
Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may537

IJISRT25MAY537 www.ijisrt.com 4178

Supply Chain Management System Using

Hyperledger Fabric

S. Pragatheeshwar1; A. Charishma Reddy2; S. Mugilan3; G. Sumathi4

1,2,3,4Sri Venkateswara College of Engineering, - 602 117, Tamil Nadu, India

Publication Date: 2025/06/10

Abstract: This project introduces a blockchain-enabled supply chain management (SCM) system focused on enhancing

traceability, data synchronization, and operational transparency in commodity exposure and tender handling. Leveraging

Hyperledger Fabric (v2.5.0) as the core blockchain framework and Golang (v1.22.1) for backend development, the system

replaces traditional, error-prone methods with a decentralized and tamper-proof architecture. The solution is deployed on

AWS using services such as EC2, Lambda, API Gateway, Cognito, Step Functions, and SQS to ensure scalability, secure

authentication, and asynchronous request processing. Frontend technologies include HTML5, CSS3, and JavaScript

(ES2024), enabling dynamic and interactive dashboards for real-time data visualization. By integrating blockchain with

cloud infrastructure, the system facilitates seamless communication among stakeholders, minimizes fraud, and improves

decision-making. This architecture addresses the complexities of modern supply chains, ultimately offering a robust,

transparent, and resilient platform for organizations aiming to optimize performance and hedge effectively against market

uncertainties.

Keywords: Blockchain, Supply Chain Management (SCM), Hyperledger.

How to Site: S. Pragatheeshwar; A. Charishma Reddy; S. Mugilan; G. Sumathi (2025) Supply Chain Management System Using

Hyperledger Fabric. International Journal of Innovative Science and Research Technology, 10(5), 4178-4186.

https://doi.org/10.38124/ijisrt/25may537

I. INTRODUCTION

Supply chain management. While traditional systems

such as spreadsheets and centralized databases have played a

vital role in tracking commodities and tender processes, they

face significant challenges in traceability, real-time

synchronization, and data integrity. These limitations often
lead to inefficiencies, delays, and errors across the supply

chain. A promising solution to these issues is blockchain

technology, which provides a decentralized, tamper-proof,

and transparent platform for recording and managing supply

chain data. Historically, managing commodity exposure

involved manual processes and fragmented systems, which

made collaboration between stakeholders difficult and prone

to miscommunication. With the adoption of blockchain and

cloud-based solutions, the industry is moving towards

systems that ensure data consistency, enhance security, and

support automated workflows. This project proposes a

blockchain-based architecture using Hyperledger Fabric and

AWS cloud services to streamline tender management,

improve operational transparency, and enable more efficient
decision-making in commodity supply chains. Blockchain is

a distributed ledger technology that enables secure,

transparent, and tamper-proof record-keeping. In the context

of supply chain management, it offers improved traceability,

data synchronization, and stakeholder collaboration.

Hyperledger

Fig 1 Visualization of Blockchain Block Structure

https://doi.org/10.38124/ijisrt/25may537
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may537

IJISRT25MAY537 www.ijisrt.com 4179

Fabric, an enterprise-grade blockchain framework,
provides modularity, scalability, and support for 1

permissioned networks, making it suitable for complex

enterprise applications Below are the essential components

and dependencies required for implementing Hyperledger

Fabric. Hyperledger Fabric is a permissioned blockchain

framework developed under the Linux Foundation. It is

designed for use in enterprise contexts and supports

pluggable components such as consensus algorithms and

membership services. It provides scalability, confidentiality,

and fine-grained access control through channels and private

data collections. The visualization of blockchain structure is

depicted in Fig. 1.

A permissioned blockchain platform with a modular

architecture that promotes security, scalability, and

confidentiality, Hyperledger Fabric is intended for enterprise

application. The logic for data transactions on the blockchain

is defined by chain code, which are smart contracts written in

Golang, Node.js, or Java. These transactions run on peer

nodes in secure Docker containers. In order to promote

communication among organizations, these peer nodes can be

designated as anchor or committing peers, maintain the

ledger, and approve transactions. The ordering service is
made up of orderer nodes that use consensus techniques like

Raft to sequence transactions into blocks.

CouchDB is an optional state database that supports rich

queries over JSON data stored in the world state. It allows for

complex searches and range queries. Certificate Authority

(CA) issues digital certificates for identities (users, admins,

peers). Fabric CA or external CAs can be used to issue and

manage cryptographic identities. Docker is used to

containerize the various components of the Fabric network,

including peer nodes, orders, CAs, and chain code. It ensures

consistency across environments. Golang is one of the
primary languages used to write chain code. It is chosen for

its performance, security, and concurrency capabilities.

Cryptographic Libraries Hyperledger Fabric relies heavily on

cryptographic functions for signing, encryption, and identity

validation. These are managed via libraries that implement

standard cryptographic protocols like ECDSA. Network

Configuration Files These include YAML or JSON files used

to define the network topology, chain code policies, channel

configuration, and identities.

 Related Work
Blockchain technology has emerged as a transformative

force in supply chain management (SCM), addressing

challenges such as lack of transparency, traceability, and trust

among stakeholders. Hyperledger Fabric, developed under

the Linux Foundation’s Hyperledger project, has gained

significant attention due to its modular, permissioned

architecture, which is especially suited for enterprise

applications. Its fine-grained access control, pluggable

consensus mechanisms, and support for private channels

distinguish it from public blockchains like Ethereum, making

it ideal for sectors requiring privacy and compliance, such as
supply chain, healthcare, and finance [1][3][5]

Several studies demonstrate the effectiveness of
Hyperledger Fabric in enhancing transparency and

traceability within supply chains. Vujičić et al. provide a

comprehensive overview of blockchain technology,

including Hyperledger Fabric, highlighting its potential to

improve trust and accountability in multi-stakeholder

environments [3]. Wang et al. discuss smart contract

architectures and their applications in automating business

processes and enforcing Service Level Agreements (SLAs) in

logistics and supply chain operations [4].

TrackChain, introduced by Kuo et al., is a supply chain

solution built on Hyperledger Fabric designed to verify drug
provenance and combat counterfeiting in the pharmaceutical

industry, where traceability is critical for regulatory

compliance and public safety. Their work demonstrates how

blockchain can record immutable transaction histories,

ensuring transparency and verifiability by authorized

participants [5].

Marchese and Tomarchio further explored SLA

compliance assessment using blockchain, showing that

Hyperledger Fabric can automate and monitor contractual

obligations in real time, reducing disputes among supply
chain partners [6]. Additionally, Sahoo and Baruah provide a

comprehensive review of blockchain applications in modern

supply chains, noting the scalability benefits of frameworks

like HBasechainDB and the importance of integrating

blockchain with big data technologies for enhanced analytics

and decision-making [7].

Beyond food and pharmaceuticals, Hyperledger Fabric

has been applied across various domains to improve supply

chain integrity and security. Wickremasinghe et al. proposed

integrating knowledge graphs with Fabric to enhance data

interoperability among supply chain participants, enabling
more effective collaboration [8]. Islam et al. introduced a

privacy-preserving permissioned blockchain framework for

Industrial IoT (IIoT) environments, utilizing differential

privacy techniques to protect sensitive data while maintaining

transparency.

Despite these advancements, practical deployment of

Hyperledger Fabric-based supply chain systems faces

challenges. Scalability remains a concern, especially as

transaction volumes and participants grow. Interoperability

with legacy systems and IoT integration require robust
middleware and APIs. Real-time data synchronization is

critical for timely decision-making but remains difficult to

achieve at scale [5] [6].

Managing identities across multiple organizations and

dynamic partners is complex, even with private channels and

Membership Service Providers (MSPs). Smart contract

(chaincode) maintenance to reflect evolving business rules

demands continuous updates and version control.

Researchers are exploring solutions such as off-chain

computation, zero-knowledge proofs for enhanced privacy,
and cross-chain communication protocols to improve

interoperability and data confidentiality [2] [6]

https://doi.org/10.38124/ijisrt/25may537
http://www.ijisrt.com/
https://aut.ac.nz.libguides.com/APA7th/in-text
https://writing.wisc.edu/handbook/documentation/docnumreference/
https://www.ziaulmunim.com/in-text-citation-guidelines-in-academic-writing/
https://www.scribbr.com/citing-sources/citation-styles/
https://guides.libraries.psu.edu/apaquickguide/intext
https://writing.wisc.edu/handbook/documentation/docnumreference/
https://www.ziaulmunim.com/in-text-citation-guidelines-in-academic-writing/
https://www.scribbr.com/citing-sources/in-text-citation-styles/
https://www.ziaulmunim.com/in-text-citation-guidelines-in-academic-writing/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may537

IJISRT25MAY537 www.ijisrt.com 4180

Fig 2 Blockchain-enabled Tender Management System

II. SYSTEM ARCHITECTURE FOR THE

PROPOSED FRAMEWORK

The proposed system leverages Hyperledger Fabric

integrated with AWS services to create a secure,

decentralized supply chain solution for tender management.

Cognito handles authentication, while API Gateway and

Lambda facilitate communication with the blockchain

network. Data is stored securely in S3, and transactions are

validated through smart contracts. The system ensures real-

time status updates, error handling, and dynamic dashboard

visualization, enhancing transparency, security, and

efficiency in tender processing. CRUD operations allow

seamless data updates, while robust logging mechanisms
maintain an immutable audit trail. The architecture ensures

fault tolerance and scalability, reducing operational risks.

A. System Architecture

Fig. 2. depicts the architecture of a blockchain-based

tender management system that integrates AWS services with

Hyperledger Fabric to ensure security, transparency, and

efficiency. User authentication is handled via AWS Cognito,

allowing authorized access to the system. Once logged in,

users input a Tender ID, triggering a status check. This

request passes through API Gateway and Lambda, which
queries the Hyperledger Fabric blockchain network for tender

status while storing relevant data in AWS S3. If the process

is successful, the system updates records via CRUD

operations, logs changes, and updates the Dynamic
Dashboard for real-time visualization. In case of failures, an

Internal Server Error mechanism attempts to fetch valid data,

ensuring system resilience. The architecture leverages

blockchain for secure, tamper-proof transactions and AWS

services for scalability, enabling automated logging,efficient

data handling, and robust error management. This design

enhances transparency, trust, and operational efficiency in the

tendering process.

B. Technology Stack

Hyperledger Fabric serves as the underlying blockchain

framework for the tender management system. As a
permissioned blockchain, it ensures that only verified

participants—such as government bodies, vendors, and

auditors—can interact with the network. Hyperledger Fabric

is designed for enterprise-grade use cases, offering

modularity, scalability, and fine-grained access control. The

blockchain ledger maintains tamper-proof records of all

tender-related activities, including tender creation, bid

submissions, approvals, and audits. This decentralized

architecture eliminates the need for a central authority while

ensuring transparency, trust, and data immutability across all

stakeholders.

https://doi.org/10.38124/ijisrt/25may537
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may537

IJISRT25MAY537 www.ijisrt.com 4181

Chaincode in Hyperledger Fabric is equivalent to smart
contracts in Ethereum. These are programs written in Go,

JavaScript, or Java and define the business logic for the tender

lifecycle. When a tender is created or a bid is submitted, chain

code is invoked to validate and execute the transaction. For

example, it ensures that no duplicate bids are submitted and

verifies compliance with tender conditions. The chain code

runs on endorsing peers and is executed only by authenticated

users within the network, enforcing strict business rules with

cryptographic guarantees. User Interaction User interaction is

facilitated through a web-based portal built for different types

of users for example: government officials, vendors, and

auditors. Each user type is provided with role-specific
interfaces for submitting, viewing, and approving tender data.

The interface allows users to manage documents, track

bidding status, and interact with the blockchain in real-time.

Through secure login (via AWS Cognito), users can initiate

transactions that are sent to the backend and recorded on the

blockchain. The system is designed to be intuitive and

accessible, even for non-technical users, ensuring wide

usability across government departments. Node.js serves as

the backend runtime environment, while Express.js provides

the web server framework. These technologies handle the

server-side logic of the application, including user session
management, blockchain transactions, and RESTful APIs.

Express routes are used to trigger chaincode functions such

as creating tenders, submitting bids, and retrieving records.

Node.js is well-suited for this application due to its non-

blocking I/O model, which allows high concurrency—ideal

for environments with multiple vendors and tenders running

simultaneously.

The Fabric SDK provides the necessary APIs to interact

with the blockchain network from the Node.js backend. It is

responsible for submitting transactions, querying the ledger,

and managing digital identities. The SDK supports
cryptographic signing, channel interactions, and

communication with peer/orderer nodes. Through this SDK,

the backend can seamlessly integrate blockchain operations

into the application workflow, ensuring that all user actions

are recorded immutably. React.js is used to build the frontend

interface of the system. Its component-based architecture

allows for modular development of features such as tender

dashboards, bid forms, status tracking, and audit views.

React's state management and efficient rendering (via the

virtual DOM) ensure a responsive user experience, even as

data updates in real-time. It integrates with REST APIs and
AWS services, enabling secure, dynamic interaction with

blockchain data. AWS Cognito handles user authentication

and authorization. It provides OAuth 2.0, JWT-based

tokenization, and Multi-Factor Authentication (MFA). Each

authenticated user is mapped to a specific blockchain identity,

ensuring that actions like bidding or tender creation are tied

to verifiable entities. Cognito enhances security and helps

enforce access control at both the API and blockchain levels.

AWS Lambda powers the serverless execution of certain

backend workflows. It handles event-driven logic such as

tender deadline enforcement, document scanning, or
automatic status updates. These 18 functions can be triggered

by user actions or time-based rules without provisioning any

servers, thus reducing costs and complexity. Amazon API

Gateway API Gateway serves as the interface layer between
the frontend and backend. It handles thousands of concurrent

API requests, applies rate limiting, validates JWTs from

Cognito, and forwards requests securely to Lambda or the

Node.js backend. It abstracts the infrastructure and ensures

secure access to blockchain functions via REST endpoints.

Amazon S3 is used to store tender-related documents and

metadata, such as bidding files, approvals, and audit reports.

The documents are encrypted and version-controlled,

ensuring data integrity and regulatory compliance. While

sensitive data is recorded on the blockchain as a hash, the

actual files are stored securely in S3 and linked via metadata.

CouchDB acts as the state database for Hyperledger Fabric.
It stores the current world state of all tender objects in JSON

format, making them easily queryable. It works in tandem

with the immutable blockchain ledger to allow fast read

access for frontend views and audit tools. The system is

deployed in containers using Docker, which packages the

blockchain network, backend services, and APIs. Kubernetes

orchestrates these containers, ensuring auto-scaling, fault

tolerance, and high availability. It simplifies deployment

across environments and ensures the system remains robust

during peak bidding times. 19 Terraform is used for

Infrastructure-as-Code (IaC), automating the provisioning of
all AWS resources including Cognito, Lambda, S3, and API

Gateway. It ensures repeatable, version-controlled

infrastructure setups for development, testing, and production

environments.

III. PERFORMANCE EVALUATION

A comprehensive analysis of the performance

characteristics of our blockchain-based supply chain

management system—specifically focusing on the tender

creation operation in Hyperledger Fabric. The system is

deployed and tested in two environments: a local setup
(Windows 11, 8GB RAM, 512GB SSD) and a production-

grade AWS infrastructure (utilizing Lambda, EC2, Step

Functions, API Gateway, and Cognito). We examine the

performance metrics with detailed theoretical justifications

and visual comparisons.

A. Latency Comparison: Local vs AWS

Tender creation is a frequent and foundational

transaction in the blockchain-based supply chain. It serves as

a benchmark to measure the overall responsiveness of the

system. The average time to create a tender in the local
environment was recorded at 0.576ms, whereas the AWS

environment achieved a faster completion time of 0.456ms.

This comparison is visually presented in Fig. 3: Tender

Creation Time Comparison, which clearly shows the superior

performance of the cloud-hosted deployment. Additionally,

when we simulated the transaction 100 times, we observed a

consistent latency of 0.880ms on AWS compared to 0.889ms

on local, as shown in Fig. 4: Latency Over 100 Tender

Creations. Though the differences are minute in a single

transaction, they scale significantly across thousands of

operations in a production environment.

https://doi.org/10.38124/ijisrt/25may537
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may537

IJISRT25MAY537 www.ijisrt.com 4182

Fig 3 Tender Creation Time Comparison

Fig 4 Latency Over 100 Tender Creations

B. Architectural Foundations Behind Latency Gaps

Resource Allocation and Execution Context The local

machine, constrained by limited RAM and CPU, shows
increased context-switching and I/O delays. In contrast, AWS

offers high-performance computing (EC2), serverless

execution (Lambda), and faster storage access, allowing

optimized parallelism and faster data access. This directly

reduces delays in API processing and ledger commit times.

C. Ledger Lookup Efficiency and Read Complexity

Hyperledger Fabric leverages a state database

(LevelDB or CouchDB) for storing current key-value states.

During tender creation, the system must verify that the tender

ID doesn’t already exist. This introduces a read operation
whose efficiency depends on whether indexing is used.

In Unindexed Systems, lookup time Increases Linearly

with Records:

T_ lookup = ∑ (i=1 to n) f(i) (1)

In indexed systems, lookup follows logarithmic growth:

T_ lookup = O (log n) (2)

These models are illustrated in Fig. 5.: Ledger Lookup

Time Complexity, which compares indexed vs unindexed

lookup efficiency. Local environments often suffer from

unindexed access due to configuration limitations or memory

pressure, while AWS offers better support for indexing and
memory-optimized reads, reducing overall read latency.

https://doi.org/10.38124/ijisrt/25may537
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may537

IJISRT25MAY537 www.ijisrt.com 4183

Fig 5 Ledger Lookup Time Complexity

D. Consensus and Replication Overhead

Hyperledger Fabric’s consensus protocol (Raft) ensures

fault tolerance and ordering across distributed peers. The time

spent in consensus includes: Leader election Proposal

broadcasting Log replicationCommit acknowledgment We

model consensus cost using a continuous time.

T_ Consensus = ∫₀ᶜ (l(t) + s(t)) dt (3)

Where:

.

l(t) = time-dependent communication delay

s(t) = block size increase or transaction load

As seen in Fig. 6: Consensus Overhead with Increasing

Transactions, as the number of transactions increases, the

consensus latency grows due to increased communication and

data replication time. AWS mitigates this with better VPC
networking and multi-core resource isolation, while the local

machine, often constrained by Docker networks and single-

threaded execution, faces amplified latency as load increases.

Fig 6 Consensus Overhead with Increasing Transactions

E. Gossip Protocol and State Synchronization

After the block is created, it must be distributed across

all peers via Fabric’s gossip protocol. The time taken for this

peer-to-peer synchronization is represented as:

T_ gossip = ∫₀ᴿ [P / kᵗ] dt (4)

Where:

P = number of peers

kᵗ = spread factor per gossip round

R = number of rounds until full convergence

https://doi.org/10.38124/ijisrt/25may537
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may537

IJISRT25MAY537 www.ijisrt.com 4184

In local environments, the network bridging between
Docker containers and OS-level constraints slows the

convergence rate. In AWS, gossip propagation is expedited

due to high-speed internal networking and dedicated peer

containers or VMs.

F. Cryptographic Operations and Disk I/O

T_ crypto = T_ sign + T_ verify + T_ hash (5)

These cryptographic checks ensure authenticity, non-

repudiation, and integrity. In local setups, generic CPU

execution without hardware acceleration introduces minor
cryptographic delay. On AWS, this is often mitigated via

Nitro enclaves, KMS-backed keys, and CPU instructions

designed for cryptographic operations. Final ledger commits

depend on block size and commit strategy:

T_ block = (B_ size / T x_ rate) + B_ timeout (6)

In the local system, the combination of smaller block

size thresholds and lower throughput causes frequent block

commits with fewer transactions, thereby increasing total

commit operations. AWS, with its batching optimizations,

reduces such inefficiencies.

G. Overall Latency Model

All the above layers—lookup, gossip, consensus,

cryptographic validation, and disk commits—can be
synthesized into a single performance expression:

L_ total = ∑(i=1 to n) f(i) + ∫₀ᴿ [P/kᵗ] dt + ∫₀ᶜ (l(t) + s(t)) dt +

T_ sign + T_ verify + T_ hash + T_ disk (7)

This comprehensive formula encapsulates every

technical factor affecting latency. The difference between

AWS and local environments—even when minimal in single

operations—becomes significantly magnified as we scale the

number of tenders, making AWS the optimal choice for real-

world deployment.

IV. RESULTS

The result is the successful development and

deployment of a blockchain-based supply chain management

system using Hyperledger Fabric, aimed at enhancing

transparency, traceability, and efficiency across the supply

chain lifecycle. By leveraging the permissioned blockchain

features of Hyperledger Fabric, the system ensures that all

transactions—such as product creation, shipment, and

delivery—are recorded immutably, creating a secure and

auditable ledger for all stakeholders involved. To enhance the
system’s scalability and integration with modern cloud

infrastructure, AWS services were utilized extensively.

Amazon Cognito provides secure user authentication and

role-based access control, ensuring that only authorized

participants can interact with the network. AWS Lambda

enables seamless execution of backend logic without

managing servers, while Amazon S3 offers durable storage

for off-chain data such as documents or product images.

Additionally, AWS Step Functions were used to coordinate

complex workflows and ensure smooth, automated
transitions between various stages of the supply chain

process.

This integrated approach provides supply chain

participants—including manufacturers, distributors, and

retailers—with real-time visibility into the movement and

status of goods. Every transaction is recorded as a new block,

preserving the integrity of historical data and preventing

unauthorized tampering. The system fosters trust and

collaboration among stakeholders, reduces operational

bottlenecks, and supports swift, data-driven decision-making.

V. CONCLUSION

The development of the blockchain-based tender

management system represents a significant step forward in

digitizing and decentralizing procurement within the supply

chain sector. Leveraging Hyperledger Fabric, the platform

ensures transparency, security, and integrity, addressing

persistent issues like bid manipulation and lack of

traceability. Smart contracts automate key functions such as

tender publishing, bid evaluation, and contract awarding,

reducing errors and administrative overhead while promoting
fairness. A key innovation is the integrated hedging module,

which proactively mitigates market risks through real-time

analysis and automated strategies, stabilizing procurement

outcomes. Built on AWS and guided by modular design, the

system is scalable, extensible, and suited to diverse enterprise

needs. Enhanced by decentralized identity, secure access

control, and event-driven architecture, it stands as a robust,

compliant solution. Ultimately, this system not only

demonstrates the transformative potential of blockchain in

tendering but also lays the groundwork for resilient, risk-

aware, and financially efficient supply chains. As global

procurement becomes increasingly complex, solutions like
this will be vital in enabling greater operational agility, cost

control, and stakeholder confidence. With continued

enhancements, the platform is well-positioned to serve as a

benchmark for next-generation digital procurement

ecosystems. However, ongoing research is required to

overcome challenges related to scalability, interoperability,

and dynamic partner management. Integration of advanced

privacy techniques, AI-based analytics, and cross-chain

protocols presents promising future directions, motivating

continued exploration of Hyperledger Fabric across various

supply chain domains [4] [7].

FUTURE WORKS

Future enhancements to the blockchain-based tender

management system with integrated hedging will focus on

improving scalability, automation, and real-world readiness.

A major upgrade involves automating infrastructure

deployment using Terraform, enabling rapid and consistent

provisioning of the Hyperledger Fabric network across cloud

platforms like AWS. Integration of decentralized oracle

services will provide real-time commodity and currency data,
enhancing the system’s ability to adapt hedging strategies to

market changes. To reduce blockchain overhead, an off-chain

data approach will be adopted, storing only essential metadata

https://doi.org/10.38124/ijisrt/25may537
http://www.ijisrt.com/
https://aut.ac.nz.libguides.com/APA7th/in-text
https://www.scribbr.com/citing-sources/citation-styles/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may537

IJISRT25MAY537 www.ijisrt.com 4185

on-chain while using solutions like IPFS or AWS S3 for
transactional and document storage. The system will also

implement Decentralized Identity (DID) standards for secure,

verifiable identity management without relying on

centralized authentication. Future updates will include

analytics dashboards for monitoring bids, supplier

performance, and hedging outcomes, as well as integration

with ERP and SCM systems for seamless data flow.

Enhanced compliance features, such as cryptographically

timestamped audit logs and automated reporting tools, will

ensure transparency and support regulatory requirements

REFERENCES

[1]. Gordon, W.J., Catalini, C.: Blockchain Technology for

Healthcare: Facilitating the Transition to Patient-

Driven Interoperability. (n.d.)

[2]. Eberhardt, J., Tai, S.: On or Off the Blockchain?

Insights on Offchaining Computation and Data. (n.d.)

[3]. Vujičić, D., Jagodić, D., Randić, S.: Blockchain

Technology, Bitcoin, and Ethereum: A Brief

Overview. (n.d.)

[4]. Wang, S., Yuan, Y., Wang, X., Li, J., Qin, R., Wang,

F.-Y.: An Overview of Smart Contract: Architecture,
Applications, and Future Trends. (n.d.)

[5]. Kuo, T.-T., Kim, H.-E., Ohno-Machado, L.:

Blockchain Distributed Ledger Technologies for

Biomedical and Healthcare Applications. (n.d.)

[6]. Gramoli, V.: From Blockchain Consensus Back to

Byzantine Consensus. (n.d.)

[7]. Sahoo, M.S., Baruah, P.K.: HBasechainDB—A

Scalable Blockchain Framework on Hadoop

Ecosystem. (n.d.)

[8]. Zhang, P., White, J., Schmidt, D.C., Lenz, G.,

Rosenbloom, S.T.: FHIRChain: Applying Blockchain

to Securely and Scalably Share Clinical Data. (n.d.)
[9]. Kim, M.G., Lee, A.R., Kwon, H.J., Kim, J.W., Kim,

I.K.: Sharing Medical Questionnaires Based on

Blockchain. (n.d.)

[10]. Ekblaw, A., Azaria, A., Halamka, J.D., Lippman, A.,

Vieira, T.: A Case Study for Blockchain in Healthcare:

"MedRec" Prototype for Electronic Health Records

and Medical Research Data White Paper. (n.d.)

[11]. Zhuang, Y., Sheets, L.R., Chen, Y.W., Shae, Z.Y.,

Tsai, J.J.P., Shyu, C.R.: A Patient-Centric Health

Information Exchange Framework Using Blockchain

Technology. (n.d.)
[12]. Dagher, G.G., Mohler, J., Milojkovic, M., Marella,

P.B.: Ancile: Privacy-Preserving Framework for

Access Control and Interoperability of Electronic

Health Records Using Blockchain Technology. (n.d.)

[13]. Dar, A.A., Alam, M.Z., Ahmad, A., Reegu, F.A.,

Rahin, S.A.: Blockchain Framework for Secure

COVID-19 Pandemic Data Handling and Protection.

(n.d.)

[14]. Hsieh, G., Chen, R.: Design for a Secure Interoperable

Cloud-Based Personal Health Record Service. (n.d.)

[15]. Azarm, M., Backman, C., Kuziemsky, C., Peyton, L.:
Breaking the Healthcare Interoperability Barrier by

Empowering and Engaging Actors in the Healthcare

System. Procedia Computer Science 113, 326–333

(2017)

[16]. Singh, A.P., et al.: A Novel Patient-Centric

Architectural Framework for Blockchain-Enabled

Healthcare Applications. IEEE Trans. Ind. Inform.

17(8), 5779–5789 (2021)

[17]. Castaldo, L., Cinque, V.: Blockchain-Based Logging

for the Cross-Border Exchange of E-Health Data in

Europe. In: International ISCIS Security Workshop,

pp. 46–56. Springer, (2018)
[18]. Yue, X., Wang, H., Jin, D., Li, M., Jiang, W.:

Healthcare Data Gateways: Found Healthcare

Intelligence on Blockchain with Novel Privacy Risk

Control. J. Med. Syst. 40(10), 218 (2016)

[19]. Fan, K., Wang, S., Ren, Y., Li, H., Yang, Y.:

MedBlock: Efficient and Secure Medical Data Sharing

via Blockchain. J. Med. Syst. 42(8), 136 (2018)

[20]. Wang, H., Song, Y.: Secure Cloud-Based EHR System

Using Attribute-Based Cryptosystem and Blockchain.

J. Med. Syst. 42(8), 152 (2018)

[21]. Zhang, X., Poslad, S., Ma, Z.: Block-Based Access
Control for Blockchain-Based Electronic Medical

Records (EMRs) Query in eHealth. In: IEEE Global

Communications Conference, pp. 1–7. IEEE Press,

(2018)

[22]. Jiang, S., Cao, J., Wu, H., Yang, Y., Ma, M., et al.:

Blochie: A Blockchain-Based Platform for Healthcare

Information Exchange. In: 2018 IEEE Int. Conf. on

Smart Computing, Taormina, Italy, pp. 49–56. IEEE

Press, (2018)

[23]. Hussein, A.F., ArunKumar, N., Ramirez-Gonzalez,

G., Abdulhay, E., Tavares, J.M., et al.: A Medical

Records Managing and Securing Blockchain-Based
System Supported by a Genetic Algorithm and

Discrete Wavelet Transform. Cogn. Syst. Res. 52, 1–

11 (2018)

[24]. Zhu, L., Wu, Y., Gai, K., Choo, K.K.: Controllable and

Trustworthy Blockchain-Based Cloud Data

Management. Future Gener. Comput. Syst. 91, 527–

535 (2019)

[25]. Huang, J., Qi, Y.W., Asghar, M.R., Meads, A., Tu,

Y.C.: MedBloc: A Blockchain-Based Secure EHR

System for Sharing and Accessing Medical Data. In:

2019 18th IEEE Int. Conf. on Trust, Security and
Privacy in Computing and Communications, pp. 594–

601. IEEE Press, (2019)

[26]. Zhang, X., Poslad, S.: Blockchain Support for Flexible

Queries with Granular Access Control to Electronic

Medical Records (EMR). In: 2018 IEEE Int. Conf. on

Communications, Kansas City, MO, USA, pp. 1–6.

IEEE Press, (2018)

[27]. Alshalali, T., M’Bale, K., Josyula, D.: Security and

Privacy of Electronic Health Records Sharing Using

Hyperledger Fabric. In: 2018 Int. Conf. on

Computational Science and Computational
Intelligence, Las Vegas, NV, USA, pp. 760–763. IEEE

Press, (2018)

https://doi.org/10.38124/ijisrt/25may537
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may537

IJISRT25MAY537 www.ijisrt.com 4186

[28]. Jamoom, E., Yang, N., Hing, E.: Adoption of Certified
Electronic Health Record Systems and Electronic

Information Sharing in Physician Offices: United

States, 2013 and 2014. NCHS Data Brief 236 (2016)

https://doi.org/10.38124/ijisrt/25may537
http://www.ijisrt.com/

	T_ lookup = ∑ (i=1 to n) f(i) (1)
	T_ lookup = O (log n) (2)
	T_ gossip = ∫₀ᴿ [P / kᵗ] dt (4)
	T_ crypto = T_ sign + T_ verify + T_ hash (5)
	T_ block = (B_ size / T x_ rate) + B_ timeout (6)
	L_ total = ∑(i=1 to n) f(i) + ∫₀ᴿ [P/kᵗ] dt + ∫₀ᶜ (l(t) + s(t)) dt + T_ sign + T_ verify + T_ hash + T_ disk (7)

