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Abstract: For high-quality steel ladle refining furnace is necessary for temperature, deoxidization, desulphurization, and 

inclusion removal as well as for fine-tuning composition of molten steel grades such as bearing steel where fatigue life is 

greatly impacted by total oxygen concentration. However, the LRF process is complicated with strong coupling effects, non-

linear correlations and changeable input conditions, making precise prediction difficult and control difficult. Traditional 

methods often result in low precision, increased material consumption, eg, ferroalloys and off-specification heats, 

necessitating extensive and expensive post-production testing. Oxygen ingress from sources like carryover slag (FeO+MnO) 

and argon stirring reoxidizes steel, consuming costly deoxidizers like aluminum and reducing their yield This study offers a 

data-driven strategy to maximize alloy additions in the process at the ladle refining furnace (LRF) stage, which are essential 

for regulating an ultimate chemical composition quality of steel with the objective of minimizing material cost while ensuring 

compliance with grade-specific chemical specifications. The study leverages historical plant data, comprising heat-wise 

opening and final chemistries, ferroalloy addition records, and cost-recovery profiles for grade steel. We explore and 

compare three mathematical optimization strategies: Linear Programming(LP), Bayesian Optimization (BO) using both 

Optuna and Scikit-Optimize, and Genetic Algorithms (GA) via the pymoo library This study emphasizes the difficulties in 

optimizing in actual steelmaking settings and suggests modeling enhancements to match algorithmic results with a 

metallurgical reality.The findings highlight the need of pre-validating data related to domain expertise, the necessity of 

hybrid modeling techniques, and the incorporation of physical process behavior with optimization logic. 
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I. INTRODUCTION 

 

In new steel making, faces increasingly rigid quality 

specifications driven by the various and demanding uses of 

steel grades, specialized across various industries [1][4]. This 

evolving demand for precision necessitates advanced refining 

processes beyond the primary steelmaking stage. The Ladle 

Refining Furnace (LRF), a cornerstone of secondary 

steelmaking, plays an essential role in meeting these exacting 

requirements [2][3]. It functions as a versatile metallurgical 

unit capable of fine-tuning a molten steel’s temperature and 
composition, deoxidizing, desulphurizing, and removing 

inclusions [1][6]. This critical link guarantees that future 

continuous casting of steel runs smoothly in the production 

chain and makes a substantial contribution to the overall 

quality of the finished steel product [4][5]. Given the growing 

complexity of steel uses such as bearing steel for enhanced 

fatigue life underscores the need for tighter control overall 

compositions and inclusion of content [4][9]. This elevates a 

role of secondary refining from a general purification step to 

a precision engineering phase where the ultimate goal is to 

produce precisely specified steel with minimal deviations [6] 

[10]. Achieving this consistency directly impacts the 

operational efficiency by decreasing the frequency and scope 

of post-production testing samples [8] [12]. 

 

Traditionally, decisions regarding alloy additions 
during the LRF stage have relied heavily on operator 

experience and empirical rules [1][4]. While this approach 

has been serviceable, it often leads to suboptimal outcomes 

such as excessive alloy consumption, increased production 

costs, and occasional deviations from target chemical 
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compositions [3][6]. These challenges underscore the need 
for a more systematic and data-driven approach to optimize 

the LRF process [2][7]. 

 

This study proposes a comprehensive methodology that 

leverages historical plant data, including heat-wise chemical 

compositions, alloy addition records, and cost-recovery 

profiles develop predictive models for alloy optimization by 

employing and comparing three optimization techniques: 

Linear programming (LP), Bayesian optimization (BO), 

Genetic Algorithms (GA) via the pymoo library [8][9]. We 

aim to identify strategies that minimize material costs while 

ensuring compliance with grade-specific chemical 
specifications [6] [10]. 

This study adopts a structured data-driven approach, 
aligned with the CRISP-MLQ methodology [Fig.1], to 

enhance process optimization at the Ladle Refining Furnace 

(LRF) stage of steel manufacturing [9] [12]. The dataset 

comprises detailed plant-level information, including heat-

wise opening and final chemical compositions, alloy addition 

quantities, and cost-recovery parameters for various 

ferroalloys [1] [11]. Exploratory Data Analysis (EDA) was 

conducted to identify elemental deviations and consumption 

trends, revealing critical focus areas such as aluminum 

volatility and sulfur sensitivity [6][9]. Preprocessing steps 

included the alignment of alloy naming conventions, removal 

of outlier heats, and filtering of invalid or infeasible entries 
based on metallurgical constraints[5][12]

 
Fig 1 CRISP-ML (Q) Methodological Framework, Outlining its Key Components and Steps Visually. 

(Source: -Mind Map - 360DigiTMG) 

 

The core optimization objective was framed as a cost 

minimization problem, subject to constraints dictated by 

grade-specific chemistry targets [2][8]. Three modeling 

techniques were evaluated: Linear Programming (LP), 

Bayesian Optimization (BO) via Optuna and Scikit-Optimize, 

and Genetic Algorithms (GA) implemented through the 
pymoo library [9] [10]. Each model integrated alloy 

compositions, recovery percentages, and cost per kilogram to 

simulate the impact of alloy additions on final steel chemistry 

[7] [11]. A feasibility check module was embedded to pre-

validate input conditions and improve model reliability [10] 

[12]. Ultimately, the framework is intended to serve as a 

decision-support system, guiding plant operators in 

determining optimal alloy addition strategies for improved 

cost-efficiency and chemical compliance across steel grades 

[6][8]. 

 

 

 

 

 

 

 

II. METHODOLOGY AND TECHNIQUES 

 

To optimize alloy addition in the LRF procedure, a 

structured machine learning and mathematical modeling 

framework was developed. This approach aims to improve 

decision-making for alloy usage, reduce material costs, and 
ensure the final steel chemistry remains within specification 

limits. Historical plant data—including heat-wise chemical 

compositions, opening and final alloy addition records, cost 

data, and recovery efficiencies—served as the foundation for 

modelling. 

 

 Data Collection: 

Data was extracted from Level-2 process automation 

and metallurgical quality control systems. It includes heat-

wise chemistry data—opening and final element percentages 

for multiple elements such as C, Mn, Al, S, Si, etc.—alloy 

addition records (quantity of ferroalloys added per heat across 
various alloy types), alloy properties dataset (composition, 

recovery percentage, and cost per unit for each alloy), and 

grade specifications (min, max, and aim chemical limits per 

steel grade). 
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 Optimization Modeling: 
The optimize algorithms were explored to determine 

cost-effective alloy additions. Linear Programing, a 

mathematical approach aiming to minimize total cost, lead to 

constraints related to final chemistry targets. Bayesian 

Optimization (BO), leveraging probabilistic models via 

Optuna and Scikit-Optimize, was used to handle non-convex, 

sparse, and high-dimensional search spaces. Genetic 

Algorithms (GA), a population-based metaheuristic method, 

used the Pymoo library to evolve candidate solutions through 

selection, crossover, and mutation. 

 Workflow: 
The overall methodology consists of the following 

steps: 

 

 Data Cleaning & Standardization: Aligning alloy names 

across datasets, removing invalid rows, and calculating 

element deltas (Final – Opening). 

 Feasibility Check: Verifying whether the heat is suitable 

for optimization by checking if any element exceeds its 

maximum threshold before alloy additions. 

 

 
Fig 2 Architecture Diagram 

 

 Model Formulation: Defining the cost function and 

chemistry constraints using domain-informed parameters. 

 Optimization Execution: Running the selected algorithm 

to find optimal alloy quantities. 

 Result Validation: Ensuring solutions meet chemical 

constraints and business requirements (e.g., total alloy 

addition ≤ 2 tons). 
 

 Exploratory Data Analysis (EDA) and Data 

Visualization:  

To build a reliable optimize model for the LRF stage, 

an extensive Exploratory Data Analysis (EDA) was 

conducted to know the underlying patterns, distributions, and 

interdependencies in the metallurgical data. This phase was 

critical in evaluating feasibility from an optimize point of 

view and refining preprocess strategies. 

 

 Statistical Summary of Data: 

To determine a range, central tendency, and dispersion 

of values, descriptive statistics were calculated for major 

chemical and process variables. C (carbon) showed a 
relatively tight range around aim values, reflecting controlled 

deoxidation practices. S (sulphur) displayed high variance 

across heats, suggesting sensitivity to slag behavior, purging 

conditions, and other uncontrollable factors. Al (aluminum) 

values were often above target ranges at the opening, 

affirming client feedback that Al levels are initially kept high 

to counter losses from argon purging. Power and holding time 

distributions helped correlate process duration with chemical 

stabilization trends. 

 

 
Fig 3 Delta-Based Prediction Accuracy Dashboard 

https://doi.org/10.38124/ijisrt/25jun759
http://www.ijisrt.com/


Volume 10, Issue 6, June – 2025                                                    International Journal of Innovative Science and Research Technology 

ISSN No: 2456-2165                                                                                                                https://doi.org/10.38124/ijisrt/25jun759 

 

IJISRT25JUN759                                                                  www.ijisrt.com                                                                                 1543 

 Key Observations: 
several heats exhibited opening chemistry already 

exceeding max limits especially for al and s directly 

impacting optimization feasibility missing or zero alloy 

entries were frequent in specific heats indicating either 

manual additions outside of logging systems or lack of 

addition affecting data reliability elemental deltas x showed 

that alloy additions successfully increased key elements eg 

mn al but some elements such as ca and s remained unaffected 

confirming minimal control through alloying alone [Fig.3] 

 

 Data Correlation Analysis: 

To examine relation among variables, correlation 
matrix & heatmaps were created. Notable findings include 

strong correlation between Mn and Mn-alloy inputs 

(HCFeMn, MCFeMn), confirming their impact on Mn uplift. 

Al drops during processing aligned with longer purging 

times, verifying volatility and process-related loss. S levels 

showed weak correlation with alloying, supporting domain 
feedback that sulphur control depends on slag and oxygen 

management rather than alloy. 

 

 Key Observations: 

Strong correlations between particular alloy additions 

and the associated element changes in the final chemistry 

were shown by correlation analysis. For instance, FeMn 

correlated strongly with Mn and FeAl with Al, confirming the 

predictive link between input alloys and chemical outputs. 

Notably, there was a somewhat negative association between 

Al and S, which is consistent with metallurgical knowledge 

that aluminum helps reduce sulfur. These correlations 
validate the structure of the optimization model and suggest 

that a predictive framework can effectively use alloy 

additions to estimate final chemistry. It also supports feature 

selection strategies for modeling efforts output. [Fig.4] 

 

 
Fig 4 Ferroalloy-to-Element Contribution Heatmap Illustrating Alloy Influence on Chemical Composition 

 

 Distribution Analysis: 

Analyzing the distribution of key parameters is essential 

for detecting data skewness. To achieve this, histograms, box 

plots, and quantile-quantile (Q-Q) plots were utilized. 

 

 Key Observations: 

Element distributions across heats indicated that while 

some (like C and Mn) followed near-normal distributions, 

others (such as Al and S) were highly skewed. Aluminum 
showed a right-skewed distribution with a long tail of over-

addition, consistent with operational practices aimed at 

compensating for volatility. Sulphur displayed a wider and 

often non-normal spread, pointing to process 

unpredictability. These skewed and multimodal distributions 

highlight the non-linearity in the chemical behavior during 

refining, reinforcing the limitations of linear models. This 

variability strengthens the case for using metaheuristic and 

probabilistic approaches like Genetic Algorithms and 

Bayesian Optimization. [Fig.5] 
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Fig 5 Composition Distribution and Statistical Insights Comparing Opening Vs Final Values 

 

 Outlier Detection  

To detect outliers, a combination of statistical methods 
and visualization techniques was applied. 

 

 Key Insights: 

Outlier detection revealed that several heats had 

chemical values well outside acceptable limits, particularly 

for Sulphur and Aluminum. These outliers were likely caused 

by process disturbances or deviations from standard operating 

procedures. Their presence significantly impacted 

optimization feasibility, especially for methods like Linear 
Programming that assume rigid constraints. Identifying and 

removing or flagging these heats is critical to avoid skewing 

model training and evaluation. This analysis also emphasizes 

the importance of preprocessing and feasibility checks before 

running any optimization, ensuring the models are applied 

only to relevant, solvable cases. [Fig.6]

 

 
Fig 6 Top Correlated Element Pairs – Positive and Negative Relationships in Heat Chemistry Data 

 

 Heat and Process Time Tracking: 

The systematic LRF process time by converted it to 

minutes and enabling time-based trend analysis. The metric 

is central to understand how long refining takes per heat, 

which is crucial because over-processing leads to energy 

inefficiency and under-processing risks unmet chemistry 

targets. 

 Power Consumption Monitoring: 

The app calculates total Power Consumption per heat 

and introduces a derived metric called Power Efficiency 

(kWh/min). These indicators enable granular analysis of 

energy use trends across heats and refining durations, helping 

optimize operational cost. 
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 Chemical Element Binning & Deviation Analysis: 
For each chemical element (e.g., C, Mn, Al), the app 

bins opening and final values based on aim, min, and max 

targets. This enables visual tracking of how far heats deviate 

from specification and whether corrective actions push 

chemistries closer to desired ranges. 

 

 Insightful Statistical Profiles: 

The application creates an element-wise table of 

metrics, including average opening/final values, deviations, 

count of values out-of-range, and percentage within target 

limits. This empowers metallurgists to immediately identify 

unstable or problematic elements like Al or S across heats. 
 

 Refining Time Impact on Chemistry: 

Elements such as Al frequently display negative 

correlations between LRF process time and the delta (final - 

opening) in element percentages, which is consistent with 

domain-specific findings that Al tends to decrease with time 

as a result of volatility and argon purging. 

 

 Aim Proficiency Analysis: 

The system computes how often each element is within 

its prescribed range (both before and after refining) and how 
closely the values match the aim point. This is crucial for 

identifying inefficiencies in alloy addition strategies or 

inconsistent refining practices. 

 

 Prediction Accuracy from Element Drift: 

Using average changes in chemistry, the app predicts 

final values and compares them against target tolerances for 

months, i.e., January, February. This statistical model allows 

early-stage validation of expected success and flags elements 

with poor predictability. 

 

 Monthly and Hourly Heat Volume Trends: 
The app visualizes the number of heats processed per 

month and hour of the day. This, in order to prevent overload 

or inefficient operations. Knowledge helps the labor planning 

by detecting peak refining hours and optimizing shift 

scheduling. 

 

 Elemental Trendlines Across Heats: 

For selected elements, the app plots line graphs 

chemical evolution across heat numbers. This helps in 

visually identifying drifts, sudden changes, or stabilization 

trends that can correlate with operational events or input 
material changes. 

 

 Correlations Between Elements: 

The app computes heatmaps for opening and final 

chemistry to detect inter-element correlation. Secure positive 

or negative correlations often reveal alloying behavior or 

counteractive chemistry (e.g., Al vs O), guiding multi-

element alloy strategies. 

 

 Power Efficiency and Chemical Success: 

The model explores how efficiently power is used here 
to bring each element into its target range. Elements like Al, 

that are volatile or influenced by temperature, show distinct 

power-consumption behavior affecting cost optimization 
strategies. 

 

 Refining Time vs. Success Rate: 

A final powerful insight links LRF refining time with 

chemistry success rate by binning process times, e.g., short, 

medium, long. These tools help set procedures and yield time 

targets by figuring out areas where process time results in 

declining returns or where success rates plateau. 

 

 Data Preprocessing: 

 

 Handling Missing Values: Rows with missing values in 
critical columns such as opening/final chemistry and 

ferroalloy additions were dropped to maintain data 

integrity and avoid introducing bias through imputation. 

 Feature Selection: Only essential columns related to 

chemical composition, alloy additions, and cost/recovery 

were retained. Non-contributing columns (e.g., Ladle 

Number, Date) were excluded to streamline modeling. 

 Normalization & Scaling: Not applied at this stage since 

LP, BO, and GA models operate on physical quantities 

(kg, %, ₹) and rely on real-scale inputs for interpretable 

outputs. 

 Type Casting & Conversion: All chemical and alloy 

values were explicitly cast to float to ensure compatibility 

with mathematical operations used in optimization 

routines. 

 Alloy Column Mapping: A mapping dictionary was 

applied to unify alloy names between the heat sheet and 

composition/recovery datasets to build consistent input 

dictionaries. 

 Feature Engineering: ΔX columns (e.g., ΔC, ΔMn) were 

created to calculate the difference between final and 

opening chemistry for each element, providing insight 
into alloy impact per heat. 

 Outlier Handling: Heats with chemical values beyond max 

limits (flagged by QC) were treated as outliers and 

excluded from optimization datasets based on client input. 

 Feasibility Filtering: A custom feasibility check was 

implemented to exclude heats where over-limit elements 

(e.g., Sulphur, Aluminum) could not be corrected via alloy 

additions. 

 

In the LRF optimization project, data preprocessing 

played a crucial role in ensuring that the input provided to the 
optimization algorithms was both reliable and representative 

of the true process dynamics. Initially, rows with missing or 

null values were dropped—particularly those involving 

opening and final chemistries or alloy addition values—as 

these are foundational to calculating element-wise deltas and 

assessing the effect of alloying on heat quality. No imputation 

was done to avoid artificially biasing the chemistry or cost 

data, which could distort optimization outcomes.  

 

We also performed standard type casting to convert all 

chemical composition and alloy weight columns into float 

format, ensuring compatibility with mathematical models. To 
maintain consistency across datasets, alloy names from the 

heat sheet were mapped to standard identifiers used in the cost 

and recovery sheets through a well-defined mapping 
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dictionary. Feature engineering steps included computing ΔX 
(delta) values for each element, representing the difference 

between final and opening chemistries, which helps track the 

effectiveness of alloy additions. Outlier removal was 

performed based on domain knowledge—heats flagged by 

the client for deviating from acceptable chemical limits were 

excluded. Additionally, a custom feasibility check was 

implemented to filter out heats where over-limit elements 

such as Aluminum and Sulphur exceeded their maximum 

permissible values and could not be adjusted downward via 

alloy additions. These preprocessing steps ensured clean, 

consistent, and context-aware inputs for the downstream 

Linear Programming, Bayesian Optimization, and Genetic 
Algorithm models. 

 

III. RESULTS AND DISCUSSION 

 

This section offers the conclusions and revelations 

obtained from implementing three optimization strategies: 

Linear Programming (LP), Bayesian Optimization (BO), and 

Genetic Algorithm (GA) for determined optimal ferro alloy 

additions in Ladle Refining Furnace (LRF) process. The 

objective was to minimize alloy cost while satisfying strict 

target chemical ranges for each steel heat. 
 

 Model Performance and Optimization Outcomes: 

The three algorithms were independently applied on 

historical LRF process data, incorporating per-heat opening 

chemistry, ferroalloy additions, cost, and recovery 

percentages. LP was modeled using equality and inequality 

constraints for each element to ensure the final composition 

lies within the target ranges. However, the model frequently 

returned infeasible solutions, primarily because it cannot 

adjust or reduce already high chemical values (like Sulphur 

or Aluminum), due to the unidirectional nature of alloy 

additions. 
 

Bayesian optimization applied by both Optuna and 

Scikit-Optimize showed better flexibility through penalty-

based formulations. Yet, in many cases, the output was either 

zero alloy recommendation or excessively high penalty-

induced cost. This was attributed to limited optimization 

space and overlapping constraints, where certain elements, 
e.g., Al, S, were already outside the permissible range in the 

initial state. 

 

In contrast, the GA-based approach provided 

comparatively better flexibility and interpretability. By 

defining soft bounds and nonlinear search spaces, GA 

attempted to satisfy multi-criteria constraints. However, 

feasibility checks had to be introduced before model 

execution to filter out heats where no amount of addition 

could correct the chemical balance. Even then, several heats 

failed optimization due to real-world metallurgical 

complexities not accounted for in the model. 
 

 Key Insights 

 

 Constraint Conflicts: LP failed for heats where elements 

like Al or S were above the upper bound. Since LP cannot 

subtract chemical values, this caused infeasibility. 

 Penalty-Based Methods: BO managed to provide 

solutions but often defaulted to zero additions due to 

excessively high penalties or incompatible constraints. 

 Search-Based Flexibility: GA worked better by iterating 

across a population, but only when feasible starting 
chemistries were pre-validated. 

 Feasibility Checks: A critical part of success in GA was 

the use of a feasibility check function that screened out 

infeasible heats early in the process. 

 Alloy Mapping & Preprocessing: Correctly mapping heat 

sheet alloy names to the alloy master data was crucial for 

consistency in cost, recovery, and chemistry calculations. 

 

 Visualizations and Comparative Analysis 

Compare results, cost output, and recommended alloy 

weights were logged for each model per heat. Visual plots 
were generated to compare actual vs. target chemistry, 

highlighting how different models approached optimization. 

GA provided the most aligned result when initial chemistry 

was within range. LP and BO frequently returned null or 

impractical solutions. [Fig.7] 

 

 
Fig 7 Top Correlated Element Pairs – Positive and Negative Relationships in Heat Chemistry Data 
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IV. COMPARATIVE ANALYSIS OF 

OPTIMIZATION TECHNIQUES 

 

 Linear Programming Method overview:  

Because linear programming is effective at resolving 

resource allocation issues when faced with linear constraints, 

it was chosen as the original baseline model. The goal was to 

minimize the total cost of alloy additions while ensuring the 

final chemical composition falls within defined lower and 

upper bounds for each key element, e.g., C, Mn, Si, Al.  

 

 How it was implemented:  

Decision variables represented the alloy quantities to be 
added per heat. Constraints enforced the final chemistry as 

the sum of opening values plus additions from alloys adjusted 

by recovery percentages. The problem was formulated using 

PuLP and solved using the CBC solver. 

 

 Observations: 

Strict equality constraints led to infeasibility when the 

initial element concentration, e.g., Al or S, exceeded target 

limits. LP cannot model nonlinear behavior like elemental 

volatility or losses during argon purging. LP makes the 

assumption that every constraint must be met at once, which 
isn’t always feasible because of physical and chemical limits. 

 

 Bayesian Optimization Method overview: 

The optimization problem was modeled as a black-box 

function using Bayesian Optimization, in which the method 

balances exploration and exploitation of the search in an 

effort to determine the alloy configuration with the lowest 

cost space. Both Optuna and Scikit-Optimize (skopt) were 

explored for implementation.  

 

 How it was implemented:  

BO treated the objective function as cost penalty, where 
penalty was added if final chemistry deviated from allowed 

ranges. Alloys were treated as continuous variables with 

defined upper-lower bounds. Multiple trial evaluations were 

used to find the cost-optimal combination. 

 

 Observations: 

For many heats, the BO returned zero quantities for 

alloy additions because any change would incur a severe 

punishment for breaking constraints. BO is sensitive to both 

the initial conditions and the punishment settings, and 

performance was inconsistent across heats due to the 
probabilistic nature. BO may converge prematurely if the cost 

surface is flat near boundary regions. That all the constraints 

must be satisfied simultaneously leads isn’t always possible 

due to chemical interactions and physical limitations. 

 

 Genetic Algorithm Method overview: 

Complex, nonlinear, and multi-dimensional problems 

with restrictions can be effectively solved using evolutionary 

optimization techniques such as Genetic Algorithms. In this 

study, the GA was implemented using the Pymoo framework 

and was specifically tailored to reflect the practical dynamics 
of alloy recovery and chemical interactions in the steel 

refining process. 

 

 Implementation details:  
In the GA configuration, the objective function assessed 

both the overall alloy cost and the quantities of various alloys 

to be added to each candidate solution or individual, which 

was encoded as a vector and applied penalty terms when the 

resulting chemical composition deviated from specified 

limits. The algorithm used standard evolutionary 

mechanisms—selection, crossover, mutation—to iteratively 

improve the population, ultimately converging toward cost-

effective and chemically feasible alloying strategies. 

 

 Observations: 

Computationally expensive for batch processing. Model 
success highly depended on initial chemistry values. 

Recovery rate could not optimize if chemical deviation 

exceeded alloy correction capability. 

 

 Model Deployment and Real-Time Monitoring: 

In the study, deployment of One View, the optimized 

model was not run in a live production setting. Rather, the 

focus remained on designing and validating multiple 

optimized frameworks—Linear Programming, Bayesian 

Optimization, Genetic Algorithms—to evaluate the 

feasibility and alignment with real-world steel processes at 
the LRF stage. 

 

Although model deployment is yet to be realized, the 

groundwork was laid for future integration into a real-time 

decision-support system for the melt shop. The envisioned 

deployment pathway includes embedding the selected 

optimization model—preferably GA-based—into a plant-

level monitoring tool or SCADA interface that can 

automatically suggest optimal ferroalloy additions based on 

live chemical composition data and heat status. 

 

Such integration will allow operators to receive 
intelligent alloy addition recommendations in real-time, 

reducing manual trial-and-error, minimizing material 

wastage, and improving turnaround time. The model, once 

validated across different steel grades and heat profiles, can 

be deployed using Python-based microservices and a 

lightweight front-end interface (e.g., Streamlit or Flask), 

enabling seamless interaction with Level-2 automation 

systems. 

 

While real-time monitoring and feedback loops were 

not implemented in the current phase, the simulation results 
and model architecture are fully aligned for production 

deployment in subsequent phases of the project. 

 

 Discussion and Implications 

The analysis of optimization techniques—Linear 

Programming (LP), Bayesian Optimization (BO), and 

Genetic Algorithms (GA)—for ferroalloy additions at the 

Ladle Refining Furnace (LRF) stage revealed critical 

challenges and practical insights. While LP offered a 

structured cost-minimization framework, it struggled with 

infeasibility when input chemistries exceeded target maxima 
due to its inability to handle complex real-world metallurgical 

interactions. BO approaches demonstrated flexibility in 

navigating non-linear search spaces but often converged to 
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suboptimal or infeasible solutions due to strict constraints and 
limited exploration. GA showed the most promise, allowing 

non-linear modeling and constraint flexibility, though it 

required careful feasibility checks and problem tuning. 

 

The findings emphasize that accurate modeling of 

chemical volatility (e.g., aluminum loss due to purging) and 

real-time adjustment is essential for actionable optimization. 

Integrating metallurgical domain knowledge—such as 

sulfur’s behavior and aluminum’s volatility—significantly 

improves model realism. These findings highlight the 

necessity of hybrid models that combine process-based 

limitations with data-driven learnings. When such 
optimization systems are implemented successfully, they can 

lower material costs, improve process stability, and support 

real-time decision-making in steelmaking operations. 

 

 

 

 

 Key Takeaways: 
Optimization of ferroalloy additions in the LRF stage is 

critical for minimizing cost while maintaining chemical 

compliance in steel grades. Traditional linear programming 

methods often fail in practical scenarios due to their inability 

to handle over-limit starting chemistries. Bayesian 

optimization techniques provide flexibility but require careful 

constraint tuning to avoid convergence on infeasible 

solutions. Genetic algorithms proved to be the most robust 

approach, effectively handling non-linearities and 

metallurgical constraints with improved feasibility. Domain 

knowledge, such as sulfur and aluminum behavior, is 

essential in aligning optimization logic with real-world 
process dynamics. Pre-validation through feasibility checks 

ensures the optimization model starts from a chemically 

viable baseline. The project highlights the need for hybrid 

approaches combining data-driven algorithms with physical 

process understanding. This work lays the foundation for 

future real-time closed-loop alloy addition systems to aid 

melters in decision-making during production. [Fig.8]

  

 
Fig 8 Steel Chemical Composition & Elemental Deviation Dashboard for Predictive Alloy Optimization. 

 

V. CONCLUSION 

 

This study demonstrates the feasibility of applying 

optimization algorithms to minimize ferroalloy usage and 

cost in the Ladle Refining Furnace (LRF) process while 

ensuring compliance with grade-specific chemical targets. 

Through comparative analysis of Linear Programming, 

Bayesian Optimization, and Genetic Algorithms, we found 

that GA provided the most practical and flexible solution, 

capable of handling real-world complexities such as over-

limit elements and non-linear interactions. The integration of 

domain-specific insights—particularly the metallurgical 

behavior of elements like sulfur and aluminum—proved 
crucial in refining model performance and ensuring feasible 

outputs. While LP and BO struggled with hard constraints and 

rigid assumptions, GA accommodated variability and 

delivered more reliable recommendations for alloy additions. 

This work sets the foundation for building decision-support 

systems in steelmaking, enhancing cost-efficiency and 

operational control. Future efforts should focus on integrating 
process parameters like temperature, slag composition, and 

sampling intervals to improve prediction robustness and real-

time deployability 
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FUTURE SCOPE 

 

Future work on LRF optimization can explore 

integrating dynamic process variables such as temperature 

fluctuations, slag basicity, and oxygen ppm to improve model 

accuracy and real-time adaptability. Incorporating time-series 

data on alloy addition cycles and purging behavior could 
further enhance prediction precision. The use of hybrid 

modeling techniques that combine data-driven algorithms 

with physics-based metallurgical models holds promise for 

greater reliability. Additionally, developing a real-time 

recommendation system for melters, integrated with SCADA 

or Level 2 automation systems, can support smarter and faster 

decision-making. Scaling the model across different steel 

grades and incorporating constraints for operational 

sequencing (e.g., sequential alloy additions) will expand 

industrial applicability. Finally, incorporating reinforcement 

learning could help optimize sampling frequency and alloy 
dosing in closed-loop control systems. 
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