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Abstract: Leptospirosis, an emerging global zoonotic disease caused by Leptospira species. A wide range of clinical 

symptoms are present in this condition, from a low-grade fever to potentially fatal side effects like Weil's disease and 

pulmonary hemorrhage syndrome. The pathophysiology remains incompletely understood despite being a disease of 

epidemic proportions, particularly in tropical regions. Recent developments have indicated the gut microbiota to be a 

potent modifier of systemic immunity and its potential to modulate disease severity in infectious diseases. The review 

discusses how the gut microbiota modulates the pathogenesis of leptospirosis through dysbiosis, leading to immune 

dysregulation and systemic inflammation while causing localized damage to specific organs. Related bacterial infection 

research indicates that disruptions in gut microbiota worsen immune system imbalances and cytokine storms while 

intensifying multi-organ failure in severe leptospirosis cases. Microbiota-directed therapeutic approaches including 

probiotics, prebiotics, fecal microbiota transplantation and dietary modifications may decrease disease severity and 

improve clinical outcomes. There are several knowledge gaps in leptospirosis research that require comprehensive 

microbiota profiles, mechanisms of action and clinical trials to address and evaluate these therapeutic approaches. This 

review emphasizes that combining microbiota approaches with leptospirosis research will provide a novel, and potentially 

fruitful, direction for therapeutic development and address the acute need for new therapeutic against the neglected 

tropical disease. 
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I. INTRODUCTION 

 

Leptospirosis, a disease that can be transmitted from 

animals to humans. It is caused by a harmful bacteria 

belonging to the genus Leptospira [1]. It can be fatal for 

human health. It has a different range of clinical symptoms, 

which can vary from mild fever to serious complications 

such as Weil’s disease and pulmonary hemorrhage 

syndrome [2,3]. While leptospirosis has a widespread 

around the world, it continues to be inappropriately 

diagnosed and poorly studied, especially in tropical and 

subtropical areas where it represents a major public health 
concern [4]. The disease’s pathogenesis is complex, 

involving strategies by Leptospira to evade immune system, 

excessive inflammatory responses, and multi-organ 

involvement. Comprehending the factors that increases 
disease symptoms and progression is important for 

developing specialized therapeutic systems [5,6]. 

 

In recent years, the gut microbiota has come into focus 

as a vital host health regulator that influences the 

progression of many infectious diseases and aids in 

immunological homeostasis [7]. The gut microbiota, which 

is made up of trillions of microorganisms such as bacteria, 

viruses, fungi, and archaea, cooperates to regulate systemic 

immunity [8]. Changes in the composition of the gut 

microbiota, referred to as dysbiosis, have been associated 
with the development of several bacterial illnesses, 

including sepsis, pneumonia, and gastrointestinal problems. 

These findings raise the intriguing potential that 
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leptospirosis severity and progression may possibly be 
influenced by the gut microbiome [9 -12].  

 

According to research, gut dysbiosis can increase 

systemic inflammatory responses by disrupting the balance 

of pro- and anti-inflammatory signals [13]. In viral diseases, 

this imbalance may lead to enhanced immune activation, 

increased cytokine production, and ultimately organ failure 

[14]. Given the systemic character of leptospirosis and its 

reliance on immune system interactions, it is pertinent and 

urgent to investigate the relationship between gut microbiota 

and the disease's progression [15]. Although the gut 

microbiota has been thoroughly investigated in relation to 
other bacterial infections, its role in leptospirosis remains 

mostly unknown [16]. 

 

The aim of this study, therefore, is to investigate the 

potential contribution of gut microbiota to the 

pathophysiology of leptospirosis in order to fill this 

knowledge gap. We shall discuss how gut microbiota can 

modulate host immune responses in Leptospira infection and 

whether dysbiosis may lead to exacerbated leptospirosis-

related outcomes, such as acute renal impairment and liver 

dysfunction. Other new interventions that aim to target gut 
microbiota with the aim of disease course limitation include 

probiotics, prebiotics, and fecal microbiota transplantation. 

 

Current knowledge regarding microbiota and the 

pathophysiology of leptospirosis from two key areas of 

research is summarized to arrive at a comprehensive view 

with respect to the role played by gut microbiota in this 

NTD. Having used this approach, we are allowed to 

emphasize critical research gaps within the area and point 

toward new directions of developing microbiota-based 

therapeutic interventions. The resultant multidisciplinary 
view can provide depth to our understanding of leptospirosis, 

while offering a new approach for the mitigation of 

infectious disease via commensal organisms of the gut. 

 

II. LEPTOSPIROSIS PATHOPHYSIOLOGY 

 

Leptospirosis is a zoonotic disease with an array of 

clinical manifestations from a mild, self-limiting febrile 

illness to severe, life-threatening complications caused by 

pathogenic Leptospira species [17]. Understanding this host 

and virulence factor interplay in positive human studies will 

be critical in determining future strategies for making an 
effective vaccine against systematics leptospirosis [18]. The 

disease follows a distinct course, with traditional bacterial 

spread, immune response, and organ-specific injury defining 

each step along the way [19, 20]. 

 

 

 

A. Entry and Dissemination of Leptospira 
Pathogenic Leptospira gain access to the host via 

abrasions of the skin or mucous membranes, or via direct 

contact with contaminated water or soil [21]. Once entry is 

achieved, the spirochetes spread quickly through the 

bloodstream, exploiting their unique shape and motility to 

do so [22, 23]. The migratory ability and mechanical barrier 

bypassing capacity offered by flagella allow Leptospira to 

penetrate competitive host tissue [24]. In contrast to several 

other pathogens, Leptospira show extraordinary resistance 

to host complement-mediated killing, allowing them to 

survive in the early phase of infection [25 -27]. 

 
After dissemination, bacteria colonizes various organs, 

especially liver, kidneys, lungs and CNS. Such a systemic 

distribution is characteristic of leptospirosis and is aided by 

the ability of Leptospira to bind extracellular matrix proteins 

including laminin and fibronectin [28, 29]. These bacteria 

generate adhesins and surface proteins (e.g., LipL32), 

responsible for vertical adhesion and tissue colonization [30]. 

 

B. Host Immune Response and Inflammatory Pathways 

The immune response of the host to leptospirosis is 

two-edged: it protects but at the same time contributes to the 
destruction of tissues. 

 

 Innate Immune Response:  

During the early phase of infection, macrophages, 

dendritic cells, and neutrophils recognize Leptospira via 

PRRs, including TLR2 and TLR4 [31]. This recognition 

induces the production of pro-inflammatory cytokines, 

including tumor necrosis factor-alpha (TNF-α), IL-6, and 

IL-1β [32]. These cytokines mediate the recruitment of 

immune cells to the site of infection but can also cause 

systemic inflammation [33]. 
 

 Adaptive Immune Response:  

The humoral immune system has an important role in 

the control of Leptospira [34]. Antibodies to antigens of 

Leptospira, such as LPS and LipL32, enhance bacterial 

clearance. In some instances, however, the delayed adaptive 

response promotes tissue damage by deposition of immune 

complexes and activation of complement. 

 

 Cytokine Storm:  

In the severe state of the disease, dysregulated immune 

response results in cytokine storm with overwhelming levels 
of IL-1β, IL-6, IL-10, and TNF-α. Hyperinflammatory status 

contributes to endothelial dysfunction, vascular leakage, and 

multiorgan failure [35]. 
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Fig 1: Demonstration of Immune Cells Triggering Inflammatory Pathways 

 

C. Organ-Specific Pathogenesis 

 

 Kidney Injury:  

Human leptospirosis pathology focusses on the 

kidneys.  Leptospirosis is linked with excessive activation of 

inflammasomes and proinflammatory cytokines in the early 

stages, resulting in kidney inflammation and injury.  

Leptospira can be identified in proximal tubular cells on day 

10 and in the tubular lumen on day 14 [36]. Leptospiral 

outer membrane proteins (OMPs) contain harmful 

compounds like lipoproteins, LPS, and peptidoglycan, 
which trigger immune responses [37]. LPS is a major 

antigen affecting immunity and plays a key role in infection 

[38]. When OMPs were tested on mouse kidney cells, they 

activated genes linked to kidney damage and inflammation 

[39]. A key protein, LipL32, causes kidney injury and is a 

major target of the immune system in human infections. 

LipL32 also acts as a toxin, breaking down red blood cells 

during infection [40]. 

 

 Liver Dysfunction:  

Weil's disease actually represents the most severe form 
of leptospirosis disease, involving liver damage with 

jaundice, with a lethal rate of (19%), which is serious [41]. 

The mechanisms responsible for jaundice in leptospirosis 

have not been determined, nor is it clear if jaundice is 

caused by the liver injury [42]. In recovery of patients, 

evidence for liver damage includes changes to various liver 

structures, including the mitochondria, bile ducts, lacteals, 

and tight junctions [43, 44]. Indeed, leptospires invade the 

space between liver cells, and therefore can in theory lead to 

disruption of the tight junctions causing bile to flow in the 

blood alongside the potential for liver cell injury to involve 

other structures, which could lead to jaundice [45, 46]. 

Indeed studies of leptospirosis afflicted hamsters and guinea 

pigs demonstrated the presence of leptospires and/or 

remnants located between liver cells that have been 

damaged [47]. The events occurring in typical liver disease 

called jaundice are thought to occur when bile duct is 

obstructed and bile is retained in liver involving bile duct 

cells. In leptospirosis, it could be said that an obstructed bile 

duct is analogous to cellular or organ injury to the biliary 

structures enabling some type of leakage of bile after injury 

leading to jaundice [48]. Understanding the causations of the 
events describing jaundice in horrible cases of leptospirosis 

may provide useful understanding of liver failure in serious 

leptospirosis and the potential value of early laparotomy or 

liver isolation and treatment. 

 

 Pulmonary Hemorrhage Syndrome (PHS):  

Leptospiral pulmonary hemorrhage syndrome (LPHS) 

is the most fatal complication of leptospirosis, with 

mortality amongst cohorts observed to be greater than 50% 

[49, 50]. The LPHS process is complex and involves 

interactions between bacterial mechanisms and host 
mechanisms; therefore clear mechanistic delineation and 

understanding will be a challenge. Whereas lung tissue is 

typically devoid of leptospires, the pulmonary damage from 

distal sites of infection is thought to involve circulating 

bacterial toxins (i.e. hemolysins and proteases) [51 - 53]. 

Immune-mediated mechanisms are also implicated in the 

pulmonary hemorrhage process. Immunoglobulin and 

complement has been demonstrated in deposits along the 

alveolar septa in LPHS human patients and in experimental 

animal studies in the LPHS disease process. These immune 

complexes may have roles in hosting a milieu for pulmonary 
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hemorrhage [54]. Finally, the pathophysiology of LPHS also 
includes mechanisms that impair normal aluminum fluid 

clearance , such as infection-induced impairments in ENaC 

along lung membranes while carrying simultaneous 

increases in NKCC1 along the basolateral membrane 

transepithelial conductance. These mechanism breaks that 

osmotic gradient to dynamic fluids for absorption, together 

allows fluid to remain in the alveolar spaces [55]. Further, 

though AQP5 and Na-K-ATPase expression did not appear 

to be perturbed in a manner consistent with present health 

complaints, the fluid clearance mechanics resembled 

impaired physiology described in ARDS. The increased 

vascular permeability caused by inflammatory damage, 
along with the lack of regulation of fluid, creates a situation 

ripe for severe pulmonary hemorrhage and respiratory 

failure, mimicking the lung injury patterns observed in 

sepsis. The present findings highlight the dual roles of 

bacterial toxins and host responses in driving the devastating 

pulmonary complications of leptospirosis [56]. 

 

III. GUT MICROBIOTA ALTERATIONS IN 

BACTERIAL INFECTIONS 

 

Manipulation of the gut microbiota should improve 
host homeostasis, especially by maintaining immune system 

function and by preventing pathogenic invasion [57]. 

However, gut microbiota composition is frequently 

disturbed during bacterial infections (a phenomenon referred 

to as dysbiosis). Such disruption can aggravate disease 

progression through impaired immune homeostasis and 

enhanced systemic inflammation [58]. Much of the insight 

on the mechanisms and ramifications of microbiota 

perturbations stems from studies performed in the context of 

a wide range of bacterial infections [59]. 

 
A. Dysbiosis During Systemic Bacterial Infections 

Even bacterial infections outside the gastrointestinal 

tract may cause serious changes in gut microbiota. Most 

systemic infections compromise the gut epithelial barrier, 

promoting translocation of gut bacteria and their metabolites 

into the bloodstream and further altering microbiota 

composition [60]. For example, during Salmonella infection, 

the inflammation caused by the pathogen reconfigures the 

intestinal microbiota, diminishing the abundance of the 

commensal bacteria Lactobacillus and Bacteroides and 

giving rise to blooms of opportunistic pathogens, including 

Enterobacteriaceae [61]. In contrast, systemic infections 
such as sepsis are characterized by loss of microbial 

diversity with overrepresentation of pro-inflammatory 

bacteria that further contribute to immune dysregulation [62]. 

These findings suggest that not only do bacterial infections 

cause disruption of gut microbiota, but dysbiosis in return 

exacerbates systemic inflammation through a feedback loop. 

 

B. Gut Dysbiosis and Immune Modulation in Bacterial 

Infections 

The gut microbiota significantly mediates the host's 

immunity both within the gut and systemically. Dysbiosis, 
due to bacterial infection, impairs both the innate and 

adaptive immune responses [63]. Clostridioides difficile 

infection serves as an example of how disturbance of gut 

microbiota and decreased efficacy in short-chain fatty acid 
(SCFA) production by bacteria critical to intestinal epithelial 

barrier and regulatory anti-inflammatory pathways disrupt 

localized immunity [64]. Loss of SCFA-producing bacteria 

creates a 'window of opportunity' for C. difficile to attach to 

and colonize the intestinal epithelium and produce severe 

inflammation [65]. Loss of gut homeostasis is also a sequela 

of dysbiosis and is associated with impaired T cell responses, 

as well as increased incidence of systemic infection in 

contexts such as Staphylococcus aureus bacteremia [66]. 

Ultimately, these studies demonstrate that disturbances of 

gut microbiota composites (functional to structural) during 

bacterial infection can substantially alter immune responses 
and disease outcomes. 

 

C. Evidence from Animal Models of Gut Dysbiosis 

The evidence from animal models strongly support the 

role of gut dysbiosis in the altered disease progression of 

bacterial infections. Mice treated with antibiotics recognize 

that gut microbial diversity decreases with this treatment, as 

the ability of the mucosal immunity to respond is impaired, 

increasing the occurrence of systemic infections [67]. For 

example, in an infection with Streptococcus pneumoniae, 

colonizing gut dysbiosis was found to impair alveolar 
macrophage function, which could exacerbate pulmonary 

infections [68]. In these examples, how type 1 systemic 

infections in mammals could also reflect a bidirectional 

interaction between affected gut and mucosa were 

demonstrated. Pneumonia has been shown to be the leading 

cause of mortality for all infectious disease and is influenced 

by the gut microbiota, which has been shown to influence 

mucosal immunity locally and systemic immunity [68]. 

Additionally, an imbalance in gut microbiota signaling can 

be expressed through clinical models for the development 

and progression of disease continues to illustrate how the 
gut can influence systemic inflammation and infection [69]. 

The gut-lung axis has captured the interest of researchers 

and speaks to the complex interplay between the 

gastrointestinal and respiratory systems  [70, 71]. 

 

IV. GUT MICROBIOTA AND IMMUNE 

RESPONSES IN LEPTOSPIROSIS 
 

The gut microbiota has established itself as a 

significant regulator of host immune function, influencing 

both the innate and adaptive sides of the immune response 

[72]. This relationship is especially interesting when 
considering systemic bacterial infections such as 

leptospirosis, where immune dysregulation plays a major 

role in the severity of the disease. While there not an 

abundance of direct scientific literature linking gut 

microbiota and leptospirosis, other bacterial infections and 

theoretical models have discussed this wider dynamic 

relationship leading to inferences on the possible 

relationship in the context of leptospirosis [73]. The 

underlying features of the relationship between gut 

microbiota and host immune function is complex, and it has 

been recognized to involve a wide range of interactions 
involving microbial metabolites, immune signaling 

pathways, and gut barrier function [74]. The gut microbiota, 

a complex ecosytem within the gut, plays a central role in 
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many aspects of host physiology and multi-faceted tasks 
including nutrient metabolism, immune system development, 

and providing a protective barrier against pathogenic 

bacteria [75]. 

 

A. Modulation of Innate Immunity: Role of Macrophages 

and Neutrophils 

The innate immune response is the relevant mediator 

of the first line of defence against Leptospira infection, and 

the macrophage and neutrophil response is critical for the 

recognition and clearance of the pathogen, and importantly 

all the immune-mediated effects are strongly modulated by 

the gut microbiota [76]. 
 

 Macrophages:  

The function and activity of macrophages is reported 

to be enhanced by commensal gut bacteria and their 

metabolites such as short-chain fatty acids (SCFAs) [77]. 

Macrophages are important for recognising leptospira 

during leptospirosis, via pattern recognition receptors such 

as toll-like receptors (TLRs) [78]. Gut dysbiosis may 

decrease effective macrophage responses, and associated 

impairment of bacterial clearance and prolonged 

inflammation responses [79]. 
 

 Neutrophils:  

The process of neutrophil mobilisation and maturation 

is governed by gut microbiota-derived signals. Some studies 

indicate neutrophil responses are impaired in dysbiosis [80]. 

This could compromise the host response to avoid 

Leptospira dissemination, especially because excessive 

neutrophil activation, that is typically caused by a microbial 

imbalance, may promote tissue damage and perpetuate 

systemic inflammation during leptospirosis [81, 82]. 

 

B. Modulation of Adaptive Immunity: Role of Tregs and 
Th17 Cells 

The adaptive immune response, particularly the 

activity of T helper cells, is a major factor in the regulation 

of the inflammatory process that occurs in leptospirosis. The 

gut microbiota affect a balance between pro-inflammatory 

Th17 cells and regulatory T cells (Tregs), maintaining 

immune homeostasis [83]. 

 

 Th17 Cells:  

Gut microbiota are essential to the differentiation and 

maintenance of Th17 cells, which mediate many of the 

inflammatory responses that occur in response to bacterial 
infections [84]. Th17 cell responses in leptospirosis are 

likely to contribute to tissue injury and damage, especially 

when they are overactive [85]. Dysbiosis - an overgrowth of 

inflammatory gut microbes - would amplify the cytokine 

production mediated by Th17, and cause a hyper-

inflationary response with potential for cytokine storm seen 

in severe cases of leptospirosis [86]. 

 

 Tregs:  

Regulatory T cells promote suppression of excessive 

inflammation and inflammation mediates tissue repair; the 
effects are less pronounced in the presence of absence of 

systemic inflammation - therefore it could be seen as a 

competing factor with regard to inflammation and infection 

[87]. Commensal bacteria (Clostridia) have been shown to 

induce Treg expansion through SCFA [88]. Dysbiosis or 

lower proportions of SCFA-producing bacteria reduce Treg 

activity and function may lead to a reduced capacity for 

inhibition of inflammation, ultimately tipping the intra-host 

balance towards leakage and amplification of the 

inflammation during infection [89]. 

 

 
Fig 2: Visualization of Role of Th17 & Tregs 
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C. Hypothetical Models: Gut Dysbiosis, Cytokine Storms, 
and Organ Damage in Leptospirosis 

Severe lethal leptospirosis is associated with systemic 

inflammation, including cytokine storms, potentially 

through the gut microbiota's translocation to the immune 

system [90]. Theoretical models have proposed multiple 

paths by which limited gut dysbiosis might lead to greater 

immune dysregulation and organ injury: 

 

 Barrier Dysfunction and Systemic Inflammation  

Gut dysbiosis often leads to increased permeability of 

the gut, and bacterial endotoxins such as lipopolysaccharide 

(LPS) are translocated into the blood circulation. In LPS 
endotoxic shock (i.e., sepsis), high endotoxin exposures can 

lead to increasing systemic inflammatory response (i.e., 

catastrophic inflammation) [91]. In leptospirosis, this may 

represent an increased risk for cytokine storms, with 

excessive levels of pro-inflammatory cytokines such as 

TNF-α, IL-6, and IL-1β that promote endothelial 

dysfunction, increased vascular permeability, and 

subsequent multiple organ failure phenomena associated 

with severe forms of leptospirosis [92]. 

 

 Improved Cytokine Production:  
Changes in the gut microbiome composition attributed 

to dysbiosis can lead to increased concentration of pro-

inflammatory cytokines such as IL-17 and IL-22 [93]. These 

cytokines are necessary for the resolution of pathogens; 

however, dysregulated levels can lead to tissue injury. In the 

case of leptospirosis, exaggerated cytokine production can 

result in additional renal and pulmonary injury [94]. 

Microbial Metabolites and Immune Regulation: Dysbiosis 

causes a reduction in beneficial microbial metabolites like 

short chain fatty acids (SCFAs) which can disrupt immune 

regulation and induce hyper-inflammation [95]. The primary 
SCFAs were shown to promote anti-inflammatory pathways 

and protect epithelial barrier integrity which has potential 

consequences with increasing susceptibility of multi-organ 

dysfunction from leptospirosis [96, 97]. 

 

V. THERAPEUTIC PERSPECTIVES 

 

The gut microbiota is an attractive therapeutic target to 

attenuate the progression and severity of infectious diseases 

like leptospirosis [98]. Immune dysregulation and systemic 

inflammation associated with dysbiosis, indicates a potential 

rationale for the use of microbiota-based approaches to 
restore immune homeostasis, facilitate pathogen clearance, 

and decrease injury to tissues and organs [99]. Although we 

could not find studies on microbiota-based therapy specific 

to leptospirosis, studies performed with other bacterial 

infections revealed potential microbiota-based approaches 

using probiotics, prebiotics, fecal microbiota transplantation 

(FMT), and dietary approached [100]. 

 

A. Probiotics: Modulating Immune Responses and 

Restoring Gut Homeostasis 

Probiotics, or live microorganisms (bacteria and yeasts) 
that can improve the health of a host, have been shown to 

have effective roles for restoring microbial balance and 

regulating immune responses related to bacterial infection 

[101]. Probiotics exhibit protective mechanisms, notably 
Lactobacillus rhamnosus and Bifidobacterium bifidum, that 

provide improved integrity of the epithelial barrier and 

associated decreased permeability of the gut leading to 

decreased systemic translocation of bacterial endotoxins 

[102, 103]. This is relevant and likely important in the case 

of leptospirosis since the greatest driver of disease severity 

is systemic inflammation due to release of endotoxin. 

Probiotics may also regulate cytokine production by 

stimulating production of anti-inflammatory cytokines (e.g., 

IL-10) and decreasing pro-inflammatory cytokine 

production (e.g., TNF-α) [104]. These immune-modulatory 

advantages may mitigate cytokine storms and decrease 
tissue damage associated with leptospirosis. Animal models 

of sepsis study show that probiotics reduce mortality 

through the reduction of inflammation and improvements in 

bacterial clearance [105, 106]. Overall, probiotics have 

potential for alleviation of complications due to uncontrolled 

inflammation in patients suffering from severe leptospirosis. 

 

B. Prebiotics: Supporting Beneficial Microbial Populations 

Prebiotics, which are non-digestible dietary fibers that 

selectively stimulate the growth and activity of beneficial 

gut bacteria, represent another treatment option. Prebiotic 
compounds such as fructooligosaccharides (FOS) and inulin 

promote SCFA-producing bacterium, including Clostridia 

and Bacteroides, and these organisms play important roles 

in immune homeostasis [107]. SCFAs, especially butyrate, 

have anti-inflammatory effects and help to fortify the gut 

barrier, two useful effects that help with controlling 

systemic inflammation during leptospirosis [108]. The 

benefits of prebiotic supplementation for gut microbiota 

diversity and decreasing severity of bacterial infections, 

such as Clostridioides difficile infections and colitis, has 

been demonstrated [109]. While direct studies on 
leptospirosis are currently lacking, prebiotics can help 

promote biodiversity and recovery of microbiota after 

dysbiosis induced by infection from Leptospira species. 

 

C. Fecal Microbiota Transplantation: Rebuilding Microbial 

Ecosystems 

Fecal microbiota transplantation (FMT), the procedure 

of transferring stool from a healthy donor to a recipient has 

been demonstrated to be successful restoring gut microbiota 

diversity in acute and chronic settings such as recurrent C. 

difficile infections and inflammatory bowel disease (IBD) 

[110, 111]. FMT has been suggested to restore gut microbial 
diversity, increase the production of short-chain fatty acids 

(SCFAs) and decrease pro-inflammatory immune responses 

[112]. This restoration of intestinal microbiota diversity may 

help restore immune homeostasis in cases of leptospirosis 

where dysbiosis and systemic inflammation are substantial. 

In mouse models of sepsis, FMT reduced mortality by 

restoring intestinal barrier function which limited the 

systemic translocation of bacterial endotoxins [113]. 

Collectively, these findings suggest that FMT has potential 

as a rescue therapy in severe cases of leptospirosis where 

underlying gut barrier dysfunction is concern. 
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D. Dietary Interventions: Enhancing Gut Microbiota 
Resilience 

Dietary changes to influence gut microbiota 

composition and function may also be used as an adjunct 

approach to the treatment of leptospirosis. Specifically, diets 

that incorporate fiber, polyphenols, and omega-3 fatty acids, 

tend to increase microbial diversity and lead to the 

production of SCFAs that modify immune responses and 

lower the level of inflammation [114]. These dietary 

contents could support recovery of the microbiota and 

reduce organ damage that may arise from inflammation in 

leptospirosis. On the other hand, diets high in saturated fats 

and refined sugars, are associated with gut dysbiosis, and 
have increased overall inflammatory responses [115]. 

Therefore, dietary considerations for leptospirosis patients 

should focus on microbiota supporting foods to improve 

treatment outcomes. 

 

VI. CONCLUSION 

 

Leptospirosis is a zoonotic disease that is still poorly 

researched despite being globally active, it leads to severe 

cases with immune dysregulation, systemic inflammation 

and multi-organ damage. While there is much established 
knowledge of its clinical presentation and 

pathophysiological underpinnings, the potential contribution 

of gut bacteria in controlling the progress of leptospirosis is 

a new and largely uninvestigated area of study. Information 

from research investigating other bacterial pathogens 

overwhelmingly supports our hypothesis that disruption of 

gut dysbiosis may worsen immune dysregulation, contribute 

to cytokine storm biologically and enhance organ damage in 

cases of leptospirosis. These observations advocate for 

further study of the interactions between gut microbiota and 

leptospirosis pathogenesis. The microbiota's role on both 
innate and adaptive immunity present unique opportunities 

for therapeutic methods. Probiotics, prebiotics, fecal 

microbiota transplantation (FMT) and dietary strategies 

targeting gut microbiota recovery and immune modulation 

demonstrated success in other infection-mediated diseases. 

Especially for severe cases that are associated with systemic 

inflammation and organ failure, using these techniques to 

modify the course of illness in leptospirosis has the 

possibility of reducing symptoms and improving clinical 

outcomes. Nonetheless, considerable knowledge gaps persist. 

More research is required to define the changes in 

microbiota during leptospirosis, and identify microbiota-
derived biomarkers that may relate to disease severity, as 

well as to develop an understanding of how gut dysbiosis 

can affect immune responses and organ damage. More 

rigorously designed clinical studies are needed to assess the 

safety and efficacy of microbiota-based treatments in 

patients with leptospirosis. By combining findings from 

multi-variable sources, we have developed a review that 

demonstrates the potential of including microbiota study in 

leptospirosis studies, which could not only enhance our 

knowledge of the disease, but ultimately, improve treatment. 

As such, by outlining the role of gut microbiota in 
leptospirosis represents an exciting means by which 

innovative, microbiota-based interventions could be 

developed to add to current therapies, and to alleviate the 
global burden of this neglected tropical disease. 
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