
Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul735

IJISRT25JUL735 www.ijisrt.com 1295

Real Time Scheduling of an Automotive

Maintenance

P Shiva Naga Raju1; P Nikhitha2

1,2Department of Mechanical Engineering, University College of Engineering, Osmania University,

Hyderabad, Telangana, India.

Publication Date: 2025/07/19

Abstract: This electronic document represents a smart, proactive vehicle maintenance predictor system designed to

transform the traditional ownership experience by optimizing performance, reducing downtime, and enhancing safety. By

integrating advanced data analytics, machine learning, and IoT technology, the system continuously monitors critical vehicle

parameters such as engine oil and filter, air cleaner filter, fuel filter, coolant, and more. The goal is to bring a data-driven,

user-centric approach to vehicle maintenance and performance monitoring. Real-time data is collected via sensors and

visualized through an intuitive mobile or interactive web application, which also issues alerts for issues like overheating or

low oil levels. The system applies predictive maintenance techniques using historical data to forecast potential problems and

schedule service tasks based on usage patterns and manufacturer guidelines. It maintains a log of previous services and

sends automated reminders for upcoming maintenance. Additionally, the integration of telematics enables tracking of

driving behavior to promote eco-friendly habits and record fuel efficiency and trip history. A simulation model was built

using Python libraries and the Twilio API to demonstrate the concept. It tracks parameters like speed, fuel level, and gear

status, triggering maintenance alerts—such as engine oil changes every 2000 km and gear oil changes every 6000 km—along

with real-time notifications. The system effectively showcases the use of predictive analytics and real-time communication

to ensure timely maintenance, improve reliability, and lower long-term vehicle repair costs. With automated reminders,

comprehensive maintenance logs, and intelligent analysis of driving behavior, it supports better decision-making for vehicle

owners. The integration with telematics not only enhances maintenance precision but also encourages eco-friendly driving

by analyzing acceleration, braking, and speed patterns. Overall, the project demonstrates a scalable and impactful solution

for smart vehicle management.

Keywords: Predictive Maintenance, IoT, Telematics, Machine Learning, RealTime Monitoring, Streamlit, Maintenance Scheduling.

How to Cite: P Shiva Naga Raju; P Nikhitha (2025), Real Time Scheduling of an Automotive Maintenance. International Journal

of Innovative Science and Research Technology, 10(7), 1295-1308. https://doi.org/10.38124/ijisrt/25jul735

I. INTRODUCTION

A. Paradigm Shift in Automotive Maintenance:

In today's fast-paced world, vehicle downtime translates

directly to economic losses for businesses and inconvenience

for individuals. Traditional maintenance approaches, often

based on fixed intervals, fail to account for the unique

operating conditions and wear patterns of each vehicle. This

leads to either over-maintenance, incurring unnecessary

costs, or under-maintenance, risking unexpected breakdowns

and costly repairs.

The "Real time Scheduling of an Automotive

Maintenance" project seeks to address these challenges by
implementing a proactive and data-driven approach to

maintenance scheduling. By harnessing the power of IoT,

machine learning, and real-time data analytics, this system

aims to optimize maintenance intervals, minimize downtime,

and maximize vehicle lifespan.

The Vehicle Maintenance Predictor is an interactive

web application built with Streamlit that helps users predict
when their SUV will need maintenance based on their driving

patterns and conditions.

The application uses machine learning to provide

personalized maintenance recommendations by analysing

factors such as:

 Average speed

 Daily driving duration

 Number of driving days per month

 Gear usage patterns

 Road type (City, Highway, Rural, etc.)
 Weather conditions

 Traffic conditions

 Vehicle load

The result will be a dynamic and intelligent maintenance

system that empowers vehicle owners and fleet managers to

optimize their maintenance budgets, enhance vehicle

https://doi.org/10.38124/ijisrt/25jul735
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25jul735

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul735

IJISRT25JUL735 www.ijisrt.com 1296

reliability, and improve overall operational efficiency. This

system will not only reduce maintenance costs but also

enhance safety and minimize environmental impact by

optimizing vehicle performance and reducing emissions.

B. Key Improvements:

 Stronger Emphasis on Problem:
 Highlighted the economic and operational impacts of

traditional maintenance methods.

 Clearer Articulation of the Solution:
Emphasized the use of advanced technologies like IoT,

machine learning, and real-time data analytics.

 Enhanced Focus on Benefits:

 Emphasized the benefits beyond cost reduction, such as

improved safety, environmental impact, and operational

efficiency.

This study includes hardware capable of interfacing
with the vehicle's ECU to gather real-time data, IoT solutions

to establish seamless connectivity with the cloud, and

leveraging cloud computing platforms such as AWS or

Microsoft Azure for advanced data analysis. The data

analysis pipeline would incorporate machine learning and AI

modules to ensure high accuracy and real-time processing.

Additionally, user-friendly iOS and Android applications

would serve as the interface for users, complemented by

robust notification services for timely updates and alerts.

This can be successful through the development of a
holistic, end-to-end ecosystem. Achieving this requires a

strategically structured, multi-layered approach:

 Data Acquisition

 Hardware Integration:

Efficient integration of hardware components with the

vehicle's Electronic Control Unit (ECU) is essential. These

components serve as a robust data gateway, facilitating the

seamless collection of real-time data streams from a wide

range of vehicle sensors.

The hardware must support diverse sensor types to

ensure comprehensive monitoring of parameters such as

engine performance, tire pressure, fuel consumption, and

more.

 Optimal Sensor Selection:

Strategic selection of sensors is critical to guarantee

precise and reliable data collection. The choice of sensors

should align with the specific monitoring objectives,

encompassing parameters like temperature, humidity,

vibration, pressure, and other key metrics.

Advanced sensors with high accuracy and durability

should be prioritized to ensure the integrity and reliability of

the data, particularly under varying environmental and

operational conditions.

 Data Connectivity:

 Hardware Integration:

Harnessing advanced IoT solutions is pivotal for

enabling seamless and secure connectivity between the

vehicle's hardware and the cloud platform.

This involves selecting the most suitable

communication protocols, such as cellular networks for wide-
area coverage, Wi-Fi for high-speed local connectivity, or

Bluetooth for short-range, low-power communication.

Ensuring consistent and reliable data transmission is

key, necessitating redundancy mechanisms and fail-safe

designs to handle potential disruptions.

Integration with IoT platforms should also prioritize

scalability, allowing the system to accommodate increasing

data volumes and additional connected devices as the

ecosystem grows.

 Data Processing and Analysis:

 Cloud Computing:

Leveraging powerful cloud computing platforms such

as AWS, Azure, or Google Cloud ensures the scalability,

flexibility, and computational capacity required to manage

and analyze the immense data streams generated by modern

vehicles.

These platforms provide robust infrastructure for

storing, processing, and visualizing data, enabling seamless
integration with other components of the monitoring and

scheduling ecosystem

 AI/ML Integration:

Embedding cutting-edge machine learning (ML) and

artificial intelligence (AI) algorithms into the cloud-based

data pipeline unlocks transformative capabilities, including:

 Predictive Maintenance:
Utilizing historical data and real-time sensor readings to

predict and pre-empt potential failures, reducing downtime

and maintenance costs.

 Anomaly Detection:
Detecting irregularities or deviations in vehicle

performance, allowing for early identification of potential

issues before they escalate.

 Driving Behavior Analysis:

Examining driving patterns to optimize fuel efficiency,

enhance safety, and encourage better driving habits. AI/ML

models continuously improve through feedback loops,

ensuring greater accuracy and adaptability over time.

 User Interface and Interaction

 Intuitive Applications:

https://doi.org/10.38124/ijisrt/25jul735
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul735

IJISRT25JUL735 www.ijisrt.com 1297

Designing highly responsive and user-friendly mobile

applications for iOS and Android platforms ensures seamless

access to vehicle data, maintenance schedules, and real-time

alerts.

These applications should prioritize an intuitive layout,

customizable dashboards, and easy navigation to enhance

user engagement and satisfaction.

 Dynamic Notification System:

Deploying a robust and adaptable notification

framework guarantees timely updates on vehicle health,

maintenance requirements, and potential issues.

Notifications can be delivered through multiple

channels, including push notifications, SMS, and email, to

suit user preferences.

 Data Security and Privacy:

 Comprehensive Security Framework:
Establishing a multi-layered security framework is

essential to safeguard sensitive vehicle and user data from

unauthorized access and potential cyber threats. The Key

measures include:

 Data Encryption

 Access Controls

 Regular Security Audits

 Privacy-Centric Design:

Adopting privacy-by-design principles ensures user

data is collected, processed, and stored in compliance with

regulatory standards like GDPR or CCPA.

Features such as data anonymization, user consent

mechanisms, and transparent data usage policies build trust
and enhance user confidence in the system.

This approach involves integrating various systems

through seamless communication between hardware

components. Real-time data streams, including engine RPM,

speed (in km/h), temperature, and past maintenance/service

records, are collected from the vehicle. This data is then

analyzed in conjunction with pre-determined or imposed

standard data sets.

The analysis, potentially utilizing machine learning
algorithms, identifies potential anomalies or deviations from

expected vehicle behavior. Based on these insights, the

system generates real-time alerts and notifications through a

user-friendly interface (e.g., mobile app, dashboard),

informing the driver or vehicle owner about potential issues

or the need for upcoming maintenance.

Developing a complete ecosystem for [specific purpose,

e.g., real-time vehicle monitoring] can be resource-intensive,

requiring significant time, energy, and financial investment.

To efficiently validate the core concepts and feasibility, a

proof-of-concept (POC) can be developed using software

tools deployed on PCs or laptops.

This approach allows for rapid prototyping and

experimentation while minimizing initial costs. The POC will

serve as a foundational step to demonstrate the core

functionalities, test key assumptions, and gather valuable

insights before investing heavily in a full-scale
implementation.

II. METHODOLOGY

This research focuses on designing and implementing

an advanced real-time vehicle data monitoring and

Maintenance Predictor, an interactive web application built
with Streamlit that helps users predict when their SUV will

need maintenance based on their driving patterns and

conditions. The application uses machine learning to provide

personalized maintenance recommendations by analyzing

factors such as: Average speed, Daily driving duration,

Number of driving days per month, Gear usage patterns etc.

The outlined objectives can be effectively realized by

developing a comprehensive end-to-end ecosystem. This

includes hardware capable of interfacing with the vehicle's

ECU to gather real-time data, IoT solutions to establish

seamless connectivity with the cloud, and leveraging cloud
computing platforms such as AWS or Microsoft Azure for

advanced data analysis. The data analysis pipeline would

incorporate machine learning and AI modules to ensure high

accuracy and real-time processing. Additionally, user-

friendly iOS and Android applications would serve as the

interface for users, complemented by robust notification

services for timely updates and alerts. This necessitates a

multi-layered approach.

This approach consists of the following subsystems.

Fig 1 Methodology

https://doi.org/10.38124/ijisrt/25jul735
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul735

IJISRT25JUL735 www.ijisrt.com 1298

III. BACKEND SYSTEM TO MONITOR AND

SCHEDULE AN AUTOMOTIVE

MAINTANANCE-APPLICATION

This method focuses on the integration of multiple

systems through efficient communication among hardware

components. Real-time data, such as engine RPM, vehicle

speed (km/h), temperature, and historical maintenance or
service records, is gathered directly from the vehicle. The

collected data is then analyzed alongside predefined or

standardized datasets to derive meaningful insights.

Building a comprehensive ecosystem for [specific

purpose, e.g., real-time vehicle monitoring] is a demanding

endeavor, necessitating substantial commitments of time,

effort, and financial resources.

To effectively validate core concepts and assess

feasibility, a proof-of-concept (POC) can be developed

utilizing software tools deployed on PCs or laptops. This
strategy enables rapid prototyping and iterative

experimentation while keeping initial costs low. The POC

acts as a foundational step, showcasing essential

functionalities, testing critical assumptions, and providing

valuable insights that inform further development before

committing to a full-scale implementation. The POC involves

the below mentioned sub system in order to achieve outlined

objectives, testing critical assumptions, and providing

valuable insights that inform further development before

committing to a full-scale implementation. The POC involves

the below mentioned sub system in order to achieve outlined
objectives.

This approach allows for rapid prototyping and

experimentation while minimizing initial costs. The POC will

serve as a foundational step to demonstrate the core

functionalities, test key assumptions, and gather valuable

insights before investing heavily in a full-scale

implementation.

A Python-based application server, hosted on a PC or

laptop, will serve as the core data processing hub. It will

continuously receive simulated vehicle parameters, including

speed (in km/h), temperature, historical maintenance records,
etc. This data will then be analyzed and processed to identify

potential issues and generate relevant insights.

Fig 2 Backend System to Monitor and Schedule an

Automotive Maintanance-Application

This application consists of the following components:

A. Main Application (app.py) – Streamlit Web Interface

 Purpose:

Essentially, app.py serves as the central hub through

which users like vehicle owners or fleet managers directly

interact with your predictive maintenance system. Think of it

as the cockpit of the project, providing a clear and intuitive

view into the health and future needs of their vehicles. Its

primary purpose is to translate the complex data and

predictions generated in the back-end into an understandable

and actionable format for the user. Instead of raw sensor

readings or cryptic algorithm outputs, app.py presents this

information in a visually appealing and easily digestible way

through its Streamlit web interface.

Furthermore, app.py isn't just about displaying

information; it also empowers users with a degree of control

and personalization. By allowing them to input vehicle details,

service history, and driving preferences, the application can

tailor its predictions and recommendations more accurately to

their specific context.

Finally, app.py acts as a communication bridge,

delivering timely alerts and notifications about potential issues

or upcoming maintenance needs. It also facilitates the

management of service records and even offers guidance on

eco-friendly driving, enhancing the overall user experience

and the value of your predictive maintenance system. In short,

it's the face and voice of your project, making its powerful
capabilities accessible and useful to the end-user.

B. Maintenance Predictor (maintenance_predictor.py)

Predictive Logic:
At its core, maintenance_predictor.py is the brain of your

predictive maintenance system. Its fundamental purpose is to

analyze data and determine when a vehicle component is likely

to require maintenance in the future. It moves beyond simple

reactive maintenance by proactively identifying potential

issues before they lead to breakdowns or costly repairs.

 Predictive Intelligence Engine:

This script houses the crucial logic for forecasting

maintenance needs. It takes in various forms of data – both

historical (past maintenance records, failure data) and real-

time (sensor readings, driving behavior) – and processes it

using the loaded machine learning model to generate

https://doi.org/10.38124/ijisrt/25jul735
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul735

IJISRT25JUL735 www.ijisrt.com 1299

predictions. This allows the system to anticipate problems

rather than just reacting to them.

 Decision-Making Hub:

maintenance_predictor.py doesn't solely rely on the ML

model. It intelligently combines the model's probabilistic

predictions with established, rule-based checks. For example,

even if the ML model doesn't flag an immediate oil change,

the system will still recommend one based on a fixed mileage

interval (like every 2000 km). This hybrid approach adds a

layer of reliability and incorporates industry best practices.

 Personalization and Adaptation Layer:

A key purpose is to tailor maintenance recommendations

to specific circumstances. By considering the SUV
brand/model (which influences expected wear and tear

patterns) and individual user driving habits (e.g., frequent hard

braking, long idling times), the script ensures that the

predictions and alerts are more relevant and accurate for each

user. This moves away from a one-size-fits-all approach to

maintenance.

 Insight Generation:

Raw sensor data can be meaningless to the average user.

Therefore, maintenance_predictor.py plays a vital role in

interpreting these raw values and translating them into clear,
actionable insights. Instead of just reporting a coolant

temperature of 110°C, it converts this into a user-friendly

message like "Coolant temperature is above the optimal

range," along with potential implications or recommended

actions.

In essence, maintenance_predictor.py is the engine that

drives the predictive capabilities of your system. It takes in

data, applies sophisticated logic (both learned and rule-based),

personalizes the analysis, and generates meaningful insights

that empower users to proactively manage their vehicle's
maintenance needs.

C. Data Generator (data_generator.py) – Simulated

Telematics Feed

The fundamental purpose of data_generator.py is to

provide a controlled and flexible source of simulated real-time

vehicle data. In situations connecting to actual vehicle

telematics or live sensor feeds is impractical (like during the

initial development, testing, or demonstration phases of your

project), this script steps in to mimic the continuous stream of

information that a real vehicle would produce. It acts as a

virtual vehicle, allowing you to build, test, and showcase your
predictive maintenance system without needing a physical

fleet of connected cars.

 Working:

 Creating Realistic Synthetic Data:

The script employs methods to generate data points for

various vehicle parameters that are statistically plausible. This

can range from simple random number generation within

realistic ranges (e.g., speed between 0 and 180 km/h) to more

sophisticated algorithms that introduce correlations between
parameters (e.g., higher RPM generally corresponds to higher

fuel consumption and potentially increasing engine

temperature). This ensures that the simulated data behaves in

a somewhat lifelike manner.

 Simulating Temporal Dynamics:

data_generator.py can go beyond just generating single

data points. It's designed to simulate vehicle operation over

time. This means it can produce a sequence of data points that

represent a driving session, including periods of acceleration,

cruising at a steady speed, idling at traffic lights, and

eventually shutting down the engine. This temporal aspect is

crucial for testing how your predictive models react to trends

and changes in data over time.

 Enabling Custom Test Scenarios:
A significant advantage of a data generator is its ability

to reproduce specific, often rare, events or edge cases on

demand. Instead of waiting for a real vehicle to experience a

sudden oil leak or a rapid overheating event, you can program

data_generator.py to simulate these scenarios directly. This

allows you to rigorously test the robustness and

responsiveness of your predictive maintenance system to

unusual or critical situations and ensure it triggers the correct

alerts and recommendations.

In essence, data_generator.py is a vital tool for

decoupling the development and testing of your system from
the availability of real-world vehicle data. It provides a

reliable, controllable, and customizable data source that

accelerates the development process, facilitates thorough

testing of various scenarios (including edge cases), and

enables effective demonstrations of your project's capabilities.

It's like having a virtual test fleet at your fingertips.

D. Utilities (utils.py) – Helper Functions:
The primary purpose of utils.py is to serve as a central

repository for reusable code and backend functionalities that
are needed across different parts of your predictive

maintenance system (app.py, maintenance_predictor.py, and

potentially others). It promotes code organization, reduces

redundancy, and makes your codebase more maintainable and

efficient by housing common tasks in one place. Think of it as

the toolkit that provides essential tools and services to all the

other modules.

This utils.py acts as the glue that binds the different parts

of your system together by providing essential shared

functionalities. It promotes code reuse, ensures data
consistency, handles external integrations, and manages

crucial temporal information, ultimately contributing to a

more organized, efficient, and robust predictive maintenance

system.

E. Maintenance Data (maintenance_data.py) – Brand-

Specific Schedules:

The primary purpose of maintenance_data.py is to serve

as a structured repository for manufacturer-recommended

maintenance schedules that are specific to different vehicle

brands and models. Think of it as a digital library of official

servicing guidelines. This module provides a baseline or a set
of default expectations for when certain maintenance tasks

should typically be performed based on factors like mileage or

https://doi.org/10.38124/ijisrt/25jul735
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul735

IJISRT25JUL735 www.ijisrt.com 1300

time intervals, as advised by the vehicle manufacturers

themselves. Here's a more detailed breakdown of its purpose:

 Providing Foundational Maintenance Information:

This script acts as a source of reliable, industry-standard

maintenance guidelines. Instead of relying solely on the

machine learning model's predictions (which are based on

usage patterns), it incorporates the expert knowledge and

recommendations of the vehicle manufacturers. This ensures

that essential maintenance tasks, regardless of driving style,

are considered.

 Enabling Brand and Model Customization:
By storing schedules based on specific brands and

models, maintenance_data.py allows the system to tailor

maintenance recommendations right from the start. Different

manufacturers have varying service intervals for components

like oil changes, filter replacements, and fluid flushes. This
module ensures that the system accounts for these inherent

differences.

 Supporting Rule-Based Checks:

As mentioned earlier in the context of

maintenance_predictor.py, the system likely combines ML

predictions with rule-based checks. maintenance_data.py

provides the data for these rule-based checks, such as "change

oil every 12 months or 15,000 kilometres, whichever comes

first" for a specific vehicle model.

 Serving as a Reference Point:
This module can act as a reference point for users to

compare the system's predictions against the manufacturer's

recommendations. It can also be used to initialize or inform

the machine learning models about typical maintenance

patterns.

 Facilitating System Updates:

When manufacturers release updated maintenance

schedules for their vehicles, maintenance_data.py can be

updated accordingly, ensuring that the system's baseline

recommendations remain current and accurate.

In essence, maintenance_data.py grounds your predictive

maintenance system in the established best practices of vehicle

manufacturers. It provides a crucial layer of brand and model-

specific information that complements the dynamic

predictions generated by the machine learning models, leading

to more comprehensive and reliable maintenance

recommendations. It ensures that essential maintenance tasks
are not overlooked and that recommendations align with

industry standards.

F. Machine Learning Model – Predictive Engine:

The fundamental purpose of this component is to act as

the intelligent core of your predictive maintenance system. It

moves beyond static rules and leverages the power of data to

learn patterns and relationships within historical vehicle data.

This learning enables it to forecast future maintenance needs

in a dynamic and data-driven way, offering significant

advantages over traditional, schedule-based maintenance. A
deeper dive into its purpose based on the workflow you've

described:

 Data-Driven Forecasting:
The primary aim is to predict when specific vehicle

components are likely to require maintenance or fail. Instead

of simply adhering to fixed intervals, the ML model analyses

a multitude of factors – such as accumulated mileage, patterns

in how the vehicle is driven (e.g., aggressive acceleration,

frequent hard braking), fluctuations in environmental
conditions (like extreme temperatures), and the history of past

servicing – to identify subtle indicators of impending issues.

This allows for more accurate and timely maintenance

recommendations.

 Proactive Maintenance Planning:

By predicting future failures or degradation, the model

enables proactive maintenance planning. This means users can

be alerted to potential problems before they lead to

breakdowns or safety concerns, allowing them to schedule

maintenance at a convenient time and potentially prevent more

costly repairs down the line. This minimizes vehicle downtime
and enhances overall vehicle reliability.

 Personalized Maintenance Schedules:
Because the model learns from the specific data of

vehicles (or similar vehicles), it can contribute to more

personalized maintenance schedules. Instead of a generic

recommendation, the model can suggest an oil change sooner

for a vehicle that consistently experiences high engine

temperatures or predict brake wear based on the driver's

braking habits.

 Continuous Improvement:
The "Adaptability" aspect highlights a key purpose:

ongoing improvement of prediction accuracy. As the system

collects more data from the vehicles it monitors, this new

information can be used to retrain or fine-tune the machine

learning model. This continuous learning loop allows the

model to adapt to evolving usage patterns, environmental
conditions, and even vehicle-specific characteristics, leading

to increasingly precise and reliable predictions over time.

In essence, the Machine Learning Model – Predictive

Engine is the brainpower behind your system's ability to

anticipate maintenance needs. It transforms raw data into

actionable insights, enabling a shift from reactive repairs to

proactive prevention. By learning from the past, it empowers

users to make informed decisions about their vehicle's upkeep,

ultimately leading to cost savings, reduced downtime, and

improved safety. It's the engine that drives the "predictive"

aspect of your predictive maintenance system.

In General

 Main Application (app.py):

 Interactive Stream lit dashboard for real-time vehicle

monitoring.

 Displays predictions, alerts, trip history, and driving

behaviour.

 Allows manual input of service logs and vehicle selection.

 Integrates all backend modules into a user-friendly

interface.

https://doi.org/10.38124/ijisrt/25jul735
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul735

IJISRT25JUL735 www.ijisrt.com 1301

 Maintenance Predictor (maintenance_predictor.py):

 Contains logic for predicting maintenance needs using ML
models.

 Analyses sensor data and driving patterns to forecast

service tasks.

 Combines fixed intervals with dynamic, data-driven alerts.

 Customizes predictions based on vehicle brand and usage.

 Data Generator (data_generator.py):

 Simulates live vehicle sensor data for development and

testing.

 Generates values like speed, fuel level, and engine
temperature.

 Enables testing of system responses to different scenarios.

 Supports time-based simulations and stress testing.

 Utilities (utils.py):

 Provides helper functions for model loading, notifications,

etc.

 Manages WhatsApp alerts via Twilio API.

 Handles data formatting, unit conversion, and time stamps.

 Keeps codebase modular and clean with reusable

functions.

 Maintenance Data (maintenance_data.py):

 Stores brand-specific service intervals for SUV models.

 Provides a reference for comparing predicted vs

recommended tasks.

 Easily extendable for more vehicles or updated guidelines.

 Used by the predictor module for customized alerting.

 Machine Learning Model:

 Trained on historical and simulated vehicle maintenance

data.
 Predicts component wear and service needs based on

usage.

 Supports personalized maintenance over fixed schedules.

 Enhances reliability and reduces unnecessary servicing.

A. Prerequisites:

To run this application, we need:

 Python 3.7 or Higher:
Python runs all the code — the user interface, the

data processing, and the machine learning predictions.

 Pip (Python Package Installer):

pip is a tool that lets you install all the Python libraries

the app needs to work. This project uses external Python

libraries like: streamlit (for the web interface), scikit-learn (for
machine learning), twilio (for sending WhatsApp alerts).

 Internet Connection:
An internet connection is required for two main reasons:

 Lottie Animations:

The app uses animations (like loading spinners or alert

icons) from the internet to make the interface more engaging.

These are fetched live from the web.

 Twilio WhatsApp Alerts:

The app sends maintenance reminders or alerts via

WhatsApp using Twilio’s online API. This only works when
you’re connected to the internet.

B. Dependencies (Python Libraries):

A Python library is a collection of pre-written code

(functions, classes, and tools) that you can use in your own

programs to save time and effort. These libraries must be

installed for our application to work properly.

 Stream Lit:
A fast way to build interactive web apps using Python.

It powers the entire front-end of your application. It creates

dashboards, forms, charts, and real-time data displays

without needing HTML/CSS/JS.

 Pandas:
A powerful data manipulation and analysis library. To

load, filter, and manipulate vehicle maintenance data and

sensor logs. It Helps manage structured data like service

history, vehicle schedules, and prediction results.

 Numpy:
A numerical computing library for arrays and

mathematical operations. It used for calculations related to

mileage, temperature analysis, and other numeric operations.
It works behind the scenes with pandas and machine learning

algorithms.

 Matplotlib:
A plotting library for creating static graphs and charts.

To visualize trends like engine temperature over time or

mileage history. It is Useful for building simple, readable

graphs in the Stream lit app.

 Plotly:
An advanced interactive charting library. For sleek,

interactive graphs (like animated line charts or dials). It

Enhances the UI by allowing users to zoom, hover, and
explore vehicle performance data.

 Pickle:

A built-in Python module for saving and loading Python

objects (like models). Used to load the pre-trained machine

learning model used for predicting maintenance. It Helps

store and retrieve data structures like dictionaries or arrays

easily.

 Requests:
A library for sending HTTP requests. Used to fetch

Lottie animations or data from external APIs. It also used if

you integrate any cloud services, like a database or weather
API.

 Streamlit-Lottie:
A Streamlit plugin that allows embedding Lottie

animations. It adds animated visuals to make the app more

engaging (e.g., alerts, loading animations) and supports

animations hosted online via JSON URLs.

https://doi.org/10.38124/ijisrt/25jul735
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul735

IJISRT25JUL735 www.ijisrt.com 1302

 Streamlit-Option-Menu:
A plugin to create stylish sidebar and horizontal

navigation menus. It allows easy navigation between

different sections of the app (like Dashboard, History, Eco

Driving, etc.) and improves user experience and app layout.

 Streamlit-Extras:
A collection of community-contributed extras for

Streamlit. It adds useful UI features like custom buttons,

sticky headers, popups, and more and helps enhance the

design without writing complex code.

C. Running the Application:

To run the application:

 Open a terminal/command prompt
 Navigate to the project directory

 Run the following command: streamlit run app.py

 The application will start and automatically open in your

default web browser at 127.0.0.1:5000.

D. Experimental Procedure:

Using the Application:

 Select Your SUV Brand:

Choose your SUV brand from the available options:

 KIA

 TATA

 Mahindra

 Maruti

 Toyota

Fig 3 Select SUV Brand

 Configure Driving Parameters:

The application provides three tabs for configuring your

driving parameters:

 Speed & Time:

 Adjust the average speed using the interactive speedometer

(10-120 km/h)

 Set your daily driving duration (0.5-12 hours)

 Specify the number of driving days per month (1-31 days)

Fig 4 Digital Speedometer

https://doi.org/10.38124/ijisrt/25jul735
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul735

IJISRT25JUL735 www.ijisrt.com 1303

Fig 5 Daily driving time and Monthly Driving Days

 Vehicle Operation:

 Select your gear usage pattern (Low 1-2, Medium 3-4, High 5-6).

 Choose your vehicle load (Light, Medium, Heavy).

Fig 6 Interactive Gear Shifter

Fig 7 Vehicle Load

https://doi.org/10.38124/ijisrt/25jul735
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul735

IJISRT25JUL735 www.ijisrt.com 1304

 Environment:

 Select the road type (City, Highway, Rural, Mixed, Off-road)
 Choose the weather conditions (Normal, Hot, Cold, Rainy, Snowy)

 Specify the traffic conditions (Light, Moderate, Heavy)

Fig 8 Road Type Selector

 Generate Predictions:
Click the "ANALYZE VEHICLE & PREDICT

MAINTENANCE NEEDS" button to generate personalized

maintenance predictions based on your inputs.

 View Results

 The application will display:

 Estimated monthly distance

 Visual representation of your driving profile

 Maintenance schedule with gauges showing remaining

kilometres until service

 Maintenance timeline showing when different components

will need service

 Complete maintenance schedule for your selected SUV

brand

IV. RESULTS

Once the application is launched, we are greeted with an

interactive and data-driven dashboard that provides a holistic

overview of their vehicle’s current status, driving habits, and

upcoming maintenance needs. Designed with clarity and user

experience in mind, the dashboard consolidates real-time data,

predictive insights, and manufacturer guidelines into a

centralized view, enabling vehicle owners to make informed

decisions and stay ahead of potential issues.

We can establish the various number of results by varying

the following parameters:

 Average speed

 Daily driving duration

 Number of driving days per month

 Gear usage patterns

 Road type (City, Highway, Rural, etc.)

 Weather conditions

 Traffic conditions

 Vehicle load

Here, we are providing the maintenance prediction for

different brands of Sports Utility Vehicle [SUV], like KIA,
Toyota etc. The standard data is being developed from the

different brand manuals and manufacturing.

Table 1 KIA SUV Maintenance Schedule with Dynamic Factors

Component Standard Interval Dynamic Factors Adjusted Interval

Engine Oil & Filter 10,000 km / 12 mo Traffic, short trips, towing, aggressive driving 5,000-7,500 km

Air Cleaner Filter 20,000 km / 2 yr Dusty/rural roads, off-roading 10,000-15,000 km

Cabin (AC) Filter 20,000 km / 2 yr Pollution, humidity, frequent AC use 10,000-15,000 km

Fuel Filter (Diesel) 40,000 km / 4 yr Poor fuel quality, rural use 30,000-35,000 km

https://doi.org/10.38124/ijisrt/25jul735
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul735

IJISRT25JUL735 www.ijisrt.com 1305

Brake Fluid 30,000 km / 3 yr Hill driving, traffic 20,000-25,000 km

Coolant 1,00,000 km / 5 yr Hot climate, towing 60,000-80,000 km

Transmission Fluid (AT) 90,000 km Towing, urban driving 60,000-70,000 km

Transmission Fluid (MT) 1,20,000 km Heavy traffic, aggressive shifting 90,000-100,000 km

Spark Plugs (Petrol) 70,000- 1,00,000 km Short trips, poor fuel 60,000-70,000 km

Tire Rotation & Align. 10,000 km Rough roads, fast driving 5,000-7,500 km

 Case 1:

Setup;

 Select of SUV Brand: KIA

 Configuration of Driving Parameters:

 Average Speed: 45km/h

 Daily Driving Time: 3.5 hours

 Monthly Driving Days: 20 days

 Vehicle Operations and Controls:

 Interactive Gear Shifter: Medium Gears (3-4)
 Vehicle Load: Medium Load

 Driving Environment:

 Road Type: City

 Weather Condition: Hot

 Traffic Condition: Moderate Traffic

V. VEHICLE MAINTENANCE ANALYSIS RESULTS

Fig 9 Monthly Distance and Engine Oil and Filter

Fig 10 Driving Profile and Air Cleaner Filter

https://doi.org/10.38124/ijisrt/25jul735
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul735

IJISRT25JUL735 www.ijisrt.com 1306

Fig 11 Cabin (AC) Filter

Fig 12: Fuel Filter (Diesel)

Fig 13 Brake Fluid

https://doi.org/10.38124/ijisrt/25jul735
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul735

IJISRT25JUL735 www.ijisrt.com 1307

Fig 14 Coolant

Fig 15 Maintenance Timeline for KIA SUV

 Troubleshooting

Common Issues:

 Missing Dependencies

 Error: ModuleNotFoundError

 Solution: Install the missing package using pip install

<package name>

 Model Loading Error

 Error: Failed to load the prediction model

 Solution: Ensure the model file exists in the correct

location and has the expected format.

 Visualization Errors

 Error: Plot visualization not rendering correctly

 Solution: Ensure Plot is properly installed and browser

supports JavaScript.

VI. CONCLUSION

The SUV Maintenance Predictor is an intelligent, web-

based platform developed to support proactive maintenance

planning for SUV owners. Built with Streamlit and powered

by machine learning, the system personalizes maintenance

recommendations by analyzing user-defined parameters such

as average driving speed, daily usage duration, gear usage,
road types, traffic and weather conditions, and vehicle load.

These inputs are processed by a trained machine learning

model that predicts the estimated monthly distance driven,

which in turn drives the dynamic generation of personalized

maintenance schedules.

Unlike traditional one-size-fits-all service reminders, this

system creates adaptive maintenance plans tailored to

individual driving patterns. It takes into account real-world

environmental and operational factors, adjusting

https://doi.org/10.38124/ijisrt/25jul735
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul735

IJISRT25JUL735 www.ijisrt.com 1308

recommended service intervals accordingly. For example,

SUVs driven under heavy loads or in harsh conditions (like

off-road terrain or extreme weather) receive maintenance
recommendations sooner than those driven in light, controlled

environments.

The core of the system includes a modular architecture:

 A prediction engine that uses historical and synthetic

driving data.

 Brand-specific service schedules stored in configurable

datasets.

 A visual dashboard featuring gauges, timelines, and

interactive widgets for intuitive understanding of
upcoming service needs.

 By visualizing the driving profile and predicted wear on

components, users are empowered to schedule services

pre-emptively—avoiding costly repairs and reducing the

likelihood of sudden breakdowns. The application supports

brands like KIA, TATA, Mahindra, Maruti, and Toyota,

and can be extended to more via simple configuration

updates.

The integration of Lottie animations, Plotly

visualizations, and session state management further enhances

user experience, making the application not only informative
but engaging and seamless across interactions. Additionally,

the flexibility in customization (e.g., adding new brands or

modifying service intervals) ensures long-term scalability of

the platform. Ultimately, the SUV Maintenance Predictor

achieves its mission: to deliver a smart, user-centric, and data-

driven approach to vehicle maintenance. By combining

predictive analytics with intuitive UX design, it improves

vehicle reliability, extends component life, and provides SUV

owners with peace of mind through actionable maintenance

intelligence.

A. Scope for Future Work

To further improve the functionality, reach, and

intelligence of the SUV Maintenance Predictor, the following

enhancements are envisioned:

 User Account Management:
Enable users to create secure accounts to save their

vehicle profiles, track historical maintenance data, and receive

personalized reminders across sessions and devices.

 Integration with OBD-II and Telematics Data:
 Incorporate direct data streaming from On-Board

Diagnostic (OBD-II) devices and telematics systems to

automate input collection and provide more accurate, real-time

analytics.

 Mobile Application Deployment:
Develop a mobile-friendly version or standalone app for

Android/iOS, allowing users to monitor and manage their

maintenance needs on the go.

 Expanded Brand and Model Support:
Broaden the database to include a wider variety of SUV

brands and specific models, enabling more granular

maintenance scheduling and user adoption.

With these upgrades, the SUV Maintenance Predictor

can transform into a comprehensive vehicle lifecycle

management system, catering to the requirements of both

individual owners and fleet operators within the expanding

landscape of connected mobility.

REFERENCES

[1]. A. Lombard, T.S. Hattingh1 and E. Davies: Improving

Vehicle Service Schedules at an Automobile Company,
Transportation Technologies 2020.

[2]. Guixiong Liu, Yi Gao, and Jianlong Xu: Study and

Simulation of Scheduling Strategies on Vehicle

Operating Safety State Monitoring System,

Automotive safety 2012.

[3]. Tan, M.H., Zheng, Y.B. and Li. W.H: A Set of

Tracking Car Scheduling Management System,

Transportation Technologies, 11, 660-668, 2021.

[4]. Kang Wang: Logistics Transportation Vehicle

Monitoring and Scheduling Based on the Internet of

Things and Cloud Computing, Advanced Computer

Science and Applications,2024.
[5]. Ravi Aravind, Chirag Vinalbhai Shah Manogna Dolu

Surabhi: Machine Learning Applications in Predictive

Maintenance for Vehicles: Case Studies, Engineering

and Computer Science, 2022.

[6]. Andreas Theissler, Judith Pérez-Velázquez, Gordon

Elger: Predictive Maintenance Enabled by Machine

Learning: Use Cases and Challenges in the Automotive

Industry, Reliability Engineering,2021.

[7]. Raman Kumar, Anuj Jain: Driving Behavior Analysis

and Classification by Vehicle OBD Data Using

Machine Learning, Computer Science, Automotive
Engineering, 2023.

[8]. Prajit Sengupta, Anant Mehta, Prashant Singh Rana:

Predictive Maintenance of Armoured Vehicles using

Machine Learning Approaches, Mechanical

Engineering, Machine Learning, 2023.

[9]. Abenezer Girma, Xuyang Yan, Abdollah Homaifar:

Driver Identification Based on Vehicle Telematics

Data using LSTM-Recurrent Neural Network,

Computer Science, Automotive Security, 2019.

[10]. Oscar Serradilla, Ekhi Zugasti, Urko Zurutuza: Deep

Learning Models for Predictive Maintenance: A

Survey, Comparison, Challenges and Prospect,
Artificial Intelligence, Industrial Engineering, 2020.

[11]. M.A. Uddin, N. Hossain, A. Ahamed, et al.: Abnormal

Driving Behavior Detection: A Machine and Deep

Learning Based Hybrid Model, Transportation

Systems, Machine Learning, 2025.

[12]. Dr. Opeoluwa Fawole: Machine Learning-based

Predictive Maintenance for Autonomous Vehicle

Components, Artificial Intelligence, Autonomous

Vehicles, 2023.

[13]. Amir Hossein Baradaran: Predictive Maintenance of

Electric Motors Using Supervised Learning Models: A
Comparative Analysis, Electrical Engineering,

Machine Learning, 2025.

https://doi.org/10.38124/ijisrt/25jul735
http://www.ijisrt.com/

	I. INTRODUCTION
	II. METHODOLOGY
	IV. RESULTS
	 Troubleshooting
	REFERENCES

