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Abstract: This paper presents a novel approach to controlling non-inverting buck-boost converters using Proximal Policy 

Optimization (PPO) algorithm for renewable energy applications, particularly photovoltaic systems. Traditional PID 

controllers face significant limitations when dealing with the complex nonlinear dynamics, external disturbances, and 

varying operating conditions inherent in renewable energy systems. The proposed PPO-based control strategy addresses 

these challenges by providing adaptive and intelligent control capabilities. Through comprehensive simulation and 

experimental validation, we demonstrate that the PPO algorithm successfully learned optimal control policies within 

10,000 episodes, maintain excellent voltage regulation under various operating conditions. The results confirm the 

effectiveness of the proposed approach in maintaining stable output voltage regulation under varying load conditions, 

input voltage fluctuations, and temperature variations. 
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I. INTRODUCTION 

 

Power conversion systems in renewable energy 

applications, particularly photovoltaic systems, face 

increasing challenges in terms of stability and optimal 

performance. Non-inverting buck-boost converters, widely 

used in these applications for their ability to handle significant 

input voltage variations, exhibit complex and highly nonlinear 

dynamics that make their control particularly challenging 

[1,2]. Traditional control approaches based on PID regulators, 

while effective under nominal conditions, quickly show their 
limitations when faced with external disturbances, load 

variations, and changing environmental conditions, notably 

temperature fluctuations and solar irradiation variations 

characteristic of photovoltaic systems [3,4]. In this context of 

increasing complexity, research has oriented toward the 

application of Reinforcement Learning (RL) techniques for 

power converter control. The Proximal Policy Optimization 

(PPO) algorithm, developed as an improvement over 

traditional policy gradient methods, presents significant 

advantages in terms of learning stability and robustness 

against parametric variations [5,6]. Unlike classical control 
approaches that require precise system modeling, 

reinforcement learning-based methods can autonomously 

adapt to converter dynamics by directly exploiting measured 

data [7,8]. Recent work in the field has demonstrated the 

effectiveness of PPO algorithms for DC-DC converter control, 

with superior performance in terms of transient stability and 

recovery time compared to traditional proportional-integral 

(PI) controllers [9,10]. However, the specific application to 

non-inverting buck-boost converters in photovoltaic systems 

presents particular challenges related to dual operation (buck 

and boost modes), rapid variations in lighting conditions, and 

energy efficiency requirements [11,12] 

 
The emergence of artificial intelligence in power system 

control opens new perspectives for overcoming the limitations 

of conventional methods, particularly in the context of 

renewable energies where adaptability and robustness are 

critical requirements for ensuring optimal performance of the 

conversion system [15,16]. Comparative analysis reveals that 

the PPO algorithm presents significant advantages for 

controlling non inverting buck-boost converters. Deep 

reinforcement learning-based controllers offer a promising 

alternative for improving the dynamic behavior and efficiency 

of power electronic converters, particularly in uncertain 
environments where conventional controllers based on small-

signal models show their limitations [17]. PPO distinguishes 
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itself through its real-time learning capability without 

requiring precise environment modeling, which is essential for 

photovoltaic systems facing unpredictable variations [18]. 

Compared to other reinforcement learning algorithms, PPO is 

relatively easy to implement and requires fewer computational 

resources, making it particularly suitable for real-time control 

applications [19]. The PPO algorithm also presents excellent 

robustness against variations in operating conditions, using 

qualitative feedback that indicates whether the action taken is 

correct or not, unlike supervised approaches that require 

training data with precise outputs [20]. 

 

II. METHODOLOGY 
 

A. Buck-Boost Converter Modeling 

Fig.1 presents the circuit of a non-inverting buck boost converter. 

 

 
Fig 1 Non Inverting Buck-Boost Converter 

 

Given that the non-inverting buck-boost converter 
combines the conversion principles of both Buck and Boost, 

the adopted method consists of separately analyzing each of 

these two operating modes. We first establish the state 

representations specific to buck and boost configurations, 

considering their respective topologies and characteristic 

dynamic equations. The general state representation is 

expressed in matrix form as (1). 

 

                                       (1) 

 

Where X represents the state vector, U the input (here 

the supply voltage), Y the output (here the output voltage), 

and A, B, C, D are the characteristic matrices of the system. 

 

 Buck Mode 

During transistor conduction, the inductance stores 

energy and the load charges progressively. The associated 

state equation is given in (2). 

 

 ,  avec        (2) 

 

This leads to the state representation during the 

conduction phase as in (3). 

 

         (3) 

 

When the transistor is in off state, the stored energy is 

transferred to the load via the diode. The average state 

representation is expressed as in (4). 

 

           (4) 

 

The transfer function for buck mode is given in (5). 

 

                                              (5) 

 
 Boost Mode 

For boost configuration, during transistor conduction 

(ON), the inductance stores energy. The state representation 

during conduction is given in (6). 

 

           (6) 
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The average state representation for boost mode is 

expressed in (7). 

 

           (7) 

 

The transfer function for boost mode is given in (8). 

 

                                     (8) 

 

B. Mathematical Model for Buck Boost Converter Control 

In the context of power converters, reinforcement 

learning can be formalized by a Markov Decision Process 

(MDP) defined by (9). 

 

                                      (9) 

 

Where: 

 

S is the state space where St = [Vout(t), IL(t), load(t), 
T(t)] , A the action space where At = D(t) with D(t) the PWM 

duty cycle, P(S{t+1}|St, At) is the dynamics from converter 

differential equations,  R(St, At) the reward function  and γ ∈ 

[0,1] the discount factor 

 

C. Implementation of the Algorithm PPO 

Proximal Policy Optimization belongs to the family of 

policy gradient methods in reinforcement learning. Unlike 

value-based methods, PPO directly optimizes the policy 

function that maps states to actions. The objective of PPO is 
to learn a control policy that maximizes the performance of 

the buck-boost converter under dynamic conditions. PPO 

interacts with the environment, collects trajectories of states, 

actions, and rewards, and updates the action policy prudently 

to avoid overly abrupt changes, hence the term "proximal." 

The PPO architecture consists of: 

 

 Policy Network: a function, generally a neural network, 

that chooses the action to take according to the current 

system state 

 Critic Network: a neural network that estimates the value 
of a state or advantage of an action 

 Actor-Critic Architecture: combines the advantages of 

learning a policy by the actor and estimating a value 

function by the critic. 

 

Fig. 2 presents the structure of our PPO agent within the 

environment. 

 

 
Fig 2 Structure of the PPO Agent within the Environment 
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 Environment Definition 

In our case, the environment is the dynamic model of the 

buck-boost converter, considering: 

 

 The dynamics of inductance current IL 

 The dynamics of output voltage Vout 

 Possible variations of load RLoad and temperature Tj at the 

MOSFET level. 

 

The system parameters are assigned in the Table 1. 

 

Table 1 Parameters of the Non Inverting Buck Boost Converter 

Parameters Value 

L (inductance) 220 µH 

C (output capacitance) 1000 µF 

Vsource_value range (voltage input value range) [5 V, 24 V] 

Vref  (voltage reference) 12 V 

 
Table 2 Hyperparameters of the PPO Agent 

Hyperparameters Value Description 
learning_rate 1e-4 Low learning rate for stable updates 

n_steps 1024 Number of steps for good compromise between speed and accuracy 
batch_size 64 Standard size for efficient learning . 

gamma 0.98 Gives more importance to future rewards . 
gae_lambda 0.92 Reduces GAE variance . 
clip_range 0.2 Stabilizes policy updates. 
ent_coef 0.005 Encourages exploration over exploitation 

 

 PPO Agent Configuration 

The PPO hyperparameters, listed in Table 2, are 

configured for optimal performance. 

 

 Signal Processing Interface 

A signal processing interface serves as communication 

between the buck-boost environment and the PPO agent. This 

interface collects data from the buck-boost converter, 

processes these data to resolve numerical problems, 

determines system states, evaluates taken actions and finally 

guides the agent to take optimal decisions. 

 

Fig. 3 presents the signal processing subsystem that 

interfaced the buck-boost converter model with the PPO-

based reinforcement learning agent. 

 

 
Fig 3 Signal Processing Interface between the Converter and the PPO 
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III. RESULTS AND DISCUSSION 

 

A. Simulation Environment Setup 

The PPO algorithm was implemented using Python with 

the following key libraries: Gymnasium for creating the 

custom buck-boost converter environment, Stable-Baselines3 

for PPO algorithm implementation and TensorFlow for neural 

network backend support. 
 

The simulation environment accurately models the 

converter dynamics, including:  the switching behavior and 

losses, parasitic resistances and capacitances, the temperature 

effects on component parameters, load variations and 

disturbances. 

 

B. Training Phase and Evaluation of the Policy 

At this stage, it is essential to consider the time required 

for the PPO agent to learn how to interact with the buck-

boost converter environment. To ensure good convergence 

and stability of learning, the number of episodes has been set 
at 10,000. This allows the agent to explore the state space 

sufficiently and gradually improve its policy. Fig. 4 shows 

the curves of changes in total awards, actor losses, entropy, 

and critic losses in the 2000-episode interval. 

 

 
Fig 4 Evolutions of Total Rewards, Actor Losses,  Critic Losses and Entropy Losses 

 

Fig.4 shows that the total rewards increase rapidly and 

then stabilize, indicating a continuous improvement in the 

agent's performance. The actor's losses are decreasing overall 
with moderate fluctuations, reflecting a gradual adjustment of 

policy. Critical losses are high and then stabilize, showing a 

better estimate of value. The loss of entropy remains 

moderate, guaranteeing a good balance between exploration 

and exploitation. 

C. Tests Phases 

 

 Case 1: Input Voltage Variation 
Fig.5 shows the waveform of the output voltage when 

the input voltage was varied while maintaining a constant 

resistive load of 100 Ω. The output voltage remained stable 

around the reference value of 12 V, with minimal overshoot 

and quick settling time. 
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Fig 5 Wave form of the Output Voltage for a Variation of Input Voltage 

 

Fig.6 shows a brief voltage drop of Vout observed 

around 23 ms, which was attributed to load adaptation. 

Despite this, our PPO agent, by varying the duty cycle, tries 

to stabilize the output voltage with respect to the reference 

voltage, Vref.=12 V in a minimum time. 

 

 Case 2: Extreme Voltage Conditions 

Here, we set Vin to 5 V (minimum voltage) and then 24 

V (maximum voltage) in order to observe the ability of the 

controller to lower and increase the output voltage. Fig. 7 and 

Fig.8 show the output and input voltage for the value of 

Vin=5 V and 24 V, respectively. 

 

 
Fig 6 Wave form of the Output Voltage after a Change in Input Current 
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Fig 7 Wave form of the Output Voltage for Vin=5 V 

 

 
Fig 8 Wave form of the Output Voltage for Vin=12 V 

 

Testing with minimum input voltage (5 V) and 

maximum input voltage (24 V) revealed the controller's 

ability to operate across the full range. For a minimum input 

(5 V), we observed faster stabilization with brief initial 

disturbance due to limited training in extreme boost mode. 
And for a maximum input (24 V), we observed slightly 

longer stabilization time but excellent steady-state 

performance 

 Case 3: Temperature Variation 

We vary the temperature between -55 and +175 °C, and 

we set Vin to 14.5 V (average input voltage) and we vary the 

value of the load. Fig.9 shows how the agent acts in the face 

of a temperature change. Here, we use a scale for 
temperature: 2.5 represents 20 °C. 
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Fig 9 Wave form of the Output Voltage for a Variation of the Temperature Tj and the Load 

 

Temperature variations from -55 °C to +175 °C (scaled 

representation) showed minimal impact on system 

performance. The controller maintained stable output 

regulation while adapting the switching frequency to manage 

MOSFET temperature and prevent thermal damage. 

 Case 4: Dynamic load variations 

Fig.10 shows the waveform of the output voltage and 

current as per the variation in the current of the inductor that 

reflects the current and voltage control of the smart controller. 

 

 
Fig 10 Wave form of the Output Voltage and Current for a Variation of IL 

 

Under varying load conditions, the controller 

demonstrated excellent current and voltage regulation. The 

system maintained output voltage within functional limits 

while adapting inductor current and output current to ensure 

overall stability. 

D. Experimental Validation 

The practical integration of the PPO model on the 

Raspberry Pi aims to transfer the decision capabilities learned 

in simulation to a real embedded system, ensuring direct 

interaction with the buck-boost converter. In this architecture, 
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the Raspberry Pi plays a central role: it hosts the PPO 

algorithm, reads the voltage and current sensors, and directly 

generates the control signals. 

 

After training the PPO model in a simulated 

environment (via Gymnasium and Stable-Baselines3), the 

model is exported and then transferred to the Raspberry Pi in 

.zip format. The steps are: 
 

 Loading the model with model = PPO.load 

("ppo_model.zip"). 

 Reset the same runtime environment as the drive (voltage 

range, current, etc.). 

 Adaptation of observation/action functions for the 

physical environment. 

 Interface with the physical converter. 

 

The Raspberry Pi interacts directly with the converter 

through: 
 

 Sensors connected in GPIO to measure the output voltage 

(Vout), the output current (Iout) and possibly the 

temperature. 

 PWM pins generated by the Raspberry Pi itself (via 

pigpio or RPi.GPIO) to adjust the control duty cycle. 

 A control update frequency set between 100 Hz and 500 

Hz, depending on the dynamic requirements of the 

converter. 

 

The experimental validation using dual DC motors as 

load demonstrated the practical viability of the approach: 
 

 Output Voltage Stability: 11.9 V (±0.1 V) under varying 

load conditions 

 Current Range: 4.79 A to 5.07 A with smooth regulation 

 Power Delivery: 57.3 W to 59.4 W with minimal 

oscillation 

 Response Time: Sub-10ms control loop execution. 

 

E. Discussion 

The results demonstrate that PPO-based control provides 

a viable and superior alternative to traditional control methods 
for non inverting buck-boost converters . Results shows : 

 

 Convergence: The PPO algorithm successfully learned 

optimal control policies within 10,000 episodes 

 Stability: Excellent voltage regulation under various 

operating conditions. 

 Efficiency: Significant improvements in energy efficiency 

and power quality. 

 Practicality: Successful implementation on low-cost 

embedded hardware. 

 
The approach addresses the fundamental limitations of 

traditional controllers while providing practical benefits for 

renewable energy systems. The ability to maintain stable 

operation under varying environmental conditions makes it 

particularly suitable for photovoltaic applications where input 

conditions change frequently. 

 

IV. CONCLUSION 

 

This paper has presented a comprehensive investigation 

of PPO-based control for non-inverting buck boost converters 

in renewable energy applications. The research demonstrates 

that deep reinforcement learning techniques can effectively 

address the limitations of traditional control methods while 

providing superior performance in terms of efficiency, 
stability, and adaptability. Key achievements of this work 

include: a comprehensive modeling of buck-boost converter 

dynamics suitable for reinforcement learning, successful 

adaptation of PPO algorithm for power electronics control, 

extensive testing under various operating conditions 

demonstrating superior performance, and the practical 

deployment on Raspberry Pi platform with real-time 

performance. Experimental confirmation of 97 % efficiency 

and enhanced power quality This research opens new 

possibilities for intelligent control in power electronics, 

particularly for renewable energy applications where 

adaptability and robustness are crucial. The successful 
implementation of PPO-based control on low-cost embedded 

hardware demonstrates the practical viability of AI-driven 

control strategies in power electronics, paving the way for 

more intelligent and efficient renewable energy systems. 
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