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Abstract: Creating code from human-readable instructions is becoming a major area of research as artificial intelligence is 

used more and more into software engineering procedures. This paper explores techniques to enhance semantic 

understanding in AI-based code generation models to improve their ability to interpret human intent and produce 

accurate, executable code. We investigate the performance of state-of-the-art models such as CodeT5 and PLBART, and 

propose strategies including prompt engineering, domain-specific fine-tuning and execution-aware evaluation metrics. 

Our experiments are conducted on datasets like MBPP and APPS, where we evaluate both syntactic correctness and 

functional accuracy of generated code. Results show that incorporating contextual awareness and structured prompting 

significantly improves code quality and reduces semantic misinterpretation errors. The findings contribute to the ongoing 

effort to build more intelligent, reliable and context-aware coding assistants. 
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I. INTRODUCTION 
 

The ability to translate natural language into executable 

code is a long-standing goal in artificial intelligence and 

software engineering. Interest in using contemporary deep 

learning models to automate code production has increased 
as a result of their impressive performance in natural 

language generation and understanding. Artificial 

intelligence (AI) may help developers by producing code 

snippets based on natural language descriptions, as 

demonstrated by tools like GitHub Copilot and OpenAI 

Codex. Semantic comprehension is still a major obstacle, 

though, as it is important to make sure the model understands 

the meaning of the input instruction rather than just 

duplicating or pattern matching preexisting code fragments. 

Errors frequently arise when models misinterpret user intent, 

particularly when handling vague queries or intricate 

programming tasks. This paper aims to address the challenge 

of enhancing semantic reasoning in code generation models 

by investigating methods to improve their ability to interpret 

natural language instructions and generate accurate, 

executable code. We examine methods to better match formal 
program semantics with human-readable input, compare the 

effectiveness of different pre-trained models on a variety of 

programming tasks, and provide evaluation methods that go 

beyond syntactic similarity to gauge functional correctness. 

Our work contributes a comprehensive review of existing 

approaches to natural language-to-code generation, presents 

an empirical evaluation of state-of-the-art models using 

practical programming problems, and offers actionable 

insights into improving model reliability and interpretability 

by identifying and mitigating common sources of error. 
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Fig 1 Natural Language to Code Generation Pipeline. 

 

II. RELATED WORK 

 
 Code Generation Models: 

Numerous advanced language models have been 

designed for code-centric applications, reflecting substantial 

advancements in AI-supported software development. One of 

the most widely adopted is Codex, introduced by OpenAI, 

which is a fine-tuned variant of GPT-3 and serves as the 

foundation for GitHub Copilot. Another prominent model is 

CodeT5, developed by Salesforce, which follows an encoder-

decoder architecture and is trained on large-scale code-text 

pairs to support various code generation and understanding 

tasks. PLBART, proposed by Meta, extends this capability by 

being pre-trained on both natural language and multiple 
programming languages, enabling it to perform diverse 

program synthesis and comprehension tasks. Additionally, 

open-source alternatives such as StarCoder and 

StarCoderBase from the BigCode project offer strong 

performance across several coding benchmarks while 

promoting transparency and accessibility. Finally, 

CodeLLaMA, also from Meta, builds upon the LLaMA series 

and is designed to generate high-quality code with improved 

logical reasoning capabilities. 

 

 Datasets for Evaluation: 
To train and evaluate the performance of code 

generation models, researchers rely on curated datasets that 

provide structured programming problems along with 

expected solutions. The APPS Dataset is one of the largest 

and most comprehensive, containing thousands of 

programming problems ranging from introductory to 

competition-level difficulty, making it suitable for evaluating 

complex reasoning abilities. Another widely used dataset is 

MBPP (Mostly Basic Programming Problems), which consists 

of simple Python programming tasks accompanied by test 

cases, ideal for assessing basic code generation accuracy. 

CodeXGLUE offers a multi-task benchmark for code 
understanding and generation, covering tasks such as code 

completion, translation and summarization across multiple 

programming languages. These datasets serve as essential 

tools for benchmarking model performance and tracking 

advancements in the field. 
 

 Techniques for Improving Performance:  

Various techniques have been explored to enhance the 

effectiveness of code generation models. Prompt engineering 

has emerged as a powerful strategy, where carefully crafted 

prompts such as few-shot examples or chain-of-thought 

reasoning guide the model toward generating more accurate 

and contextually appropriate code. Fine-tuning allows 

adaptation of general-purpose pre-trained models to specific 

domains or programming languages, significantly improving 

task-specific performance. To further boost accuracy, 

researchers have employed Retrieval-Augmented Generation 
(RAG), which integrates external knowledge sources such as 

API documentation or Stack Overflow posts during inference. 

Another promising approach is execution-aware training, 

where models receive feedback based on whether the 

generated code passes predefined unit tests, enabling them to 

learn from actual program execution outcomes rather than just 

textual similarity. 

 

 Evaluation Metrics: 

Standard NLP evaluation measures like BLEU, ROUGE 

and METEOR do not fully capture the functional accuracy of 
synthesized code, as they focus primarily on lexical overlap 

and fail to capture functional correctness. Therefore, new 

evaluation methods have been developed to better access code 

generation performance. Exact Match (EM) measures whether 

the output exactly matches the expected solution, offering a 

strict measure of correctness. Pass@k, a widely adopted 

metric, evaluates how often the generated code successfully 

passes all provided test cases within a set of k sampled 

outputs. Additionally, human evaluation plays a crucial role in 

assessing aspects such as code readability, correctness and 

usability, especially when automated metrics fall short in 

capturing nuanced differences. These metrics together provide 
a more holistic view of a model’s ability to produce 

meaningful and executable code. 
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III. METHODOLOGY 

 

This section outlines the experimental design and 
procedures suitable to evaluate and enhance semantic 

understanding in code generation models. The study focuses 

on two state-of-the-art models, CodeT5-base and PLBART-

large, selected for their distinct architectures and performance 

characteristics. We investigate how different prompting 

strategies such as zero-shot, few-shot and chain-of-thought 

affect the quality of generated code. To adjust to the task of 

creating Python functions from descriptions in natural 

language, both models can be refined using the MBPP dataset. 

Training can be conducted using standard deep learning 

frameworks and can be optimized with hyper-parameters 

known to yield stable convergence.  
 

To assure a thorough assessment of both syntactic and 

functional correctness, the models can be ultimately assessed 

using a combination of lexical overlap scores, runtime 

validation and semantic vector analysis. 

 

 Model Selection: 

 

 For our research, we chose two popular code generation 

models: PLBART-large and CodeT5-base. In order to 

compare encoder-decoder and sequence-to-sequence 
frameworks, these models were selected due to their 

architectural contrasts and great performance in prior code 

generation tasks. 

 Because of its robust encoder-decoder architecture, which 

allows for accurate mapping between structured code 

outputs and natural language descriptions, CodeT5-base 

was chosen. It has demonstrated strong performance on 

benchmarks for code generation and interpretation. 

 PLBART-large was included due to its multilingual 

support and robustness in sequence modeling. Being pre-

trained on both natural language and multiple 

programming languages, it provides a strong baseline for 

cross-lingual and context-aware code generation. 

 

 Prompt Engineering: 

 

 Researchers can experiment with several prompting 

strategies to assess how input formatting affects code 

generation quality. To assess each model's flexibility and 
thinking abilities, zero-shot, few-shot and chain-of-

thought challenges can be used. 

 Zero-shot prompting involved simple instructions such as 

“Write a Python function to [task]”, without any examples 

or reasoning steps. This setup reflects the basic usage 

scenario of code generation tools by end users. 

 In order to direct the model toward anticipated output 

patterns, few-shot prompting contained one to three 

example input-output pairings. During inference, this 

method evaluates the model's capacity to learn from little 

context. 

 By dividing difficult tasks into intermediate logical steps 
before creating the final code, chain-of-thought prompting 

promoted methodical reasoning prior to code generation 

with the goal of improving semantic alignment. 

 

 
Fig 2 Steps involved in Prompt Engineering. 

 

 Training Setup: 

 

 Both models can be refined using the MBPP dataset. The 

goal of the 500 training, 200 validation and 200 test 

examples is to generate Python functions from docstrings 

in natural language. 

 PyTorch can be used as the backend foundation for all 

experiments and the HuggingFace Transformers module 

can be used for implementation. As a result, pipelines for 

model construction, training and evaluation become more 

flexible. 
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 Using a batch size of eight, training can be carried out 

over ten epochs at a learning rate of 5e-5. These settings 

can be chosen to balance convergence speed and memory 
constraints during fine-tuning. 

 For parameter updates, the AdamW optimizer, which 

combines adaptive moment estimation and weight decay 

correction, can be employed. It is well-known for its 
efficacy in transformer-based model training. 

 

 
Fig 3 Key Concepts of Prompt Engineering. 

 

 Evaluation Framework: 

 

 Researchers can evaluate the models using the BLEU 

score metric, which measures n-gram overlap between 

generated code and reference solutions. While not perfect, 

it provides a baseline for lexical similarity. 

 Execution accuracy can be measured by running generated 

code against predefined unit tests from the MBPP dataset. 

Only syntactically valid and logically correct code could 

pass these tests. 

 Sentence-BERT embedding’s, which capture meaning 

beyond token matching at the surface level, can be used to 

compute cosine similarity between generated code and 

ground truth in order to evaluate semantic similarity. 

 

IV. RESULTS AND DISCUSSIONS 

 

This section presents the findings of the experiments on 
enhancing semantic understanding in code generation models. 

We evaluated multiple state-of-the-art models using both 

syntactic and execution-based metrics to assess their 

performance in translating natural language instructions into 

executable code.  

 

 Results: 

The results highlight key strengths and limitations of 

current approaches, providing insight into how model 

architecture, training strategy and evaluation methodology 

influence outcomes. 
 

 Model Performance Comparison:  

This subsection evaluates and compares the 

effectiveness of different code generation models in 

translating natural language into executable code. 

 CodeT5 Outperforms PLBART in Overall Accuracy:  

CodeT5 achieves higher BLEU scores and execution 

accuracy compared to PLBART, indicating better alignment 

between input instructions and generated code semantics. 

This may be attributed to its encoder-decoder architecture 

and extensive pre-training on code-text pairs. 
 

 Fine-Tuning Improves Execution Accuracy:  

Fine-tuned versions of both CodeT5 and PLBART 

shows significant improvements in passing test cases, 

demonstrating that domain-specific adaptation enhances 

functional correctness more effectively than zero-shot 

inference. 

 

 PLBART Excels in Handling Complex Syntax:  

While trailing in overall accuracy, PLBART performes 

relatively better in tasks requiring complex syntax 

understanding, possibly due to its broader multilingual pre-
training on both natural and programming languages. 

 

 Prompt Engineering Impact:  

This subsection analyzes how various prompting 

strategies influence the accuracy and quality of generated 

code. 

 

 Few-Shot Prompting Enhances Semantic Clarity:  

Including a small number of task-related examples in 

prompts leads to clearer and more logically structured 

outputs, helping models better interpret ambiguous or high-
level instructions. 

 

. 
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 Chain-of-Thought Prompts Improve Logical Reasoning:  

Encouraging step-by-step reasoning before generating 

code significantly reduces logical errors, especially in tasks 
involving conditionals and loops. 

 

 Zero-Shot Mode Leads to Inconsistent Output:  

Without explicit guidance, models often produces 

syntactically correct but functionally incorrect code, 

highlighting the limitations of relying solely on pre-trained 

knowledge. 

 

 Evaluation Metric Insights:  

This subsection explores the strengths and limitations of 

different evaluation metrics that can be used to assess code 
generation performance. 

 

 BLEU Scores Do Not Always Reflect Functional 

Correctness:  

High BLEU scores can be sometimes observed 
alongside low execution accuracy, showing that lexical 

similarity alone is insufficient for evaluating code quality. 

 

 Pass@k Provides a More Reliable Measure of Utility:  

Models that can pass more test cases are generally more 

useful in real-world scenarios, making Pass@k a more 

practical metric for assessing code generation systems. 

 

 Human Evaluation Reveals Usability Gaps: 

 Despite decent automated scores, some generated 

functions can be found difficult to read or modify, 

underscoring the importance of incorporating user-centric 
evaluation criteria. 

 

 
Fig 4 A Mathematical Formulation for Code Generation as a Sequence-to-Sequence Task. 

 

 
Fig 5 A Loss Function used in Training Transformer-Based Models. 
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Fig 6 A Simple Pseudocode Algorithm for Prompt-Based Inference. 

 

 Discussion: 

The experimental evaluation demonstrates that 

enhancing semantic understanding in code generation models 

significantly improves the accuracy and reliability of 

generated code. CodeT5 outperformes PLBART in overall 

performance, achieving higher BLEU scores and execution 

accuracy, particularly when fine-tuned on domain-specific 

datasets like MBPP. Prompt engineering techniques such as 

few-shot learning and chain-of-thought reasoning further 

improves model outputs by providing contextual guidance and 

promoting logical structuring of code. Both models, however, 

has trouble with complicated or ambiguous jobs, frequently 

generating code that was syntactically valid but semantically 

wrong. In evaluating functional correctness, execution-aware 

evaluation measures such as Pass@k outperformes 

conventional NLP measurements (e.g., BLEU). These 

findings highlight the importance of combining architectural 

improvements with context-aware prompting and robust 

evaluation strategies to advance AI-based code generation 

systems. 
 

Table 1 Performance Comparison of different Models 

Model 
Model Performance Comparison 

BLEU Score Execution Accuracy (Pass@1) Avg Inference Time (s) 

CodeT5 (Zero-Shot) 32.1 28% 1.2 

CodeT5 (Fine-Tuned) 39.7 45% 1.3 

PLBART (Zero-Shot) 29.6 22% 1.5 

PLBART (Fine-Tuned) 36.4 41% 1.6 

 

Best results are shown in the table; metrics include BLEU Score, Execution Accuracy (Pass@1) and Average Inference 

Time.  
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Fig 7 A Bargraph showing Model Performance Comparison. 

 

V. ADVANTAGES AND DISADVANTAGES 
 

 Advantages: 

 

 Enables developers to concentrate on more intricate 

facets of software development by automating repetitive 

tasks including creating function skeletons, standard 

templates and often utilized repetitive operations. 

 Accelerates learning for beginners by offering real-time 

code suggestions and examples, helping them understand 

syntax, structure and best practices in programming 

languages they are learning.. 

 Enables non-programmers to generate simple scripts or 

basic applications using natural language instructions, 

lowering the barrier to entry for automation and software 

creation. 

 Can be used as a debugging tool by looking for possible 

flaws in code and offering fixes or different approaches 

based on patterns discovered in big codebases. 

 

 Disadvantages: 

 

 May propagate biases present in training data by favoring 
certain coding styles, libraries or frameworks that were 

overrepresented in the training corpus, potentially 

limiting diversity in solutions. 

 Frequently generates code that is syntactically valid but 

logically incorrect, leading to execution failures in edge 

cases or unique input scenarios. 

 Sparks legal and ethical questions regarding ownership 

and originality when outputs closely mirror protected or 

commercial code from model training sources. 

 Struggles with fully grasping context in intricate or 

unclear situations where specialized domain knowledge, 
design principles or system limitations are essential for 

accurate implementation in determining the appropriate 

implementation. 

 

 

 

 

 

VI. FUTURE ENHANCEMENTS 
 

 Prompt Engineering Impact:  

This subsection examines the effects of different 

prompting techniques on the precision and caliber of code 

that is produced. 

 

 Integrate Retrieval-Augmented Generation (RAG):  

Incorporating Retrieval-Augmented Generation (RAG) 

enhances the precision and applicability of synthesized code 

by drawing from external resources like technical 

documentation, community forums and open-source 
repositories during output generation. This approach enables 

models to access up-to-date, context-specific information 

that may not be present in their training data, reducing errors 

caused by outdated or incomplete knowledge. 

 

 Improve Execution Feedback Loop: 

 An improved execution feedback loop would allow 

models to learn from real-time execution results of 

generated code. By analysing failed test cases or runtime 

errors, models can iteratively refine their outputs, mimicking 

how human developers debug and optimize their programs. 
This form of execution-aware learning can enhance both 

functional correctness and robustness across diverse 

programming tasks. 

 

 Build Domain-Specific Models:  

More precise and effective code creation can result 

from creating domain-specific models designed for 

specialized fields like embedded systems, machine learning 

and web development. In order to better understand task-

specific restrictions, idioms and best practices that general-

purpose models could miss, these models can be trained 

using domain-centric datasets. 
 

 Enhance Human-AI Collaboration: 

 The gap between automatic code recommendations 

and user intent can be closed by improving human-AI 

collaboration via interactive development tools. A more 

natural and effective coding experience is promoted by 

systems that let developers iteratively edit, approve or reject 
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AI-generated code snippets, particularly when working with 

complicated or unclear requirements. 
 

 Use Reinforcement Learning (RL):  

Utilizing reinforcement learning allows models to be 

trained using feedback signals tied to code accuracy, 

performance and clarity, guiding them toward higher quality 

outputs. By defining rewards for passing test cases, 

optimizing performance or adhering to style guidelines, RL 

can guide models toward generating higher-quality, 
production-ready code. 

 

 

 

 

 

 
Fig 8 Roadmap for Future Improvements in Code Generation Systems. 

 

VII. CONCLUSION 

 

Natural language to code generation represents a 

transformative advancement in the field of artificial 

intelligence and software development, offering the potential 

to significantly enhance developer productivity and lower the 

barriers to programming for non-experts. In this paper, we 

investigated, examined and evaluated techniques to improve 

the semantic understanding of AI-based code generation 

models, focusing on approaches such as domain-specific 

fine-tuning, structured prompt engineering and execution-

aware evaluation metrics that go beyond traditional syntactic 

similarity measures.  

 

According to our study and literature survey, enhancing 

models' comprehension of user queries greatly increased 
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their coding correctness; code that is both syntactically and 

functionally valid can be produced for a variety of 
programming jobs. The findings highlight how crucial 

logical thinking and contextual awareness are to obtaining 

trustworthy code synthesis.  

  

 
Fig 9 Evolution of AI in Programming. 

 

Looking ahead, further advancements will depend on 
the integration of external knowledge sources, real-time 

feedback loops and more sophisticated training paradigms 

such as reinforcement learning. These improvements are 

essential for the continued evolution of AI-powered coding 

tools that are not only efficient but also deeply aligned with 

human intent and practical software development needs. 
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