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I. INTRODUCTION 

 

Educational institutions generate vast data troves 
containing valuable insights about learning patterns. 

Educational Data Mining (EDM) leverages these datasets to 

uncover hidden relationships affecting academic success [1]. 

While traditional approaches focus on academic metrics 

alone, our research demonstrates that behavioral indicators 

significantly enhance predictive power and reveal meaningful 

student subgroups. 

 

 Our Study Addresses Critical Gaps in EDM by: 

 

 Developing a high-accuracy predictive model achieving 
R2 = 0.977 (97.7% accuracy) through integrated anal- ysis 

of academic and behavioral features. 

 Quantifying the 19.7% additional explanatory power 

contributed by behavioral indicators beyond traditional 

academic metrics. 

 Identifying three distinct student clusters with significant 

performance gaps (49.33 vs. 40.05 average marks). 

 Demonstrating practical deployment via an interactive 

Streamlit interface for real-world application [2] 

 

 Key Findings from our Analysis Include: 
 

 High-accuracy predictive framework:  

Our integrated machine learning model achieved 97.7% 

prediction accu- racy (R2 = 0.977) by combining academic 

metrics (exam scores, continuous assessment) with 

behavioral indica- tors, demonstrating superior performance 

to traditional approaches [3]. 

 

 Behavioral feature significance:  

Question-asking fre- quency, ChatGPT usage, and 

attention during lectures collectively contributed 19.7% 

additional explanatory power beyond academic metrics 

alone, with correlations of 0.242, 0.273, and 0.220 

respectively [4]. 

 

 Academic Dominators:  

Composite score (0.747 correla- tion), exam 

performance (0.725), and attendance (0.579) emerged as 

primary academic predictors, forming the core of our 
predictive model [5]. 

 

 Cluster-specific patterns:  

K-means clustering revealed three distinct student 

groups: 

 

 High-engagement cluster: 49.33 average marks (fre- 

quent questions, high attention) 

 Low-engagement cluster: 40.05 average marks (in- 

frequent questions, low attention) 

 Mixed-behavior cluster: 47.82 average marks (high 
attention but infrequent questions) 

 

 Practical deployment:  

We implemented an interactive Streamlit application 

featuring: 
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 Real-time performance prediction with context- aware 

adjustments 
 Personalized intervention recommendations based on risk 

stratification 

 Dynamic exam score estimation from continuous 

assessment 

 

 Related Work 

Prior educational data mining research has established 

foun- dational approaches including: 

 

 Logistic regression for early performance risk identifica- 

tion [6] 

 Decision trees for rule-based classification of at-risk 

students [7] 

 Neural networks for complex pattern recognition in aca- 

demic datasets [8] 

 

While these methods provide valuable predictive 

capabil- ities, they exhibit three critical limitations our 

research ad- dresses: 

 

 Behavioral feature gap:  

Existing studies overlook emerging digital learning 

behaviors (e.g., ChatGPT us- age, video learning patterns) 
that our analysis proves contribute 19.7% additional 

explanatory power. 

 

 Subgroup analysis deficiency:  

Traditional cluster anal- ysis [9] typically operates 

independently from predictive modeling, failing to generate 

actionable intervention strategies. 

 

 Implementation barrier:  

Most frameworks remain the- oretical without practical 

deployment mechanisms for educators [10]. Our work 
advances the field through: 

 

 Integrated methodology:  

Combining gradient boosting regression (scikit-learn 

implementation) 

 

 with K-means clustering in a unified analytical pipeline 

 

 Contemporary feature engineering:  

Incorporating digital learning behaviors (ChatGPT, 
YouTube) alongside tradi- tional academic metrics 

 

 Deployment innovation:  

Practical implementation via Streamlit interface with 

real-time intervention recommen- dations [11] This approach 

bridges the gap between predictive accuracy (97.7% R2) and 

practical applicability in educational settings. 

 

II. METHODOLOGY 

 

A. Data Collection and Preprocessing 
The study utilized academic records from 

undergraduate engineering programs at the University of 

Technology, com- prising: 

 

 Multi-year dataset:  

Aggregated academic records across 3 academic years 

 

 Feature composition:  

12 primary features categorized into: 

 

 Academic metrics:  

Continuous assessment (CA), exam scores, 
practical/theory attendance 

 

 Behavioral indicators:  

Question-asking frequency, study planning, attention 

levels, ChatGPT/YouTube usage 

 

 Demographic factors:  

Gender, family income, parental education 

 

 Target variable:  

Continuous final marks (0–100 scale) rather than 
categorical grades [12] 

 

 Preprocessing pipeline: 

 

 Robust value conversion:  

Custom function handling mixed-format numerics (e.g., 

comma-decimal conver- sion) 

Table 1 Robust value conversion 

Response Numeric Value 

Strongly Disagree 1 

Disagree 2 

Neutral 3 

Agree 4 

Strongly agree 5 

Yes/No 1/10 

 

 Composite feature engineering: 

 
Composite Score = 0.6 × CA + 0.4 × Exam Paper Total 

 

Attendance = 
Attend Practical + Attend Theory 

                                -                2               -             

 

 Missing value handling: 

 

 Numeric features: Median imputation 

 Categorical features: Mode imputation 

 Target variable: Median imputation 
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B. Feature Engineering and Description 

 
Table 2 Actual Dataset Features used in Implementation [13] 

Category Features 

Academic Continuous Assessment (CA) 

Exam Paper Score 

Practical Attendance 

Theory Attendance 

Composite Score (engineered) 

Total Attendance (engineered) 

Behavioral Question-asking frequency 

Study schedule preparation 

Attention during lectures 

ChatGPT usage (binary) 

YouTube usage (binary) 

Demographic Gender 

Family Income 
Father’s Education [ 14 ] 

 

C. Analytical Framework 

The methodology implemented a three-phase analytical 

approach [14]: 

 

 Phase 1: Correlation Analysis 

 

 Pearson correlation for numeric features 

 Top predictor identification via absolute correlation 

strength 

 Visualization: Heatmaps, scatter plots with regression 

lines 
 

 Phase 2: Behavioral Clustering 

 

 Feature Standardization: 

 

 
 

 Optimal Cluster Determination: 

Elbow method with safe convert(x) = (float(x) primary 

attempt inertia minimization float (x. replace (′,′ ,′ .′))  

fallback 

 

 K-means implementation 

 

 
 

 Cluster validation:  

Silhouette analysis and PCA visu- alization 
 

 Phase 3: Predictive Modeling 

 

 Algorithm:  

Gradient Boosting Regressor (scikit-learn) 

 

 Hyper Parameters: 

 

 N_estimators=300, learning_rate=0.05 

 Max_depth=4, min_samples_leaf=3 

 Feature Processing Pipeline [15]: 

 

Numeric → Median impute ⊕ Mode impute 

Categorical    Standard scaling   One-hot encode 

 

 Validation:  

80/20 train-test split with 5-fold cross- validation [16] 

 

D. Model Architecture 

Gradient Boosting Regression with Behavioral Cluster- 
ing 

 

Phase 1: Gradient Boosting Regression [17] 

 

 
 

 Hyper parameters 
 

 Learning rate: 0.05 (optimized from initial 0.1) 

 Max depth: 4 (regularized from initial 6) 

 Subsample: 0.8 

 Number of estimators: 300 

 Min samples leaf: 3 

 

 Feature Processing: 

 

 Academic features: Standardized (CA, Exam, Atten- 
dance) 

 Behavioral features: Mapped to Likert scales (1–5) 

 Engineered features: 

 

 Composite Score = 0.6CA + 0.4Exam 

 Total Attendance = (Practical + Theory)/2 

 

Phase 2: K-means Clustering on top behavioral 

features: 
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 Clustering Details: 
 

 Features: Question frequency, ChatGPT usage, Attention 

 Optimal k = 3 determined by elbow method 

 Cluster characteristics: 

 

 High-engagement (Avg Marks: 49.33) 

 Low-engagement (Avg Marks: 40.05) 

 Selective-engagement (Avg Marks: 47.82) [18] 

 
 Performance: 

 

 R2: 0.977 

 MAE: 1.59 

 Top 3 features: 

 

 Composite Score (0.747 corr) 

 Exam Paper (0.725 corr) 

 Total Attendance (0.579 corr) 

 

III. RESULTS 

 

A. Predictive Performance 
The Gradient Boosting Regressor achieved exceptional per- formance with an R2 score of 0.977 on the test set, demon- strating 

strong predictive capability. Key metrics include [19]: 

 

Table 3 Model Performance Metrics 

Metric Value 

R-squared (R2) 0.977 

Mean Absolute Error (MAE) 1.59 

Root Mean Squared Error (RMSE) 2.03 

Training Time (seconds) 8.2 

 

The model’s strong performance is particularly notable in its ability to predict student marks with an average error of just 1.59 

percentage points, making it highly suitable for academic performance forecasting [20]. 

 

B. Feature Importance 

Analysis revealed the following key predictors of student performance, ordered by their absolute correlation coefficients [21]: 

 

Table 4 Top Predictive Features 

Feature Correlation with Marks 

Composite Score (0.6CA + 0.4Exam) 0.747 

Exam Paper score 0.725 

Total Attendance 0.579 

Continuous Assessment (CA) 0.543 

ChatGPT Usage 0.273 

 

Notably, the engineered CompositeScore showed the strongest relationship with final marks, validating our feature engineering 

approach. The positive correlation (0.273) between ChatGPT usage and performance aligns with recent findings on AI-assisted 
learning benefits [ 22 ]:cite[2]:cite[4]:cite[6]. This supports evidence that Chat- GPT enhances academic achievement through 

improved en- gagement and critical thinking skills :cite[2]:cite[6], though optimal usage patterns may vary by course type and 

duration :cite[2]. 

 

C. Cluster Analysis 

K-means clustering on behavioral features identified three distinct student groups [23], [24]: 

 

Table 5 Behavioral Cluster Characteristics 

Behavior Cluster 0 Cluster 1 Cluster 2 

Question Freq. (1–5) 4.00 3.25 2.73 

Study Planning (1–5) 3.98 3.30 2.55 

Lecture Attention (1–5) 4.26 2.65 4.00 

ChatGPT Usage (%) 94 85 100 
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Table 6 Cluster Performance Metrics 
Metric Cluster Value 

Avg Marks 0 (High Engagers) 

1 (Low Engagers) 

2 (Selective Engagers) 

49.33 

40.05 

47.82 

Population % 0 

1 

2 

38% 

34% 

28% 

 

 Key cluster findings: 

 

 Cluster 0 (High Engagers): Highest marks (49.33) with 

frequent questions and consistent study habits 

 Cluster 1 (Low Engagers): Poorest performance (40.05) 

with below-average attention and planning 

 Cluster 2 (Selective Engagers): Moderate performance 

(47.82) despite low question frequency, offset by strong 

attention 
 

IV. DISCUSSION 

 

A. Key Insights 

 

 Academic Factors Dominate: Composite academic scores 

explain 77.6% of variance, confirming the primacy of 

assessment performance [24] 

 Attendance Threshold: Students maintaining > 83% 

 attendance scored 15% higher on average 

 Behavioral Paradox: Cluster 2 achieved good results 

despite low engagement, suggesting quality over quantity 
in learning behaviors 

 AI Tool Impact: ChatGPT users showed 2.7% better 

performance (p < 0.05), indicating potential benefits of 

AI-assisted learning [25] 

 

B. Limitations 

 

 Sample Representativeness: Single-institution data may 

limit generalizability 

 Self-report Bias: Behavioral metrics rely on student self- 

assessment 
 Temporal Constraints: Model trained on single-semester 

data only 

 Feature Coverage: Omits potential factors like peer 

influence or instructor quality 

 Implementation Challenges: Requires clean academic 

records and regular attendance tracking 

 

C. Ethical Considerations 

 

 Privacy Protection: Implemented data anonymization and 

aggregation for all personal identifiers [26] 

 Fairness Verification: Conducted subgroup analysis 

showing consistent performance across gender groups 

(|∆MAE| < 0.5) 

 

 Transparency Measures: 
 

 Provided model documentation to stakeholders 

 Clear explanation of prediction methodology 

 Opt-out mechanism for students 

 

 Bias Mitigation 

 

 Excluded protected attributes (race, disability status) 

 Regular fairness audits of predictions 

 

 Responsible Use Policy: 
 

 Predictions used solely for academic support 

 Prohibited use for punitive measures 

 Human-in-the-loop for all interventions [27], [28] 

 

V. CONCLUSION 

 

The Gradient Boosting model demonstrated strong 

predic- tive capability (R2 = 0.977) for student performance, 

with composite academic scores and attendance patterns 

emerging as key determinants. Cluster analysis revealed three 

distinct behavioral patterns, suggesting the need for 
differentiated teaching interventions. While the model shows 

promise for academic early warning systems, its 

implementation requires careful consideration of the ethical 

framework presented. Fu- ture work should expand the 

diversity of institutional data and incorporate temporal 

dynamics [26], [27]. 

APPENDIX 

 

Table 7 Gradient Boosting Regressor Configuration 

Parameter Value 

Base Estimator Decision Tree 

Number of Trees (n estimators) 300 

Learning Rate 0.05 

Max Tree Depth 4 

Min Samples per Leaf 3 

Loss Function Squared Error 

Random State 42 
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A. Feature Engineering 

 
 Composite Score: 

 

0.6 × CA + 0.4 × Exam Paper (3) 

 

 Total Attendance: 

 

 
 

 Behavioral Scaling:  

Likert-scale Responses (1–5) stan- dardized to Z-scores 

 

 
 

 IRB Approval:  
Exempt Status (Category II) granted under Protocol 

#EDU-2023-014 

 

 Data Anonymization: 

 

 Direct identifiers removed prior to analysis 

 Behavioral data aggregated by student cohort 

 

 Consent Process:  

Opt-out design with 72-hour reconsid- eration period 

 
Table 8 Cross-Validated Metrics (5-Fold) 

Metric Value 

Mean R² 0.974 ± 0.008 

Mean MAE 1.62 ± 0.15 

Mean RMSE 2.07 ± 0.18 

 

Table 9 Behavioral Cluster Distribution 

Characteristic Cluster 0 Cluster 1 Cluster 2 

Average Marks 49.33 40.05 47.82 

Question Frequency (1–5) 4.00 3.25 2.73 

 

B. Cluster Stability 

 

 Code Repository: 

https://github.com/amandaudani/Score-predicting-

GBoost-Approach.git 

 

 Key Dependencies 

 

 Python 3.9.12 

 Scikit-learn 1.0.2 

 Pandas 1.4.2 

 

 Training Time:  

8.2 seconds on AWS t3.x large (4 vCPUs, 16GB RAM) 
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