
Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSNNo:-2456-2165 https://doi.org/10.38124/ijisrt/25jul573

IJISRT25JUL573 www.ijisrt.com 825

Natural Language to Code: Improving Semantic

Reasoning in Code Generation Models

(An Empirical Analysis of Fine-Tuning Strategies and Contextual
Understanding)

Pawanraj S P1; Udayaprasad P K2; Amulya P3; Sanjana V Hunashikatti4

1Assistant Professor: Department of Computer Science & Engineering, East West Institute of Technology,

Bengaluru, Karnataka, India
2Assistant Professor: Department of Computer Science & Business Systems, BMS Institute of Technology

& Management, Bengaluru, Karnataka, India
3,4Assistant Professor: Department of Computer Science & Engineering, BMS Institute of Technology &

Management, Bengaluru, Karnataka, India

Publication Date: 2025/07/16

Abstract: Creating code from human-readable instructions is becoming a major area of research as artificial intelligence is

used more and more into software engineering procedures. This paper explores techniques to enhance semantic

understanding in AI-based code generation models to improve their ability to interpret human intent and produce

accurate, executable code. We investigate the performance of state-of-the-art models such as CodeT5 and PLBART, and

propose strategies including prompt engineering, domain-specific fine-tuning and execution-aware evaluation metrics.

Our experiments are conducted on datasets like MBPP and APPS, where we evaluate both syntactic correctness and

functional accuracy of generated code. Results show that incorporating contextual awareness and structured prompting

significantly improves code quality and reduces semantic misinterpretation errors. The findings contribute to the ongoing

effort to build more intelligent, reliable and context-aware coding assistants.

Keywords: Code Generation; Natural Language Processing; Program Synthesis; Semantic Understanding; AI For Programming;

Transformer Models; Large Language Models (LLMS) ; Prompt Engineering; Fine-Tuning; Execution-Aware Evaluation;
Human-AI Collaboration; AI-Assisted Programming; Contextual Code Generation.

How to Cite: Pawanraj S P; Udayaprasad P K; Amulya P; Sanjana V Hunashikatti (2025), Natural Language to Code: Improving

Semantic Reasoning in Code Generation Models. International Journal of Innovative

Science and Research Technology, 10(7), 825-834. https://doi.org/10.38124/ijisrt/25jul573

I. INTRODUCTION

The ability to translate natural language into executable

code is a long-standing goal in artificial intelligence and

software engineering. Interest in using contemporary deep

learning models to automate code production has increased
as a result of their impressive performance in natural

language generation and understanding. Artificial

intelligence (AI) may help developers by producing code

snippets based on natural language descriptions, as

demonstrated by tools like GitHub Copilot and OpenAI

Codex. Semantic comprehension is still a major obstacle,

though, as it is important to make sure the model understands

the meaning of the input instruction rather than just

duplicating or pattern matching preexisting code fragments.

Errors frequently arise when models misinterpret user intent,

particularly when handling vague queries or intricate

programming tasks. This paper aims to address the challenge

of enhancing semantic reasoning in code generation models

by investigating methods to improve their ability to interpret

natural language instructions and generate accurate,

executable code. We examine methods to better match formal
program semantics with human-readable input, compare the

effectiveness of different pre-trained models on a variety of

programming tasks, and provide evaluation methods that go

beyond syntactic similarity to gauge functional correctness.

Our work contributes a comprehensive review of existing

approaches to natural language-to-code generation, presents

an empirical evaluation of state-of-the-art models using

practical programming problems, and offers actionable

insights into improving model reliability and interpretability

by identifying and mitigating common sources of error.

https://doi.org/10.38124/ijisrt/25jul573
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25jul573

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSNNo:-2456-2165 https://doi.org/10.38124/ijisrt/25jul573

IJISRT25JUL573 www.ijisrt.com 826

Fig 1 Natural Language to Code Generation Pipeline.

II. RELATED WORK

 Code Generation Models:

Numerous advanced language models have been

designed for code-centric applications, reflecting substantial

advancements in AI-supported software development. One of

the most widely adopted is Codex, introduced by OpenAI,

which is a fine-tuned variant of GPT-3 and serves as the

foundation for GitHub Copilot. Another prominent model is

CodeT5, developed by Salesforce, which follows an encoder-

decoder architecture and is trained on large-scale code-text

pairs to support various code generation and understanding

tasks. PLBART, proposed by Meta, extends this capability by

being pre-trained on both natural language and multiple
programming languages, enabling it to perform diverse

program synthesis and comprehension tasks. Additionally,

open-source alternatives such as StarCoder and

StarCoderBase from the BigCode project offer strong

performance across several coding benchmarks while

promoting transparency and accessibility. Finally,

CodeLLaMA, also from Meta, builds upon the LLaMA series

and is designed to generate high-quality code with improved

logical reasoning capabilities.

 Datasets for Evaluation:
To train and evaluate the performance of code

generation models, researchers rely on curated datasets that

provide structured programming problems along with

expected solutions. The APPS Dataset is one of the largest

and most comprehensive, containing thousands of

programming problems ranging from introductory to

competition-level difficulty, making it suitable for evaluating

complex reasoning abilities. Another widely used dataset is

MBPP (Mostly Basic Programming Problems), which consists

of simple Python programming tasks accompanied by test

cases, ideal for assessing basic code generation accuracy.

CodeXGLUE offers a multi-task benchmark for code
understanding and generation, covering tasks such as code

completion, translation and summarization across multiple

programming languages. These datasets serve as essential

tools for benchmarking model performance and tracking

advancements in the field.

 Techniques for Improving Performance:

Various techniques have been explored to enhance the

effectiveness of code generation models. Prompt engineering

has emerged as a powerful strategy, where carefully crafted

prompts such as few-shot examples or chain-of-thought

reasoning guide the model toward generating more accurate

and contextually appropriate code. Fine-tuning allows

adaptation of general-purpose pre-trained models to specific

domains or programming languages, significantly improving

task-specific performance. To further boost accuracy,

researchers have employed Retrieval-Augmented Generation
(RAG), which integrates external knowledge sources such as

API documentation or Stack Overflow posts during inference.

Another promising approach is execution-aware training,

where models receive feedback based on whether the

generated code passes predefined unit tests, enabling them to

learn from actual program execution outcomes rather than just

textual similarity.

 Evaluation Metrics:

Standard NLP evaluation measures like BLEU, ROUGE

and METEOR do not fully capture the functional accuracy of
synthesized code, as they focus primarily on lexical overlap

and fail to capture functional correctness. Therefore, new

evaluation methods have been developed to better access code

generation performance. Exact Match (EM) measures whether

the output exactly matches the expected solution, offering a

strict measure of correctness. Pass@k, a widely adopted

metric, evaluates how often the generated code successfully

passes all provided test cases within a set of k sampled

outputs. Additionally, human evaluation plays a crucial role in

assessing aspects such as code readability, correctness and

usability, especially when automated metrics fall short in

capturing nuanced differences. These metrics together provide
a more holistic view of a model’s ability to produce

meaningful and executable code.

https://doi.org/10.38124/ijisrt/25jul573
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSNNo:-2456-2165 https://doi.org/10.38124/ijisrt/25jul573

IJISRT25JUL573 www.ijisrt.com 827

III. METHODOLOGY

This section outlines the experimental design and
procedures suitable to evaluate and enhance semantic

understanding in code generation models. The study focuses

on two state-of-the-art models, CodeT5-base and PLBART-

large, selected for their distinct architectures and performance

characteristics. We investigate how different prompting

strategies such as zero-shot, few-shot and chain-of-thought

affect the quality of generated code. To adjust to the task of

creating Python functions from descriptions in natural

language, both models can be refined using the MBPP dataset.

Training can be conducted using standard deep learning

frameworks and can be optimized with hyper-parameters

known to yield stable convergence.

To assure a thorough assessment of both syntactic and

functional correctness, the models can be ultimately assessed

using a combination of lexical overlap scores, runtime

validation and semantic vector analysis.

 Model Selection:

 For our research, we chose two popular code generation

models: PLBART-large and CodeT5-base. In order to

compare encoder-decoder and sequence-to-sequence
frameworks, these models were selected due to their

architectural contrasts and great performance in prior code

generation tasks.

 Because of its robust encoder-decoder architecture, which

allows for accurate mapping between structured code

outputs and natural language descriptions, CodeT5-base

was chosen. It has demonstrated strong performance on

benchmarks for code generation and interpretation.

 PLBART-large was included due to its multilingual

support and robustness in sequence modeling. Being pre-

trained on both natural language and multiple

programming languages, it provides a strong baseline for

cross-lingual and context-aware code generation.

 Prompt Engineering:

 Researchers can experiment with several prompting

strategies to assess how input formatting affects code

generation quality. To assess each model's flexibility and
thinking abilities, zero-shot, few-shot and chain-of-

thought challenges can be used.

 Zero-shot prompting involved simple instructions such as

“Write a Python function to [task]”, without any examples

or reasoning steps. This setup reflects the basic usage

scenario of code generation tools by end users.

 In order to direct the model toward anticipated output

patterns, few-shot prompting contained one to three

example input-output pairings. During inference, this

method evaluates the model's capacity to learn from little

context.

 By dividing difficult tasks into intermediate logical steps
before creating the final code, chain-of-thought prompting

promoted methodical reasoning prior to code generation

with the goal of improving semantic alignment.

Fig 2 Steps involved in Prompt Engineering.

 Training Setup:

 Both models can be refined using the MBPP dataset. The

goal of the 500 training, 200 validation and 200 test

examples is to generate Python functions from docstrings

in natural language.

 PyTorch can be used as the backend foundation for all

experiments and the HuggingFace Transformers module

can be used for implementation. As a result, pipelines for

model construction, training and evaluation become more

flexible.

https://doi.org/10.38124/ijisrt/25jul573
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSNNo:-2456-2165 https://doi.org/10.38124/ijisrt/25jul573

IJISRT25JUL573 www.ijisrt.com 828

 Using a batch size of eight, training can be carried out

over ten epochs at a learning rate of 5e-5. These settings

can be chosen to balance convergence speed and memory
constraints during fine-tuning.

 For parameter updates, the AdamW optimizer, which

combines adaptive moment estimation and weight decay

correction, can be employed. It is well-known for its
efficacy in transformer-based model training.

Fig 3 Key Concepts of Prompt Engineering.

 Evaluation Framework:

 Researchers can evaluate the models using the BLEU

score metric, which measures n-gram overlap between

generated code and reference solutions. While not perfect,

it provides a baseline for lexical similarity.

 Execution accuracy can be measured by running generated

code against predefined unit tests from the MBPP dataset.

Only syntactically valid and logically correct code could

pass these tests.

 Sentence-BERT embedding’s, which capture meaning

beyond token matching at the surface level, can be used to

compute cosine similarity between generated code and

ground truth in order to evaluate semantic similarity.

IV. RESULTS AND DISCUSSIONS

This section presents the findings of the experiments on
enhancing semantic understanding in code generation models.

We evaluated multiple state-of-the-art models using both

syntactic and execution-based metrics to assess their

performance in translating natural language instructions into

executable code.

 Results:

The results highlight key strengths and limitations of

current approaches, providing insight into how model

architecture, training strategy and evaluation methodology

influence outcomes.

 Model Performance Comparison:

This subsection evaluates and compares the

effectiveness of different code generation models in

translating natural language into executable code.

 CodeT5 Outperforms PLBART in Overall Accuracy:

CodeT5 achieves higher BLEU scores and execution

accuracy compared to PLBART, indicating better alignment

between input instructions and generated code semantics.

This may be attributed to its encoder-decoder architecture

and extensive pre-training on code-text pairs.

 Fine-Tuning Improves Execution Accuracy:

Fine-tuned versions of both CodeT5 and PLBART

shows significant improvements in passing test cases,

demonstrating that domain-specific adaptation enhances

functional correctness more effectively than zero-shot

inference.

 PLBART Excels in Handling Complex Syntax:

While trailing in overall accuracy, PLBART performes

relatively better in tasks requiring complex syntax

understanding, possibly due to its broader multilingual pre-
training on both natural and programming languages.

 Prompt Engineering Impact:

This subsection analyzes how various prompting

strategies influence the accuracy and quality of generated

code.

 Few-Shot Prompting Enhances Semantic Clarity:

Including a small number of task-related examples in

prompts leads to clearer and more logically structured

outputs, helping models better interpret ambiguous or high-
level instructions.

.

https://doi.org/10.38124/ijisrt/25jul573
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSNNo:-2456-2165 https://doi.org/10.38124/ijisrt/25jul573

IJISRT25JUL573 www.ijisrt.com 829

 Chain-of-Thought Prompts Improve Logical Reasoning:

Encouraging step-by-step reasoning before generating

code significantly reduces logical errors, especially in tasks
involving conditionals and loops.

 Zero-Shot Mode Leads to Inconsistent Output:

Without explicit guidance, models often produces

syntactically correct but functionally incorrect code,

highlighting the limitations of relying solely on pre-trained

knowledge.

 Evaluation Metric Insights:

This subsection explores the strengths and limitations of

different evaluation metrics that can be used to assess code
generation performance.

 BLEU Scores Do Not Always Reflect Functional

Correctness:

High BLEU scores can be sometimes observed
alongside low execution accuracy, showing that lexical

similarity alone is insufficient for evaluating code quality.

 Pass@k Provides a More Reliable Measure of Utility:

Models that can pass more test cases are generally more

useful in real-world scenarios, making Pass@k a more

practical metric for assessing code generation systems.

 Human Evaluation Reveals Usability Gaps:

 Despite decent automated scores, some generated

functions can be found difficult to read or modify,

underscoring the importance of incorporating user-centric
evaluation criteria.

Fig 4 A Mathematical Formulation for Code Generation as a Sequence-to-Sequence Task.

Fig 5 A Loss Function used in Training Transformer-Based Models.

https://doi.org/10.38124/ijisrt/25jul573
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSNNo:-2456-2165 https://doi.org/10.38124/ijisrt/25jul573

IJISRT25JUL573 www.ijisrt.com 830

Fig 6 A Simple Pseudocode Algorithm for Prompt-Based Inference.

 Discussion:

The experimental evaluation demonstrates that

enhancing semantic understanding in code generation models

significantly improves the accuracy and reliability of

generated code. CodeT5 outperformes PLBART in overall

performance, achieving higher BLEU scores and execution

accuracy, particularly when fine-tuned on domain-specific

datasets like MBPP. Prompt engineering techniques such as

few-shot learning and chain-of-thought reasoning further

improves model outputs by providing contextual guidance and

promoting logical structuring of code. Both models, however,

has trouble with complicated or ambiguous jobs, frequently

generating code that was syntactically valid but semantically

wrong. In evaluating functional correctness, execution-aware

evaluation measures such as Pass@k outperformes

conventional NLP measurements (e.g., BLEU). These

findings highlight the importance of combining architectural

improvements with context-aware prompting and robust

evaluation strategies to advance AI-based code generation

systems.

Table 1 Performance Comparison of different Models

Model
Model Performance Comparison

BLEU Score Execution Accuracy (Pass@1) Avg Inference Time (s)

CodeT5 (Zero-Shot) 32.1 28% 1.2

CodeT5 (Fine-Tuned) 39.7 45% 1.3

PLBART (Zero-Shot) 29.6 22% 1.5

PLBART (Fine-Tuned) 36.4 41% 1.6

Best results are shown in the table; metrics include BLEU Score, Execution Accuracy (Pass@1) and Average Inference

Time.

https://doi.org/10.38124/ijisrt/25jul573
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSNNo:-2456-2165 https://doi.org/10.38124/ijisrt/25jul573

IJISRT25JUL573 www.ijisrt.com 831

Fig 7 A Bargraph showing Model Performance Comparison.

V. ADVANTAGES AND DISADVANTAGES

 Advantages:

 Enables developers to concentrate on more intricate

facets of software development by automating repetitive

tasks including creating function skeletons, standard

templates and often utilized repetitive operations.

 Accelerates learning for beginners by offering real-time

code suggestions and examples, helping them understand

syntax, structure and best practices in programming

languages they are learning..

 Enables non-programmers to generate simple scripts or

basic applications using natural language instructions,

lowering the barrier to entry for automation and software

creation.

 Can be used as a debugging tool by looking for possible

flaws in code and offering fixes or different approaches

based on patterns discovered in big codebases.

 Disadvantages:

 May propagate biases present in training data by favoring
certain coding styles, libraries or frameworks that were

overrepresented in the training corpus, potentially

limiting diversity in solutions.

 Frequently generates code that is syntactically valid but

logically incorrect, leading to execution failures in edge

cases or unique input scenarios.

 Sparks legal and ethical questions regarding ownership

and originality when outputs closely mirror protected or

commercial code from model training sources.

 Struggles with fully grasping context in intricate or

unclear situations where specialized domain knowledge,
design principles or system limitations are essential for

accurate implementation in determining the appropriate

implementation.

VI. FUTURE ENHANCEMENTS

 Prompt Engineering Impact:

This subsection examines the effects of different

prompting techniques on the precision and caliber of code

that is produced.

 Integrate Retrieval-Augmented Generation (RAG):

Incorporating Retrieval-Augmented Generation (RAG)

enhances the precision and applicability of synthesized code

by drawing from external resources like technical

documentation, community forums and open-source
repositories during output generation. This approach enables

models to access up-to-date, context-specific information

that may not be present in their training data, reducing errors

caused by outdated or incomplete knowledge.

 Improve Execution Feedback Loop:

 An improved execution feedback loop would allow

models to learn from real-time execution results of

generated code. By analysing failed test cases or runtime

errors, models can iteratively refine their outputs, mimicking

how human developers debug and optimize their programs.
This form of execution-aware learning can enhance both

functional correctness and robustness across diverse

programming tasks.

 Build Domain-Specific Models:

More precise and effective code creation can result

from creating domain-specific models designed for

specialized fields like embedded systems, machine learning

and web development. In order to better understand task-

specific restrictions, idioms and best practices that general-

purpose models could miss, these models can be trained

using domain-centric datasets.

 Enhance Human-AI Collaboration:

 The gap between automatic code recommendations

and user intent can be closed by improving human-AI

collaboration via interactive development tools. A more

natural and effective coding experience is promoted by

systems that let developers iteratively edit, approve or reject

https://doi.org/10.38124/ijisrt/25jul573
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSNNo:-2456-2165 https://doi.org/10.38124/ijisrt/25jul573

IJISRT25JUL573 www.ijisrt.com 832

AI-generated code snippets, particularly when working with

complicated or unclear requirements.

 Use Reinforcement Learning (RL):

Utilizing reinforcement learning allows models to be

trained using feedback signals tied to code accuracy,

performance and clarity, guiding them toward higher quality

outputs. By defining rewards for passing test cases,

optimizing performance or adhering to style guidelines, RL

can guide models toward generating higher-quality,
production-ready code.

Fig 8 Roadmap for Future Improvements in Code Generation Systems.

VII. CONCLUSION

Natural language to code generation represents a

transformative advancement in the field of artificial

intelligence and software development, offering the potential

to significantly enhance developer productivity and lower the

barriers to programming for non-experts. In this paper, we

investigated, examined and evaluated techniques to improve

the semantic understanding of AI-based code generation

models, focusing on approaches such as domain-specific

fine-tuning, structured prompt engineering and execution-

aware evaluation metrics that go beyond traditional syntactic

similarity measures.

According to our study and literature survey, enhancing

models' comprehension of user queries greatly increased

https://doi.org/10.38124/ijisrt/25jul573
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSNNo:-2456-2165 https://doi.org/10.38124/ijisrt/25jul573

IJISRT25JUL573 www.ijisrt.com 833

their coding correctness; code that is both syntactically and

functionally valid can be produced for a variety of
programming jobs. The findings highlight how crucial

logical thinking and contextual awareness are to obtaining

trustworthy code synthesis.

Fig 9 Evolution of AI in Programming.

Looking ahead, further advancements will depend on
the integration of external knowledge sources, real-time

feedback loops and more sophisticated training paradigms

such as reinforcement learning. These improvements are

essential for the continued evolution of AI-powered coding

tools that are not only efficient but also deeply aligned with

human intent and practical software development needs.

ACKNOWLEDGMENT

The facilities and resources required for this study were

provided by the East West Institute of Technology in

Bengaluru, for which the authors are grateful. Our
comparative study was made possible by open-source models

and datasets like CodeT5, PLBART and MBPP, for which

we are thankful to their researchers and developers. We also

extend our thanks to Dr. Achyutha Prasad N, Professor &

Head, Department of Computer Science & Engineering,

EWIT, Dr. R Muralishankar, Dean - Academics & Research,

EWIT, Dr. K Channakeshavalu, Principal, EWIT, Dr.

Purushotham B, Director-Admissions, EWGI for their

valuable guidance and feedback throughout the course of this

study.

REFERENCES

The references included in this section form the

foundation of our research on natural language to code

generation, covering key advancements in AI-based code

synthesis, model evaluation and benchmarking

methodologies. These works provide insights into the

capabilities and limitations of large language models (LLMs)

when applied to programming tasks, offering both theoretical

frameworks and empirical evaluations that have informed
our approach.

Several studies focus on evaluating and enhancing the

performance of transformer-based models in understanding

and generating code. Chen et al. (2021) present a

comprehensive analysis of large language models trained on

code, while Fried et al. (2022) propose a unified pre-training

strategy for program understanding and generation. Austin et

al. (2021) further explore the potential of LLMs in program

synthesis, demonstrating how these models can be leveraged

for complex reasoning tasks.

Standardized datasets are essential for evaluating code

generating systems in addition to model development. Wang

et al. (2022) introduce the MBPP dataset, which provides a

structured environment for evaluating Python code

generation and Guo et al. (2022) present CodeXGLUE, a

multi-task benchmark for code understanding and generation.

These resources have been instrumental in shaping our

experimental design and evaluation criteria.

[1]. Chen, M., Shi, Q., Li, H., et al. (2021). Evaluating

Large Language Models Trained on Code . arXiv
preprint arXiv:2107.03374.

[2]. Fried, D., Holtzman, A., Raychev, V., et al. (2022).

Unified Pretraining for Program Understanding and

Generation . arXiv preprint arXiv:2212.10559.

[3]. Wang, Y., Ruda, M., et al. (2022). MBPP: Mostly

Basic Python Problems . Google Research. arXiv

preprint arXiv:2209.05659.

[4]. Guo, D., Duvanenko, N., et al. (2022). CodeXGLUE:

A Benchmark Dataset for Code Understanding and

https://doi.org/10.38124/ijisrt/25jul573
http://www.ijisrt.com/

Volume 10, Issue 7, July– 2025 International Journal of Innovative Science and Research Technology

ISSNNo:-2456-2165 https://doi.org/10.38124/ijisrt/25jul573

IJISRT25JUL573 www.ijisrt.com 834

Generation . Microsoft Research. arXiv preprint

arXiv:2202.12172.
[5]. J, S, Jumnal, A., P K, U, C, R., Askar, S. S, &

Abouhawwash, M. (2024). Bio-Inspired ACO-based

Traffic Aware QoS Routing in Software Defined

Internet of Things. Applied Artificial Intelligence,

38(1).

[6]. Aal, S. I. A., Shreyas, J., & Udayaprasad, P. K.

(2024). Selecting optimal charcoal company using

multi-criteria decision making methodology.

Multicriteria algorithms with applications, 3, 15-22.

[7]. Reddy, C. S., Chouhan, D., Udayaprasad, P. K.,

Srinidhi, N. N., & Dilipkumar, S. M. (2022).
Geographic routing scheme for resource and

communication efficiency in the IoT ecosystem using

swarm-intelligence based BFO algorithm. Journal of

Information Technology Management, 14(1), 41-64.

[8]. Shreyas, J., Chouhan, D., Rao, S. T., Udayaprasad, P.

K., Srinidhi, N. N., & Kumar, S. D. (2021). An

energy efficient optimal path selection technique for

IoT using genetic algorithm. International Journal of

Intelligent Internet of Things Computing, 1(3), 230-

248.

[9]. Austin, J., Odena, A., et al. (2021). Program

Synthesis with Large Language Models . arXiv
preprint arXiv:2108.07732.

[10]. Shreyas, J., Chouhan, D., Harshitha, M.,

Udayaprasad, P. K., & Kumar, S. D. (2022). Network

lifetime enhancement routing algorithm for IoT

enabled software defined wireless sensor network.

In Sustainable advanced computing: select

proceedings of ICSAC 2021 (pp. 499-508).

Singapore: Springer Singapore.

[11]. Abdelhafeez, A., Shreyas, J., & Udayaprasad, P. K.

(2024). A Fuzzy TOPSIS Method for Assessment

Blockchain Technology Strategies. Information
Sciences with Applications, 1, 1-9.

[12]. Shreyas, J., Ajmani, S., Udayaprasad, P. K.,

Chouhon, D., & SM, D. K. (2021, December).

Dynamic routing scheme for linking wireless sensor

network towards internet of things. In 2021 5th

International Conference on Electrical Information

and Communication Technology (EICT) (pp. 1-4).

IEEE.

[13]. Shreyas, J., Shilpa, S., Udayaprasad, P. K., Srinidhi,

N. N., & Dilip Kumar, S. M. (2022, November). An

Energy Efficient Routing for Emergency Rescue in
IoT-Based WSN. In Futuristic Trends in Networks

and Computing Technologies: Select Proceedings of

Fourth International Conference on FTNCT 2021

(pp. 331-338). Singapore: Springer Nature

Singapore.

[14]. Shreyas, J., Chouhan, D., Rao, S. T., Udayaprasad, P.

K., Srinidhi, N. N., & Dilip Kumar, S. M. (2021).

EERO: Energy Efficient Route Optimization

Technique for IoT Network. In Futuristic Trends in

Network and Communication Technologies: Third

International Conference, FTNCT 2020, Taganrog,

Russia, October 14–16, 2020, Revised Selected
Papers, Part II 3 (pp. 207-218). Springer Singapore.

[15]. Udayaprasad, P. K., Shreyas, J., Srinidhi, N. N.,

Kumar, S. D., Dayananda, P., Askar, S. S., &
Abouhawwash, M. (2024). Energy efficient

optimized routing technique with distributed SDN-AI

to large scale I-IoT networks. IEEE Access, 12,

2742-2759.

AUTHORS PROFILE

Pawanraj S P, Assistant Professor, Department of

Computer Science & Engineering, EWIT, Bengaluru.

pursued B.E. in Computer Science & Engineering, M.Tech.

in Computer Science & Engineering, from EWIT,
Bengaluru. His areas of interest are Computer Science,

Artificial Intelligence, Natural Language Processing,

Machine Learning, Computer Networks, Cyber Security,

Database Management Systems, Full Stack Web

Development, Ethical Hacking, Blockchain Technologies

and Digital Marketing.

Udayaprasad P K, Assistant Professor, Department of

Computer Science & Business Systems, BMSIT, Bengaluru.

pursued B.E. in Information Science & Engineering from

EWIT, Bengaluru, M.Tech. in Information Technology, from

UVCE, Bengaluru. His areas of interest are Information
Technology, Data Science, Artificial Intelligence, Machine

Learning, Internet of Things, Cyber Security, Database

Management Systems and Full Stack Web Development.

https://doi.org/10.38124/ijisrt/25jul573
http://www.ijisrt.com/

	I. INTRODUCTION
	II. RELATED WORK
	 Code Generation Models:
	 Datasets for Evaluation:
	 Techniques for Improving Performance:
	 Evaluation Metrics:

	III. METHODOLOGY
	 Model Selection:
	 Prompt Engineering:
	 Training Setup:
	 Evaluation Framework:

	IV. RESULTS AND DISCUSSIONS
	 Results:
	 Model Performance Comparison:
	This subsection evaluates and compares the effectiveness of different code generation models in translating natural language into executable code.
	 CodeT5 Outperforms PLBART in Overall Accuracy:
	CodeT5 achieves higher BLEU scores and execution accuracy compared to PLBART, indicating better alignment between input instructions and generated code semantics. This may be attributed to its encoder-decoder architecture and extensive pre-training on...
	 Fine-Tuning Improves Execution Accuracy:
	Fine-tuned versions of both CodeT5 and PLBART shows significant improvements in passing test cases, demonstrating that domain-specific adaptation enhances functional correctness more effectively than zero-shot inference.
	 PLBART Excels in Handling Complex Syntax:
	While trailing in overall accuracy, PLBART performes relatively better in tasks requiring complex syntax understanding, possibly due to its broader multilingual pre-training on both natural and programming languages.

	 Prompt Engineering Impact:
	This subsection analyzes how various prompting strategies influence the accuracy and quality of generated code.
	 Few-Shot Prompting Enhances Semantic Clarity:
	Including a small number of task-related examples in prompts leads to clearer and more logically structured outputs, helping models better interpret ambiguous or high-level instructions.
	 Chain-of-Thought Prompts Improve Logical Reasoning:
	Encouraging step-by-step reasoning before generating code significantly reduces logical errors, especially in tasks involving conditionals and loops.
	 Zero-Shot Mode Leads to Inconsistent Output:
	Without explicit guidance, models often produces syntactically correct but functionally incorrect code, highlighting the limitations of relying solely on pre-trained knowledge.

	 Evaluation Metric Insights:
	This subsection explores the strengths and limitations of different evaluation metrics that can be used to assess code generation performance.
	 BLEU Scores Do Not Always Reflect Functional Correctness:
	High BLEU scores can be sometimes observed alongside low execution accuracy, showing that lexical similarity alone is insufficient for evaluating code quality.
	 Pass@k Provides a More Reliable Measure of Utility:
	Models that can pass more test cases are generally more useful in real-world scenarios, making Pass@k a more practical metric for assessing code generation systems.
	 Human Evaluation Reveals Usability Gaps:
	Despite decent automated scores, some generated functions can be found difficult to read or modify, underscoring the importance of incorporating user-centric evaluation criteria.

	 Discussion:

	V. ADVANTAGES AND DISADVANTAGES
	 Advantages:
	 Disadvantages:

	VI. FUTURE ENHANCEMENTS
	 Prompt Engineering Impact:
	This subsection examines the effects of different prompting techniques on the precision and caliber of code that is produced.
	 Integrate Retrieval-Augmented Generation (RAG):
	Incorporating Retrieval-Augmented Generation (RAG) enhances the precision and applicability of synthesized code by drawing from external resources like technical documentation, community forums and open-source repositories during output generation. Th...
	 Improve Execution Feedback Loop:
	An improved execution feedback loop would allow models to learn from real-time execution results of generated code. By analysing failed test cases or runtime errors, models can iteratively refine their outputs, mimicking how human developers debug an...
	 Build Domain-Specific Models:
	More precise and effective code creation can result from creating domain-specific models designed for specialized fields like embedded systems, machine learning and web development. In order to better understand task-specific restrictions, idioms and ...
	 Enhance Human-AI Collaboration:
	The gap between automatic code recommendations and user intent can be closed by improving human-AI collaboration via interactive development tools. A more natural and effective coding experience is promoted by systems that let developers iteratively ...
	 Use Reinforcement Learning (RL):
	Utilizing reinforcement learning allows models to be trained using feedback signals tied to code accuracy, performance and clarity, guiding them toward higher quality outputs. By defining rewards for passing test cases, optimizing performance or adher...
	VII. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES
	AUTHORS PROFILE

