
Volume 10, Issue 7, July – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul468

IJISRT25JUL468 www.ijisrt.com 732

Achieving High-Integrity Software Quality and

Security through Automated Code Analysis,

Testing, and Advanced Code Coverage with the

LDRA Tool Suite

Nakod Niharika1

1Advanced Systems Laboratory DRDO

Publication Date: 2025/07/15

Abstract: In areas where the failure of software entails disastrous consequences, like in the aerospace sector, automotive

industry, medical sector and industrial control systems- software production is of primary importance.(10) This paper

focuses on the importance of LDRA Tool Suite to attain high degree of software quality and strong security as well as

demonstrate how, at a comparatively early stage of the development lifecycle, the entire potential of the LDRA suite may be

utilized to uncover hidden flaws, coding standards, and possible security vulnerabilities in the code analysis with regard to

the comprehensive testing of software by validation of its unit, integration and system level integration,(11) as well as the

high level code coverage (e.g., MC/DC, statement and branch) which is of high importance when certification objectives are

to be achieved.(12) This paper illustrates how LDRA tool Suite is useful in designing traceable and verifiable tracks to

provide high-quality software reliability to face security risk, meet industry-specific safety or security standards and finally

lead to predictable actions within any critical embedded systems.(13)

Keywords: Coding Standards, Security Vulnerabilities, Quality Metrics, Cyclomatic Complexity, LCSAJ Metrics, Equivalence Class

Testing, Boundary Value Testing

How to Cite: Nakod Niharika (2025) Achieving High-Integrity Software Quality and Security through Automated Code Analysis,

Testing, and Advanced Code Coverage with the LDRA Tool Suite. International Journal of Innovative Science and

Research Technology, 10(7), 732-739. https://doi.org/10.38124/ijisrt/25jul468

I. INTRODUCTION

High-integrity software is essential in such fields as

aerospace, automotive, and healthcare: otherwise, a software

failure can be disastrous (6). Since more and more software

is becoming complex and the needs of the cyber security is

becoming threats to the secure creation of the software, it is a

challenge in itself to assure that the quality and the safety are

high levelled.

The old time manual checks of verification can no

longer hold. This requires the usage of code analysis, test, and

complete code coverage tools that are automated. LDRA Tool

Suite is considered to be one of the leading integrated devices

that can ensure these strict requirements. The paper discusses

the use of LDRA Tool Suite in successfully meeting high-

integrity software quality and security levels that are based on

its feature of automated code analysis, comprehensive

software testing, and technical ability of code coverage,

which are imperative in high standards of certification.

II. LITERATURE REVIEW

Modern quality and security of software used in critical

systems is developed on decades of study focusing on such

qualities as reliability, maintainability and robustness (3)

(Pressman & Maxim, 2020). The integrated security is

necessary at the foundation of modern security concerns,

which are caused and driven by the combination of systems

and threats becoming more and more sophisticated (4)

(Schneier, 2015). Code analysis, done automatically, is

crucial to the detection of early defects, and identification of

vulnerability. Static analysis finds the problems without

executing any code and results in implementing standards

such as MISRA C/C++ and CERT C/C++ (5) (Seacord et al.,

2013). Dynamic testing and analysis ensure that behaviour is

checked at the execution point, and the extent to which code

is covered by testing (i.e., through code coverage such as

MC/DC) is required by standards (1) (Hatton, 1994).

Continuous integration/delivery (CI/CD) is currently the

popular trend to conduct ongoing quality assurance (2)

(Janssen et al., 2022). These verification activities are

required in industry standards, typically having demanding

verification requirements, such as DO-178C (avionics), ISO

https://doi.org/10.38124/ijisrt/25jul468
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25jul468

Volume 10, Issue 7, July – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul468

IJISRT25JUL468 www.ijisrt.com 733

26262 (automotive), IEC 61508 (industrial). To simplify the

verification process, integrated tool suites have appeared such

as LDRA Tool suite. LDRA is a complete solution with state

of the art features that offer static and dynamic analysis

(LDRA Testbed), enforcing coding standards (LDRArules),

automatic testing (LDRAunit) and traceability (TBmanager).

Although the use of LDRA on certification projects has been

documented (LDRA product documentation), the proposed

research will be used to describe a unified and up-to-date

view of its synergistic results on automated analysis, testing

and advanced coverage of quality factor combined with that

of security and reducing software complexity.

III. PROPOSED METHODOLOGY

The mechanism of creating high-integrity software

defined in the proposed methodology is shown in the figure.

It is based on a rigorous testing and analysis workflow

provided with the LDRA Tool Suite. It starts with

Requirements/Specifications which directs Design and

generation of the code where the source code is pipelined into

Testbed in which it performs Structure Analysis, Design

Annotations are added to it and it is Instrumented. Either a

Test Case Generator generates the Test Case or the description

of the Test Case is based on a Manual Test Plan. TBrun uses

these test cases and Generates Test Harness and then

instrumented code is compiled and linked and executed into

an Executive Environment. The process results in Coverage

Reports that identify Coverage Structure that is Untested and

returns to the process of instrumentation to be refined. The

end result will be Requirements Pass/Fail analysis as a result

of the exhaustive testing and analysis. This methodology

provides quality assurance and security in order to certify the

software.

Fig 1 LDRA Flow

A. Software Quality Metrics

A metric is a measurement procedure, and a software

quality metric is a procedure in which the inputs are software

data, and the output is a unique numerical value that can be

explained as the measure of a predetermined quality attribute

of the software.

Software metrics are aimed at making observations

during the software life cycle in order to determine whether

the software quality requirements are being achieved.

Software metrics reduce the subjectivity during the

assessment and management of software quality because they

provide a mathematical foundation for arriving at a decision

regarding the quality of the software.

 Cyclomatic Complexity

Cyclomatic Complexity of code section is the

quantitative measure of number of linearly independent paths

in it and it is a software metric used to indicate the complexity

of the program and can be computed by using Control Flow

Graph. (7) It is a useful metric for predicting those modules

that are probably prone to errors. It can be used for test

planning as well as test case design.

Table 1 Range of Complexity

Complexity Type of Module Risk Level

1 - 4 Simple Low

5 - 10 Marginal Low

11 - 20 Complex Moderate

21 - 50 Complex High

> 50 Untestable Very High

https://doi.org/10.38124/ijisrt/25jul468
http://www.ijisrt.com/

Volume 10, Issue 7, July – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul468

IJISRT25JUL468 www.ijisrt.com 734

 Sample Program of Prime Numbers between Two Intervals.

#include<stdio.h>

int main()

{

 int low, high, i, flag;

 printf("enter 2 numbers :");

 scanf("%d %d", &low, &high);

 printf("prime numbers between %d and %d are :", low, high);

while (low < high)

{

 flag = 0;

 if (low <= 1)

 {

 ++low;

 continue;

 }

 for (i = 2; i <= low / 2; i++)

 {

 if (low %i == 0){

 flag = 1;

 break;

 }

 }

 if (flag == 0)

 printf("%d\n", low);

 ++low;

 }

 return 0;

}

Fig 2 Control Flow

https://doi.org/10.38124/ijisrt/25jul468
http://www.ijisrt.com/

Volume 10, Issue 7, July – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul468

IJISRT25JUL468 www.ijisrt.com 735

According to the above flow graph, the cyclomatic

complexity can be computed manually using each of the

algorithms.

 The flow graph has six regions.

 V(G) = 18 edges – 14 nodes + 2 = 6.

 V(G) = 5 predicated nodes + 1 = 6.

Therefore, the cyclomatic complexity of the above flow

graph is 6.

Fig 3 Cyclomatic Complexity Calculated by LDRA Tool.

 MCC & MC/DC

Table 2 MCC Vs MC/DC

 Sample Logic

Table 3 Truth Table

S. No A B C D E Output

1. T T T F F T

2. F T T F F F

3. T F T F F F

4. T T F F T F

5. T T F T T T

6. T T F F T F

MCC requires 32 Test cases whereas MC/DC requires 6

Test cases to get 100% coverage.

Fig 4 Coverage Report

 LCSAJ Metrics

LCSAJ is an acronym that Linear Code Sequence and

Jump. It is a white-box testing approach to code what part of

the code is covered by the test cases in-hand. It assists in

establishing new test cases which may expand the coverage

of the code under test. When the code coverage reach to a

certain extent we can halt the testing. (9) This methodology

is actually useful in finding the stopping point of software

testing.

 A Single LCSAJ has the Following Three Components:

 Start of the segment, which can be a branch or the start of

the program

 End of the segment, which can be the end of a branch or

the end of the program

 A specific target line

Fig 5 Flow Chart

The code is being executed starting the beginning of the

segment until the last line in the segment, and then the control

flow discontinues the linear execution and jumps to the line

to be executed.

https://doi.org/10.38124/ijisrt/25jul468
http://www.ijisrt.com/

Volume 10, Issue 7, July – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul468

IJISRT25JUL468 www.ijisrt.com 736

 Sample Program to Demonstrate LCSAJ Metrics

 LCSAJ Metric by LDRA Tool Coverage Report for Add ()

Function

 Coverage Report for Multiply () Function

 Coverage Report for Print Results () Function

https://doi.org/10.38124/ijisrt/25jul468
http://www.ijisrt.com/

Volume 10, Issue 7, July – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul468

IJISRT25JUL468 www.ijisrt.com 737

B. Maximizing Coverage by Minimizing Tests

LDRAunit (TBrun) and TBextreme, has strong features

to define the test inputs and scenarios in the minimum manual

interference.

 Code Analysis:

LDRA consists of a fundamental analysis engine

(LDRA Testbed); which is a profound static examination of

source-code (C, C++, Ada, Java, and so on). It carefully

examines the both control flow (the way statements,

branches, loops execute in the program) and data flow (the

way data moves and changes throughout the program). Such

analysis assists interpretation of how the under-test code

works (8) (e.g., a module, a function).

 Test Driver and Stub Generation:

LDRAunit can automatically generate test harness or

driver based upon the interface of the code (parameters, pass

output, global variables, functions called). This driver is the

framework which invokes the code under test and feeds the

inputs. More importantly, it is also able to automatically

create what are called stubs of any functions that those

functions under test call but are not actually within the unit

test being written. These stubs act as the emulation of external

functions so that the unit could be tested without them. This

helps a lot in manual work of establishing the test

environment.

 Test Vector (Input) Generation (via TBextreme):

This is the strong point of the "automatic test case

generation" using the fine-grained code analysis, TBextreme

uses the test input generation (test vectors) to reach desired

test objectives, (8) e.g.:

 Code Coverage:

It attempts to produce inputs which can exercise all

branches/ decisions/ statements and even coverage complex

concepts such as Modified Condition/ Decision Coverage

(MC/DC) and Linear Code Sequence and Jump (LCSAJ). (8)

It does that by intelligently walking through the code.

 Boundary Value Testing (BVT):

This has the ability to detect a range of input variables

automatically and creates test cases as near or at defined

boundaries (minimum, maximum, just inside, just outside) to

check common error of going by one wrong.

 Equivalence Class Testing (ECT):

It is able to put sets of valid and invalid inputs in

equivalence classes and produce test cases that cover each of

these classes in order to avoid repeated input.

 Robustness Testing/Fuzzing:

It can create malformed or unexpected inputs in an

attempt to crash or reveal vulnerabilities in the code,

particularly of cyber security interest.

 Execution and Reporting:

The test cases generated are then run (on host, target, or

simulator) and LDRA takes the results including the code

coverage obtained, the pass/fail status, and reports. The

research in this area is aimed at improving, testing and

extending LDRA automated functionality in the generation of

test cases.

C. Standard Coding Guidelines

The importance of the compliance to the coding

standards and utilization of the static analysis tools during the

software development lifecycle has been depicted in the

paper with the Rule 15.6: Unreachable code shall not be

present. (MISRA-C++:2008)

 Sample Program with Violation

 LDRA Report with Violation

Fig 6 Code Review Report

https://doi.org/10.38124/ijisrt/25jul468
http://www.ijisrt.com/

Volume 10, Issue 7, July – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul468

IJISRT25JUL468 www.ijisrt.com 738

 Sample Program without Violation

 LDRA Report without Violation

Fig 7 Code Review Report

In the first sample program where violation occurs,

there is an actual violation of this rule that manifests itself in

unreachable code. This violation is subsequently confirmed

by an LDRA tool suite Code Review Report that reports a

FAIL on the overall result against the MISRA-C++:2008

programming standard. On the other hand, the Sample

program without violation shows the adjusted version of the

code that all paths of the code can be reached without

violation in consideration to the guideline. It forcefully

demonstrates the need to establish and enforce rules about

coding so that the quality of the code in the way it can be read

and maintained, and therefore make it stronger, maintainable

and compliant with the rules, will be detected and fixed with

the help of the automated tools (in this case, LDRA). Failure

to follow general coding regulations reduces the clarity of

such code, which makes it hard to follow and get updated.

This increases chances of bugs and mistakes since there is

difference in practice that can create small misinterpretation.

The standardized coding becomes difficult as a result of

diversified styles. There is a total increment in the cost of the

project due to the time wasted in the interpretation of the

messy code and removing the issues which can be easily

solved. Efficiency of tools involved in static analysis e.g.,

LDRA reduces when they report the violation with respect to

the standards, such as MISRA-C++:2008. Also, the failure to

adhere to the guidelines can lead to inaccessible code,

wastage of resources and complexity.

IV. CONCLUSION

LDRA Tool Suite provides an efficient and practical

combination of automation code analysis, powerful testing,

and code coverage features to produce high-integrity software

quality and security purposes. By means of static and

dynamic analysis, the suite anticipatorily finds coding

standard contravention, software defects, and security

vulnerability guaranteeing compliance with industry-

important norms such as DO-178C, ISO 26262, and IEC

61508. Automation of unit and integration test and advanced

code coverage analysis by LDRA Tool Suite simplifies not

only the verification and validation process but also gives full

traceability between the requirements and the code which

helps the organization to develop highly reliable, secure and

certifiable software that is not only cost effective but done in

an efficient way as well.

REFERENCES

[1]. Hatton, L. (1994). Safer C: Developing Software for

Safety-Critical Systems. McGraw-Hill.

[2]. Janssen, M., Von Knethen, A., & Von Knethen, B.

(2022). Continuous Integration and Delivery: A

Practical Guide for Software Teams. Springer.

[3]. Pressman, R. S., & Maxim, B. R. (2020). Software

Engineering: A Practitioner's Approach. McGraw-Hill

Education.

[4]. Schneier, B. (2015). Data and Goliath: The Hidden

Battles to Collect Your Data and Control Your World.

W. W. Norton & Company.

[5]. Seacord, R. C., Long, M., & Mogul, J. C. (2013). The

CERT C Coding Standard: 98 Rules for Developing

Safe, Reliable, and Secure Systems. Addison-Wesley

Professional.

[6]. Leveson, N. (2011). Engineering a Safer World:

Systems Thinking Applied to Safety. MIT Press

[7]. McCabe, T. J. (1976). A complexity measure. IEEE

Transactions on Software Engineering, SE-2(4),308–

320. https://doi.org/10.1109/TSE.1976.233837

[8]. LDRA.(2023).LDRA Test Suite and TBextreme

Overview. https://www.ldra.com

[9]. Khurana, S., & Sharma, R. (2012). Software Testing

Techniques and Tools. International Journal of

Computer Science and Mobile Computing, 1(1), 47-

54.

https://doi.org/10.38124/ijisrt/25jul468
http://www.ijisrt.com/
https://doi.org/10.1109/TSE.1976.233837
https://www.ldra.com/

Volume 10, Issue 7, July – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul468

IJISRT25JUL468 www.ijisrt.com 739

[10]. ISO 26262: Road Vehicles – Functional Safety.

International Organization for Standardization, 2018.

[11]. DO-178C: Software Considerations in Airborne

Systems and Equipment Certification. RTCA Inc.,

2011.

[12]. MISRA C:2012 Guidelines for the Use of the C

Language in Critical Systems. Motor Industry

Software Reliability Association, 2012.

[13]. LDRA. (2020). LDRA Tool Suite for Safety-Critical

Software Development. https://www.ldra.com

https://doi.org/10.38124/ijisrt/25jul468
http://www.ijisrt.com/
https://www.ldra.com/

