandas and machine learning 

algorithms. 

 

 Matplotlib:  
A plotting library for creating static graphs and charts. 

To visualize trends like engine temperature over time or 

mileage history. It is Useful for building simple, readable 

graphs in the Stream lit app. 

 

 Plotly:  
An advanced interactive charting library. For sleek, 

interactive graphs (like animated line charts or dials). It 

Enhances the UI by allowing users to zoom, hover, and 
explore vehicle performance data. 

 

 Pickle: 

A built-in Python module for saving and loading Python 

objects (like models). Used to load the pre-trained machine 

learning model used for predicting maintenance. It Helps 

store and retrieve data structures like dictionaries or arrays 

easily. 

 

 Requests:  
A library for sending HTTP requests. Used to fetch 

Lottie animations or data from external APIs. It also used if 

you integrate any cloud services, like a database or weather 
API. 

 

 Streamlit-Lottie:  
A Streamlit plugin that allows embedding Lottie 

animations. It adds animated visuals to make the app more 

engaging (e.g., alerts, loading animations) and supports 

animations hosted online via JSON URLs. 
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 Streamlit-Option-Menu:  
A plugin to create stylish sidebar and horizontal 

navigation menus. It allows easy navigation between 

different sections of the app (like Dashboard, History, Eco 

Driving, etc.) and improves user experience and app layout. 
 

 Streamlit-Extras:  
A collection of community-contributed extras for 

Streamlit. It adds useful UI features like custom buttons, 

sticky headers, popups, and more and helps enhance the 

design without writing complex code. 

 
C. Running the Application: 

To run the application: 

 

 Open a terminal/command prompt 
 Navigate to the project directory  

 Run the following command:  streamlit run app.py 

 The application will start and automatically open in your 

default web browser at 127.0.0.1:5000. 

 

D. Experimental Procedure: 

Using the Application: 

 

 Select Your SUV Brand:  

Choose your SUV brand from the available options: 

 

  KIA  

 TATA  

 Mahindra  

 Maruti  

 Toyota 

 

 
Fig 3 Select SUV Brand 

 

 Configure Driving Parameters: 

The application provides three tabs for configuring your 

driving parameters: 

 

 Speed & Time: 

 Adjust the average speed using the interactive speedometer 

(10-120 km/h)  

 Set your daily driving duration (0.5-12 hours)  

 Specify the number of driving days per month (1-31 days) 
 

 
Fig 4 Digital Speedometer 
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Fig 5 Daily driving time and Monthly Driving Days 

 

 Vehicle Operation: 
  

 Select your gear usage pattern (Low 1-2, Medium 3-4, High 5-6). 

 Choose your vehicle load (Light, Medium, Heavy). 

 

 
Fig 6 Interactive Gear Shifter 

 

 
Fig 7 Vehicle Load 
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 Environment: 

 

 Select the road type (City, Highway, Rural, Mixed, Off-road)  
 Choose the weather conditions (Normal, Hot, Cold, Rainy, Snowy)  

 Specify the traffic conditions (Light, Moderate, Heavy) 

 

 
Fig 8 Road Type Selector 

 

 Generate Predictions: 
Click the "ANALYZE VEHICLE & PREDICT 

MAINTENANCE NEEDS" button to generate personalized 

maintenance predictions based on your inputs.  

 

 View Results  

   The application will display:  

 

 Estimated monthly distance  

 Visual representation of your driving profile  

 Maintenance schedule with gauges showing remaining 

kilometres until service  

 Maintenance timeline showing when different components 

will need service  

 Complete maintenance schedule for your selected SUV 

brand 

 

IV. RESULTS 

 

Once the application is launched, we are greeted with an 

interactive and data-driven dashboard that provides a holistic 

overview of their vehicle’s current status, driving habits, and 

upcoming maintenance needs. Designed with clarity and user 

experience in mind, the dashboard consolidates real-time data, 

predictive insights, and manufacturer guidelines into a 

centralized view, enabling vehicle owners to make informed 

decisions and stay ahead of potential issues. 

 

We can establish the various number of results by varying 

the following parameters: 

 

 Average speed  

 Daily driving duration  

 Number of driving days per month  

 Gear usage patterns  

 Road type (City, Highway, Rural, etc.)  

 Weather conditions  

 Traffic conditions  

 Vehicle load 

 

Here, we are providing the maintenance prediction for 

different brands of Sports Utility Vehicle [SUV], like KIA, 
Toyota etc. The standard data is being developed from the 

different brand manuals and manufacturing. 

 

Table 1 KIA SUV Maintenance Schedule with Dynamic Factors 

Component Standard Interval Dynamic Factors Adjusted Interval 

Engine Oil & Filter 10,000 km / 12 mo Traffic, short trips, towing, aggressive driving 5,000-7,500 km 

Air Cleaner Filter 20,000 km / 2 yr Dusty/rural roads, off-roading 10,000-15,000 km 

Cabin (AC) Filter 20,000 km / 2 yr Pollution, humidity, frequent AC use 10,000-15,000 km 

Fuel Filter (Diesel) 40,000 km / 4 yr Poor fuel quality, rural use 30,000-35,000 km 
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Brake Fluid 30,000 km / 3 yr Hill driving, traffic 20,000-25,000 km 

Coolant 1,00,000 km / 5 yr Hot climate, towing 60,000-80,000 km 

Transmission Fluid (AT) 90,000 km Towing, urban driving 60,000-70,000 km 

Transmission Fluid (MT) 1,20,000 km Heavy traffic, aggressive shifting 90,000-100,000 km 

Spark Plugs (Petrol) 70,000- 1,00,000 km Short trips, poor fuel 60,000-70,000 km 

Tire Rotation & Align. 10,000 km Rough roads, fast driving 5,000-7,500 km 

 

 Case 1: 

 

Setup; 

 Select of SUV Brand: KIA 

 Configuration of Driving Parameters:  
 

 Average Speed: 45km/h 

 Daily Driving Time: 3.5 hours 

 Monthly Driving Days: 20 days 

 

 Vehicle Operations and Controls: 

 

 Interactive Gear Shifter: Medium Gears (3-4) 
 Vehicle Load: Medium Load 

 

 Driving Environment: 

 

 Road Type: City 

 Weather Condition: Hot 

 Traffic Condition: Moderate Traffic 

 

V. VEHICLE MAINTENANCE ANALYSIS RESULTS 

 

 
Fig 9 Monthly Distance and Engine Oil and Filter 

 

 
Fig 10 Driving Profile and Air Cleaner Filter 
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Fig 11 Cabin (AC) Filter 

 

 
Fig 12: Fuel Filter (Diesel) 

 

 
Fig 13 Brake Fluid 
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Fig 14 Coolant 

 

 
Fig 15 Maintenance Timeline for KIA SUV 

 

 Troubleshooting 

Common Issues: 
 

 Missing Dependencies  

 

 Error: ModuleNotFoundError  

 

 Solution: Install the missing package using pip install 

<package name> 

 

 Model Loading Error  

 

 Error: Failed to load the prediction model 
 

 Solution: Ensure the model file exists in the correct 

location and has the expected format. 

 

 Visualization Errors  

 

 Error: Plot visualization not rendering correctly 

 

 Solution: Ensure Plot is properly installed and browser 

supports JavaScript. 
 

VI. CONCLUSION 
 

The SUV Maintenance Predictor is an intelligent, web-

based platform developed to support proactive maintenance 

planning for SUV owners. Built with Streamlit and powered 

by machine learning, the system personalizes maintenance 

recommendations by analyzing user-defined parameters such 

as average driving speed, daily usage duration, gear usage, 
road types, traffic and weather conditions, and vehicle load. 

These inputs are processed by a trained machine learning 

model that predicts the estimated monthly distance driven, 

which in turn drives the dynamic generation of personalized 

maintenance schedules. 

 

Unlike traditional one-size-fits-all service reminders, this 

system creates adaptive maintenance plans tailored to 

individual driving patterns. It takes into account real-world 

environmental and operational factors, adjusting 
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recommended service intervals accordingly. For example, 

SUVs driven under heavy loads or in harsh conditions (like 

off-road terrain or extreme weather) receive maintenance 
recommendations sooner than those driven in light, controlled 

environments. 

 

The core of the system includes a modular architecture: 

 

 A prediction engine that uses historical and synthetic 

driving data. 

 Brand-specific service schedules stored in configurable 

datasets. 

 A visual dashboard featuring gauges, timelines, and 

interactive widgets for intuitive understanding of 
upcoming service needs. 

 By visualizing the driving profile and predicted wear on 

components, users are empowered to schedule services 

pre-emptively—avoiding costly repairs and reducing the 

likelihood of sudden breakdowns. The application supports 

brands like KIA, TATA, Mahindra, Maruti, and Toyota, 

and can be extended to more via simple configuration 

updates. 

 

The integration of Lottie animations, Plotly 

visualizations, and session state management further enhances 

user experience, making the application not only informative 
but engaging and seamless across interactions. Additionally, 

the flexibility in customization (e.g., adding new brands or 

modifying service intervals) ensures long-term scalability of 

the platform. Ultimately, the SUV Maintenance Predictor 

achieves its mission: to deliver a smart, user-centric, and data-

driven approach to vehicle maintenance. By combining 

predictive analytics with intuitive UX design, it improves 

vehicle reliability, extends component life, and provides SUV 

owners with peace of mind through actionable maintenance 

intelligence. 

 
A. Scope for Future Work 

 

To further improve the functionality, reach, and 

intelligence of the SUV Maintenance Predictor, the following 

enhancements are envisioned: 

 

 User Account Management:  
Enable users to create secure accounts to save their 

vehicle profiles, track historical maintenance data, and receive 

personalized reminders across sessions and devices. 

 

 Integration with OBD-II and Telematics Data: 
 Incorporate direct data streaming from On-Board 

Diagnostic (OBD-II) devices and telematics systems to 

automate input collection and provide more accurate, real-time 

analytics. 

 

 Mobile Application Deployment:  
Develop a mobile-friendly version or standalone app for 

Android/iOS, allowing users to monitor and manage their 

maintenance needs on the go. 

 

 Expanded Brand and Model Support:  
Broaden the database to include a wider variety of SUV 

brands and specific models, enabling more granular 

maintenance scheduling and user adoption. 
 

With these upgrades, the SUV Maintenance Predictor 

can transform into a comprehensive vehicle lifecycle 

management system, catering to the requirements of both 

individual owners and fleet operators within the expanding 

landscape of connected mobility. 
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