Comparative Profit and Adoption of Maggot Feed by Catfish Farmers for Production

Akinbo T.M¹; Ogan H.I.²

¹Senior Lecturer and HOD, Department of Management and Accounting. Lead City University. Ibadan, Nigeria.

²PhD Student, Lead City University. Ibadan, Nigeria.

Publication Date: 2025/07/11

Abstract: Due to the very high cost of Fish feed, Fish Farmers in Port Harcourt, Nigerian are resorting to using black soldier fly larvae (Hermetia illucens L.), popularly called maggot to supplement the commercial fish feed. This study, using the quasi-experimental research design, anchored on the innovative theory of profit, evaluated the profit potential of using maggot feed only, as against using commercial feed in fish farming. Using a randomize sampling, field trial of catfish feeding was conducted with a total of 156 catfishes divided into six (6) groups: commercial feed group in three replicates and black soldier fly larvae (BSFL/maggot) feed group also in three replicates. Each tank held 26 catfishes and contained 500-700 liters of water. In the three trials of catfish fed with commercial feed of total of 78, about 73% or 57 out of 78 grew from an average weight of 780g to reached over 1kg (1000g) over a 90-day period. About 45% of those fed with BSFL or 35 out of 78 grew from 780g to reach over 1kg (1000g). An average of 36kg of commercial feed were consumed by each of three groups of catfishes with commercial feeds at a cost of \$1,333 per kg, resulting in total cost \$47,988 for each of these three groups of commercially fed fishes. On the other hand, an average of 45kg of BSFL were consumed by each of the three catfish groups at the cost of N550 per kg, resulting in total cost of N24,750 per group. Mean selling price of fish fed with commercial feed ranged from N3,717 to N3,897 with total profit ranged of N48,672 to N53,352. On the other and the mean selling price of catfish fed with BSFL ranged from N 2,943 to N 2,950 while its total profit ranged from N54,042 to N54,774. The study concluded that the African catfish (Claria Gariepinus) could be farmed profitably with the Maggot/BSFL meal only. It is thus recommended that farmers could use 100% BSFL feed to grow their catfish from 780g to table size of 1kg and still make reasonable profit.

Keywords: Black Soldier Fly Larvae (BSFL), African Catfish, Cost, Profit, Commercial Feed.

How to Cite: Akinbo T.M; Ogan H.I. (2025) Comparative Profit and Adoption of Maggot Feed by Catfish Farmers for Production. *International Journal of Innovative Science and Research Technology*, 10(7), 390-397. https://doi.org/10.38124/ijisrt/25jul177

I. INTRODUCTION

Catfish (Claria Gariepinus) is the fastest growing species of locally grown and traded fish in Nigeria and even in the Africa continent [1]. This species is considered one of the best for aquaculture as it thrives and grows well in different environments. It can eat both natural and artificial food, making it easy to rear in captivity. It can be raised in various systems like ponds, cages, tanks, and water recycling systems, using either intensive or extensive methods. Catfish grows quickly and can be cross-bred to improve traits like body shape, resilience, reproductive rates, fry survival, and ability to use extra feed [2]. The species are usually grown to a marketable size within 4 to 9 months, depending on the production method used [3]. Most fish farmers venture into the business as a result of it triple marketing value over tilapia. [4]. One major hurdle in catfish farming is the cost of commercial feed. Feed expenses represent the highest operating cost, and it is crucial to provide nutritious feed that promotes rapid growth and efficient feed use, while maintaining water quality [3]. In Nigeria, over 60% of the cost of producing catfish go into feeding, mainly due to high cost of imported/commercial feed. Fortunately, the country has various natural resources that could safely and economically supplement the expensive imported commercial feeds, providing alternative viable solution [5]. Reports have shown that Nigeria can replace fish imports with local production, which would create jobs, reduce poverty in the rural and peri-urban areas, and help improve the balance of payments [5]. Feed is the most expensive component of intensive fish farming [4,6], which affect the profit for most fish farmers. However, one key ingredient that can be incorporated as fish feed component to improve farmers growth, quality and ultimately profit is the black soldier fly larvae (BSFL/maggot). When processed into the defatted state, BSFL/maggot has been shown to contain 60% protein and 10-12% lipids [7]. In its full-fat form, BSFL has 42% crude protein and 30% lipids. BSFL turns waste into valuable biomass that is high in protein and fat [7]. In Indonesia, feed costs account for 60% of production Volume 10, Issue 7, July – 2025

expenses. As a result, the use of BSFL in animal feed has increased [8]. This shift has boosted the earnings of livestock farmers and improved profits in the catfish industry [9]. BSFL have also in addition been used alternative feed [10]. In the light of the above, this study set out to evaluate the profitability profile of using black soldier fly larvae (*Hermetia illucens L.*) as feed component for Catfish (*Clarias gariepinus*) production in Port Harcourt; Nigeria. The study objectives were to determine the profit based on the weight, length and the selling price of the catfish groups fed with the commercial feed as against those fed with BSFL/Maggot.

II. LITERATURE REVIEW

This section showed that researches have been carried out on the profitability of catfish production in Nigeria. In reviewing the socioeconomic and profitability analysis of catfish production in Enugu, within a 7month production cycle, the total cost of production was estimated to be ₦584,968.041 while the total revenue earned from the sale of market size catfish was №2,257,098 implying a profit of ₦1,672,129.96 [11]. In reviewing the economic efficiency and profitability analysis of catfish production in Kaduna State, the gross margin was №886,250.51 with a profit of ₩861.021.37 for a production cycle [12]. Similarly in Ibadan, in evaluating factors that determine the profitability of catfish production, the gross margin was N197,520.25 with a profit of №182,573.04 in a production cycle [13]. In determining the factor profitability of catfish production in Odogbolu local government area of Ogun state, through interview of 120 fish farmers, it was revealed that a total of N3.051,537.50 was spent to realize a total revenue of №3,770,291.70 leaving a gross margin of №1,216,123.30 and profit of №718,754.10. It was further revealed that fish feed accounted for 77.4% of the total cost. [14]. In Ethiope East Local Government Area of Delta State, a study which examined the variables that influence the financial success of fish farming from 60 farmers who responded to the designed questionnaire, revealed the gross margin of \$6,407,83 per production cycle and a return on investment of 0.73 [15]. On the other hand, the economics of catfish production in Kaduna revealed a profit of №5,282,393.85 rom 9,637 fishes sold at N624.92 per 1.12 kg table fish size [16]. Another study which investigated the constraints to the profitability in the utilization of floating feed for catfish enterprises in Osun State, Nigeria with a sample of 180 catfish farmers, revealed a net income of №1,008,769.30 and gross margin of №1,039,814.79. Profitability ratios reported was 0.38 indicating that from every №1.00 generated from the enterprise, a net income of №0.38 was earned [17]. In a related study in Ogun State, Nigeria, the analysis of profitability of fish farming, showed an average total cost of N394,380 per annum, earned a gross revenue of N 715,030.30 with a gross margin of N 574,314 and a profit of N320,650. The return on investment of 0.55 implied that for every one Naira invested in Fish production by farmers, a return of №1.55 and a profit of №0.55 were obtained [18].

https://doi.org/10.38124/ijisrt/25jul177

In Benue state, Nigeria, a study that examined the profit efficiency among catfish farmers, showed that the cost of feed decreased the profit by 30% [2]. The evaluation of profitability and profit efficiency of catfish fingerlings production in Edo South revealed fish farmers earned a revenue of N2,885,443.2 and profit of N2,084,004.24 per production cycle 120,000 fishes [18].

Though the above studies in Nigeria did not report BSFL as component of feed, a study in Sangkuriang (Indonesia), catfish cultivation was fed with commercial and non-conventional fee in a ratio of 50:50. The combination of feed reduced costs by IDR 675/kilogram of feed [10].

III. MATERIAL AND METHODS

This study employed quasi-experimental research design by relying on the previous work on catfish feeds [20]. Six (6) groups of catfish were formed from group A of previous work with average weight gain of 780g [21]. Three (3) groups of the catfish were continued with same commercial feed as a continuation while another three (3) were fed with BSFL only. A total of 156 catfish were divided into six (6) groups: commercial feed group in three replicates and BSFL feed group also in three replicates. Each tank held 26 catfishes and contained 500-700 liters of water. The trial lasted 90 days, during which their weights and lengths were recorded every two weeks. SPSS software version 24 was used to analyze the data. The prevailing market price of 1kg of catfish was N3,000. The unit weight of catfish selling price from our study were based on N3 per g of the commercial feed. In determining the profit through budget analysis of the catfish production from both commercial and BSFL feeds, the following modified relations were determined [22]:

Total Revenue (TR) = Price (P) x Quantity (Q)

Total Cost (TC) = Cost of feed + α

Where α = constant (all other cost such as labour, water and electricity were held constant)

IV. RESULTS

Figures 1 to 3 showed the mean weight of commercially fed catfishes and those with BSFL, mean length of commercially fed catfishes and those with BSFL, and mean selling price of commercially fed catfishes and those with BSFL. Table 1 showed the descriptive statistics while Table 2 showed the analysis of variance. Table 3 showed the multiple comparison between the individual member of the one group of trial catfish with another group. Table 4 presented the budget analysis of the catfish fed with commercial and BSFL feeds.

Fig 2 Mean Length of Commercially Fed Catfishes and Those with BSFL

Fig 3 Mean Selling Price of Commercially Fed Catfishes and Those with BSFL

https://doi.org/10.38124/ijisrt/25jul177

				Table 1 Des	criptive Statis	stics			
		Ν	Mean	Std.	Std.	95% Co	onfidence	Minimum	Maximum
				Deviation	Error	Interval	for Mean		
						Lower Bound	Upper Bound		
W_Com_Feed	1.00	26	1245.7692	464.20464	91.03802	1058.2729	1433.2655	565.00	2380.00
	2.00	26	1239.2308	462.62757	90.72873	1052.3715	1426.0901	568.00	2378.00
	3.00	26	1299.2308	431.84046	84.69088	1124.8066	1473.6549	619.00	2185.00
	Total	78	1261.4103	448.02961	50.72936	1160.3952	1362.4253	565.00	2380.00
L_Com_Feed	1.00	26	53.5769	7.22453	1.41685	50.6589	56.4950	39.00	67.00
	2.00	26	53.4192	6.15623	1.20734	50.9327	55.9058	40.00	66.00
	3.00	26	52.1769	5.38028	1.05516	50.0038	54.3501	41.00	61.00
	Total	78	53.0577	6.24873	.70753	51.6488	54.4666	39.00	67.00
Sp_Com_Feed	1.00	26	3737.3077	1392.61391	273.11406	3174.8188	4299.7966	1695.00	7140.00
	2.00	26	3717.6923	1387.88270	272.18619	3157.1144	4278.2703	1704.00	7134.00
	3.00	26	3897.6923	1295.52139	254.07265	3374.4199	4420.9647	1857.00	6555.00
	Total	78	3784.2308	1344.08883	152.18809	3481.1856	4087.2760	1695.00	7140.00
W_Bsf_Feed	1.00	26	983.6538	300.46323	58.92569	862.2941	1105.0136	494.00	1717.00
	2.00	26	990.6923	332.87232	65.28163	856.2423	1125.1423	498.00	1922.00
	3.00	26	981.3077	323.23103	63.39082	850.7519	1111.8635	424.00	1801.00
	Total	78	985.2179	314.99848	35.66655	914.1968	1056.2391	424.00	1922.00
L_Bsf_Feed	1.00	26	52.5577	8.62592	1.69168	49.0736	56.0418	43.00	86.50
	2.00	26	49.8577	5.37402	1.05393	47.6871	52.0283	39.00	62.00
	3.00	26	50.4154	6.41976	1.25902	47.8224	53.0084	39.80	66.00
	Total	78	50.9436	6.94893	.78681	49.3768	52.5103	39.00	86.50
Sp_Bsf_Feed	1.00	26	2950.9615	901.38970	176.77707	2586.8824	3315.0407	1482.00	5151.00
	2.00	26	2972.0769	998.61696	195.84490	2568.7268	3375.4270	1494.00	5766.00
	3.00	26	2943.9231	969.69310	190.17246	2552.2556	3335.5906	1272.00	5403.00
	Total	78	2955.6538	944.99544	106.99966	2742.5903	3168.7174	1272.00	5766.00

 $W_Com_Feed =$ Weight of fish fed with commercial feed; $L_Com_Feed =$ Length of fish fed with commercial feed; $Sp_Com_Feed =$ Selling price of fish fed with commercial feed; $W_Bsf_Feed =$ Weight of fish fed with BSFL; $L_Bsf_Feed =$ Length of fish fed with BSFL; $Sp_Bsf_Feed =$ Selling price of fish fed with BSFL

		Table 2 ANOV	A Result			
		Sum of Squares	DF	Mean Square	F	Sig.
W_Com_Feed	Between Groups	56341.026	2	28170.513	.137	.872
	Within Groups	15399909.846	75	205332.131		
	Total	15456250.872	77			
L_Com_Feed	Between Groups	30.578	2	15.289	.385	.682
	Within Groups	2976.013	75	39.680		
	Total	3006.590	77			
Sp_Com_Feed	Between Groups	507069.231	2	253534.615	.137	.872
	Within Groups	138599188.615	75	1847989.182		
	Total	139106257.846	77			
W_Bsf_Feed	Between Groups	1240.333	2	620.167	.006	.994
	Within Groups	7639010.962	75	101853.479		
	Total	7640251.295	77			
L_Bsf_Feed	Between Groups	105.651	2	52.826	1.097	.339
	Within Groups	3612.501	75	48.167		
	Total	3718.152	77			
Sp_Bsf_Feed	Between Groups	11163.000	2	5581.500	.006	.994
	Within Groups	68751098.654	75	916681.315		
	Total	68762261.654	77			

W_Com_Feed = Weight of fish fed with commercial feed; L_Com_Feed = Length of fish fed with commercial feed; Sp_Com_Feed = Selling price of fish fed with commercial feed; W_Bsf_Feed = Weight of fish fed with BSFL; L_Bsf_Feed = Length of fish fed with BSFL; Sp_Bsf_Feed = Selling price of fish fed with BSFL

Table 3 Multiple Comparisons of Bonferroni

Volume 10, Issue 7, July – 2025

International Journal of Innovative Science and Research Technology

ISSN No: 2456-2165

https://doi.org/10.38124/ijisrt/25jul177

Dependent Variable	(I)	(J)	Mean	Std. Error	Sig.	95% Confid	ence Interval
	Group	Group	Difference (I-J)			Lower Bound	Upper Bound
W_Com_Feed	1.00	2.00	6.53846	125.67728	1.000	-301.2277	314.3046
		3.00	-53.46154	125.67728	1.000	-361.2277	254.3046
	2.00	1.00	-6.53846	125.67728	1.000	-314.3046	301.2277
		3.00	-60.00000	125.67728	1.000	-367.7662	247.7662
	3.00	1.00	53.46154	125.67728	1.000	-254.3046	361.2277
		2.00	60.00000	125.67728	1.000	-247.7662	367.7662
L_Com_Feed	1.00	2.00	.15769	1.74709	1.000	-4.1207	4.4361
		3.00	1.40000	1.74709	1.000	-2.8784	5.6784
	2.00	1.00	15769	1.74709	1.000	-4.4361	4.1207
		3.00	1.24231	1.74709	1.000	-3.0361	5.5207
	3.00	1.00	-1.40000	1.74709	1.000	-5.6784	2.8784
		2.00	-1.24231	1.74709	1.000	-5.5207	3.0361
Sp_Com_Feed	1.00	2.00	19.61538	377.03185	1.000	-903.6831	942.9139
		3.00	-160.38462	377.03185	1.000	-1083.6831	762.9139
	2.00	1.00	-19.61538	377.03185	1.000	-942.9139	903.6831
		3.00	-180.00000	377.03185	1.000	-1103.2985	743.2985
	3.00	1.00	160.38462	377.03185	1.000	-762.9139	1083.6831
		2.00	180.00000	377.03185	1.000	-743.2985	1103.2985
W_Bsf_Feed	1.00	2.00	-7.03846	88.51487	1.000	-223.7991	209.7221
		3.00	2.34615	88.51487	1.000	-214.4144	219.1068
	2.00	1.00	7.03846	88.51487	1.000	-209.7221	223.7991
		3.00	9.38462	88.51487	1.000	-207.3760	226.1452
	3.00	1.00	-2.34615	88.51487	1.000	-219.1068	214.4144
		2.00	-9.38462	88.51487	1.000	-226.1452	207.3760
L_Bsf_Feed	1.00	2.00	2.70000	1.92487	.495	-2.0137	7.4137
		3.00	2.14231	1.92487	.808	-2.5714	6.8560
	2.00	1.00	-2.70000	1.92487	.495	-7.4137	2.0137
		3.00	55769	1.92487	1.000	-5.2714	4.1560
	3.00	1.00	-2.14231	1.92487	.808	-6.8560	2.5714
		2.00	.55769	1.92487	1.000	-4.1560	5.2714
Sp_Bsf_Feed	1.00	2.00	-21.11538	265.54462	1.000	-671.3972	629.1664
		3.00	7.03846	265.54462	1.000	-643.2433	657.3203
	2.00	1.00	21.11538	265.54462	1.000	-629.1664	671.3972
		3.00	28.15385	265.54462	1.000	-622.1280	678.4357
	3.00	1.00	-7.03846	265.54462	1.000	-657.3203	643.2433
		2.00	-28.15385	265.54462	1.000	-678.4357	622.1280

 $W_Com_Feed =$ Weight of fish fed with commercial feed; $L_Com_Feed =$ Length of fish fed with commercial feed; $Sp_Com_Feed =$ Selling price of fish fed with commercial feed; $W_Bsf_Feed =$ Weight of fish fed with BSFL; $L_Bsf_Feed =$ Length of fish fed with BSFL; $Sp_Bsf_Feed =$ Selling price of fish fed with BSFL

Table 4 Analysis of Profit from Two Feeding Regimes

Com F	Com Feed Com Feed			Com Feed			BSFL Feed			BSFL Feed		BSFL F		Feed			
WCF1	SP	LC	W	SP	LC	W	SPC	LC	WB	SPB	LB	WB	SPB	LB	WB	SPB	LB
	CF	F1	CF	CF	F2	CF	F3	F3	SF1	SF1	SF1	SF2	SF2	SF2	SF3	SF3	SF3
	1		2	2		3											
1909	572	67	914	274	50.	140	420	53	571	1713	44	153	4590	62	799	2397	45
	7			2	9	1	3					0					
902	270	51.	137	413	54.	801	240	47	132	3966	53	678	2034	44.	740	2220	44.
	6	5	8	4	7		3		2					5			5
853	255	47	131	394	52.	888	266	48	152	4560	57	722	2166	47	819	2457	46
	9		6	8	7		4		0								
1339	401	59	870	261	50.	628	188	41	945	2835	53	590	1770	41.	101	3042	51
	7			0	1		4							5	4		
1358	407	55.	634	190	47	103	311	52	494	1482	43	890	2670	46	109	3297	52.
	4	5		2		9	7								9		3

Volume 10, Issue 7, July - 2025

International Journal of Innovative Science and Research Technology

ISSN No: 2456-2165

https://doi.org/10.38124/ijisrt/25jul177

													J •••••				
1098	329 4	53	132 0	396 0	53	110 7	332 1	52. 8	712	2136	48	106 5	3195	52	132 4	3972	54
599	179 7	39	204 9	614 7	64	131 1	393 3	53	108 7	3261	53	998	2994	48	116 8	3504	52. 8
1398	419 4	55	632	189 6	47	140 3	420 9	58	119 1	3573	86. 5	150 1	4503	61	101 2	3036	51. 4
1630	489 0	59	103 3	309 9	55	140 1	420 3	58	863	2589	50	745	2235	47	599	1797	66
1007	302 1	51	102 3	306 9	52	218 5	655 5	61	115 9	3477	55	118 8	3564	53	116 5	3495	53
565	169 5	40. 5	117 4	352 2	58	191 2	573 6	59	850	2550	50	544	1632	48	147 8	4434	60
1918	575 4	60	237 8	713 4	66	124 0	372 0	54	953	2859	53	118 3	3549	53. 7	865	2595	50. 2
1264	379 2	53. 5	162 4	487 2	52	192 8	578 4	58	583	1749	43	498	1494	39	153 9	4617	61
1074	322 2	55	132 7	398 1	52	141 1	423 3	54	117 3	3519	58	791	2373	47. 2	113 3	3399	57. 8
754	226 2	46	191 9	575 7	61	133 8	401 4	53. 3	109 8	3294	54	137 2	4116	52. 1	818	2454	46
1191	357 3	53	134 0	402 0	54	104 4	313 2	51	714	2142	45	942	2826	47	733	2199	44
1328	398 4	53. 5	594	178 2	41	160 9	482 7	54	102 9	3087	53	119 8	3594	52. 8	924	2772	50
1343	402 9	55	146 0	438 0	59	129 8	389 4	52	758	2274	47	119 9	3597	53	796	2388	47
1045	313 5	52	122 3	366 9	55	192 3	576 9	56	140 2	4206	58	102 3	3069	51	709	2127	46. 2
1325	397 5	52	133 3	399 9	56	117 2	351 6	51	118 4	3552	56	101 1	3033	51	528	1584	40. 4
1443	432 9	60	105 6	316 8	50	202 2	606 6	60. 4	734	2202	46	801	2403	48	917	2751	48
639	191 7	46. 5	805	241 5	48	109 1	327 3	50. 1	787	2361	49	711	2133	47	424	1272	39. 8
1344	403 2	54	132 9	398 7	56	619	185 7	42	765	2295	47	874	2622	48. 5	180 1	5403	59
631	189 3	43	191 6	574 8	61. 5	137 6	412 8	44	896	2688	49	192 2	5766	60	119 7	3591	49
2053	615 9	65	100 5	301 5	53	912	273 6	48	171 7	5151	64 52	849	2547	47	119 3 720	3579	51. 4 45
2380 Selling	714 0 97,	67	568	170 4 96,	40	721	216 3 101,	46	106 8	3204 76,7	52	933	2799 77,2	49	720	2160 76,5	43
price Cost	97, 170 47,			96, 660 47,			101, 340 47,9			25 22,5			77,2 74 22,5			76,5 42 22,5	
price Profit	47, 988 491			47, 988 48,			88 53,3			00 54,2			00 54,7			00 54,0	
FIOII	82			48, 672			52			25			74			42	

WCF1 = Weight of commercial feed 1; SPCF1 = Selling price of commercial feed 1; LCF1 = Length of commercial feed 1; WCF2 = Weight of commercial feed 2; SPCF2 = Selling price of commercial feed 2; LCF2 = Length of commercial feed 2; WCF3 = Weight of commercial feed 3; SPCF3 = Selling price of commercial feed 3; LCF3 = Length of commercial feed 3; WBSF1 = Weight of BSF1; SPBSF1= Selling price of BSF1; LBSF1 = Length of BSF1; WBSF2 = Weight of BSF2; SPBSF2= Selling price of BSF3; SPBSF3= Selling price of BSF3; LBSF3 = Length of BSF

ISSN No: 2456-2165

V. DISCUSSION

The descriptive statistics showed that the mean weight of fish fed with commercial feed ranged from 1,239g to 1,245g with the maximum weight of 2,380g while the minimum was 565g. On the other hand, mean weight of fish fed with BSFL ranged from 981g to 990g. The mean length of fish fed with commercial feed ranged from 51cm to 53cm with maximum fish length of 67cm and minimum of 61cm. For those fed with BSFL, the mean length of fish ranged from 49cm to 52cm with maximum length of 86cm and minimum of 62cm. The average consumption of 36kg of commercial feed were consumed by each of three trial catfishes. The unit cost i.e. per kg of the commercial feed was №1,333, while the total cost per trial was ₩47,988. For catfishes fed with BSFL, the average of 45kg were consumed by each of three catfish groups at the cost of N550 per kg, resulting in total cost of ₦24,750 per group. Mean selling price of fish fed with commercial feed ranged from №3,717 to №3,897 with total profit ranged of N48,672 to N53,352. The mean selling price of fish with commercial feed ranged from ₦3,717 to ₦3,897 with maximum of ₩7,140 and minimum of ₩6,555. On the other hand, the mean selling price of fish fed with BSFL ranged from №2,943 to №2,950 with maximum selling price of №5,766 and minimum of selling price of №5,151.

The F-Statistics of the catfish weight fed with commercial feed (0.137) was greater than that of those fed with BSF (0.006) suggesting higher variation in catfish weight of those fed with commercial feed than those with BSFL feed. In both of these feeds, there were no significant differences relating to weight. However, with respect to length of catfish, the commercially fed type was lower (0.385) than that of those fed with BSFL (1.097), which implied that there were more variability in length of catfish feed BSFL than those fed with commercial feed. In the same vein, there were no significant differences relating to length of catfishes fed with these two sources. Based on the selling price, the F-Statistics of those catfish fed commercial feed were higher (0.137) than those fed with BSFL (0.06), suggesting more variability in selling price of catfish fed with commercial fed. This study found no significant differences with the selling price of both commercially fed catfish and those fed with BSFL.

This study revealed the total selling price of catfish fed with commercial feed based on the weight ranged from \$96,600 to \$101,340 with a constant cost of \$49,182. The total profit from the commercial feed ranged from \$48,673to \$53,352. On the other hand, the catfish fed with BSFL based on their weight revealed the total selling price ranged from \$76,542 to \$77,274 while the cost were constant at \$22,500 resulting in total profit ranged from \$54,042 to \$54,774. In a study in Sangkuriang, Indonesia, catfish cultivation was fed with commercial feed and BSFL in a ratio of 50:50. The combination of feed reduced costs by IDR 675/kilogram of feed [10]. The is equivalent of \$6,958.76.

VI. CONCLUSION AND RECOMMENDATION

https://doi.org/10.38124/ijisrt/25jul177

In the three trials of catfish fed with commercial feed totalling 78, about 73% or 57 out of the 78 grew from an average weight of 780g to reached over 1kg (1000g) over a 90-day period. About 45% of those fed with BSFL or 35 out of 78 grew from 780g to reach over 1kg (1000g). The mean selling price of fish fed with commercial feed ranged from N3,717 to N3,897 with total profit ranging from N48,672 to N53,352. On the other and the mean selling price of catfish fed with BSFL ranged from N2,943 to N2,950 with its total profit ranging from N54,042 to N54,774.

It is thus recommended that farmers could use 100% BSFL feed to grow their catfish from 780g to table size of 1kg and still make a reasonable profit.

REFERENCES

- Ume, S. I., Ebeniro, L. A., Ochiaka, C. D., & Uche, F. O. (2016). Economics Analysis of Catfish Production in Anambra State, Nigeria. *International Journal of Environment, Agriculture and Biotechnology*, 1(3), 238556.
- [2]. Tsue, P.T., Lawal, W. L., & Ayuba, V. O. (2012). Profit efficiency among catfish farmers in Benue State, Nigeria. *African Journal of Food, Agriculture, Nutrition and Development*, 12(6), 6759-6775.
- [3]. 3.Adewumi A. (2015). Aquaculture in Nigeria: sustainability issues and challenges. *Direct Res J Agri Food Sci.* 3:12.
- [4]. Ike, P. C., & Chuks-Okonta, V. A. (2014). Determinants of Output and Profitability of Aquaculture Fish Farming in Burutu and Warri South West Local Government Areas of Delta State, Nigeria. *Journal of Biology, Agriculture and Healthcare*, 4(28), 102-108
- [5]. Menghe, H. L., & Edwin, H. R. (2008). Catfish in commercial ponds. South Regional Aquaculture Center (SRAC) Publication No. 181. Grant No. 2006-38500-16977 from the United States Department of Agriculture, Cooperative State Research, Education, and Extension Service.
- [6]. Udo, I.U., & Dickson, B.F. (2017). The Nigerian aquafeed Industry: Potential for commercial feed production. *Nigerian Journal of Fisheries and Aquaculture*, 5(2), 86-95.
- [7]. Monteiro dos Santos, D. K., Rodrigues de Freitas, O., Oishi, C. A., Leao da Fonseca, F. A., Parisi, G., & Uribe Goncalves, L. (2023). Full-fat black soldier fly larvae meal in diet for tambaqui, colossoma macropomum: Digestibility, growth performance and economic analysis of feeds. *Animals*, 13(3), 360.
- [8]. Magalhaes, R., Sanchez-Lopez, A., Leal, R. S., Martinez-Llorens, S., Oliva-Teles, A., & Peres, H. (2017). Black soldier fly (*Hermetia illucens*) prepupae meal as a fish meal replacement in diets for European seabass (*Dicentrarchus labrax*). *Aquaculture*, 476, 79–85.
- [9]. Sobariah, N. (2021). Financial analysis of catfish cultivation feeding with black soldier fly (maggot) at

ISSN No: 2456-2165

fish-farmers' group TPS3R Kayumanis, Bogor, West Java, Indonesia. E3S Web of Conferences 322, 05012. https://doi.org/10.1051/e3sconf/202132205012.

- [10]. Hardini, S.Y.K, and Abel Gandhy, A. (2021). Efficiency of feed cost and business feasibility in catfish cultivation using black soldier larvae as additional feed. *CrossMark*, 17(2), 1-10.
- [11]. Onyekuru N.A., Ihemezie E.J. and Chima C.C. (2019). Socioeconomic and profitability analysis of catfish production. A case study of Nsukka Local Government Area of Enugu State Nigeria. *Journal of Tropical Agriculture, Food, Environment and Extension*,18(2), 51-58.
- [12]. Oluleye, O.D., Alabi, O.O., Bayei, J.D., Isah, H., Aluwong, J.S., Atteh, P.A., Okoh, S.O., Olawoye, T., Olajide, O.R, Olamuyiwa, B.A., Haruna, O.Z. (2024). Economic efficiency and profitability analysis of catfish (*Claria Gariepinus*) production in Kaduna State, Nigeria. *Agricultural Science*, 16(24), 98-109.
- [13]. Oluwasola O., & A. O. Ige, A.O. (2015). Factors Determining the Profitability of Catfish Production in Ibadan, Oyo State, Nigeria.
- [14]. Adeosun, O. M., Olaoye, O. J., Ojebiyi, W. G., Agarawu, O. L. & Adeosun, F. I. (2024). Profitability analysis of catfish production In Odogbolu Local Government Area of Ogun State, Nigeria. Nigerian Journal of Agriculture and Agricultural Technology (NJAAT), 4(2), 187-202.
- [15]. Ikenga, V. U. (2022). Dynamics upsetting profitability of fish farming in Nigeria: perspectives from Ethiope East Local Government Area. *Journal of Global Economics and Business*, 3(11), 95-111.
- [16]. Kudi, T.M., Bako, F.P., Atala, T.K. (2008). Economics of Fish Production in Kaduna State Nigeria. ARPN Journal of Agricultural and Biological Science, Vol. 3(5, 6), pp. 17-21.
- [17]. Adeoti, S. O., Baruwa, O. I., & Owagboyega, O. M. (2019). Profitability and utilization constraints to local floating feed for catfish enterprises in Osun State Nigeria. Asian Journal of Sustainable Business Research, 25-32.
- [18]. Ahmadu, J., Odum, E.E.B., Osariemen, F.O. (2021). Profitability and profit efficiency of catfish fingerlings production in Edo South, Nigeria. *Problems of Agricultural Economics*, 4(369), 154-169.
- [19]. Adewuyi, S. A., Phillip, B. B., Ayinde, I. A., & D. Akerele, D. (2010). Analysis of Profitability of Fish Farming in Ogun State, Nigeria. *Journal of Human Ecology*, 31(3), 179-184.
- [20]. Ogan, H.I., Akinbo, T.M., Igbadumhe, A.F., & Agbogunleri, B. (2025). Combination of Black Soldier Fly Larve (*Hermetia Illucens L.*) with Commercial Feed on Growth Performance of African Catfish (*Clarias Gariepinus*) in Port Harcourt, Nigeria. *International Journal of Innovative Science and Research Technology*. 9(5), 562-569.
- [21]. Ogan, H. I., Akinbo, T., Brisibe, A., Agbogunleri, B. (2024). Mineral and Heavy Metal Content of African Catfish (*Clarias Gariepinus*) Fed with Combination of Black Soldier Fly Larvae (*Hermetia Illucens L.*) and Commercial Feed in Port Harcourt, Nigeria.

International Journal of Innovative Science and Research Technology. 10, (1), 2786-2793.

https://doi.org/10.38124/ijisrt/25jul177

[22]. Olutumise, A.I., Adene, I.C., Ajibefun, A.I., and Amos, T.T. (2020). Adoption of improved technologies and profitability of the catfish processors in Ondo State, Nigeria: A Cragg's double-hurdle model approach. *Scientific African*, 10(e00576), 1-9.