
Volume 10, Issue 6, June – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jun423

IJISRT25JUN423 www.ijisrt.com 285

A Review of Binary Optimization in COBOL

Harshhitha Pattapuchetty1; Usha Rani K R2

1Student; 2Professor
1;2Department of Electronics and Communication Engineering,

RV College of Engineering, Bengaluru, India

Publication Date: 2025/06/13

Abstract: Legacy software systems, specifically those that use COBOL, remain foundational in fields like banking,

insurance, and government infrastructure. As hardware architectures evolve, optimizing legacy binaries while maintaining

compatibility becomes increasingly important to harness the full potential of modern systems. However, direct refactoring
of source code is often infeasible due to risk, cost, or unavailability of the original codebase. Binary optimization offers a

compelling alternative that enables performance improvements at the binary level without touching the source. COBOL,

one of the oldest high-level programming languages, continues to run critical workloads in sectors such as finance,

government, and infrastructure. Despite its reliability, COBOL systems face growing challenges due to aging codebases,

limited source code availability, and the increasing gap between legacy software and modern hardware capabilities.

Recompilation is often infeasible, prompting the need for safe and practical binary-level optimization techniques. This paper

presents a design-focused review of binary optimization in the context of COBOL, beginning with an overview of the

language’s execution model and architectural constraints. We discuss IBM’s Automatic Binary Optimizer (ABO), a

production-grade tool designed to enhance the performance of COBOL binaries on modern IBM Z systems without

requiring source code. ABO’s use of “smart binaries” and instruction-level metadata enables advanced validation

workflows. We also survey key research contributions such as optimize-time validation (Koju et al.), hardware idiom

recognition, adaptive runtime frameworks like COBRA, and formal verification tools like Alive2.

Keywords: COBOL, Legacy Systems, Binary Optimization, IBM Automatic Binary Optimizer (ABO), Smart Binary, Optimize- Time

Validation, Intermediate Representation, Mainframe Modernization, Packed Decimal Arithmetic, Runtime Validation, Static

Analysis, Translation Validation, Dynamic Optimization.

How to Cite: Harshhitha Pattapuchetty; Usha Rani K R (2025) A Review of Binary Optimization in COBOL. International Journal

of Innovative Science and Research Technology, 10(6), 285-289.

https://doi.org/10.38124/ijisrt/25jun423

I. INTRODUCTION

COBOL (Common Business-Oriented Language) is one

of the earliest high-level programming languages, developed

in the late 1950s to support business and administrative

systems. Despite its age, COBOL remains central to many

industries, including banking, government, and insurance. Its

persistence is largely due to its accuracy in fixed-point

arithmetic, structured data handling, and its design for long

term stability. One of the defining features of COBOL, its use

of packed decimal (BCD) arithmetic, remains essential in

applications where even small rounding errors are

unacceptable. As shown in Figure 1, the evolution of binary
optimization for legacy languages has accelerated in recent

decades.

Most COBOL systems today are deployed on IBM

main- frames running z/OS. While these systems continue to

perform reliably, organizations face growing challenges:

maintaining decades-old codebases, integrating with modern

infrastructure, and improving execution speed on evolving

hardware. In many cases, recompilation is not an option, due

to lost source code, outdated compilers, or fears of breaking

production systems. This has led to increased interest in

techniques that can optimize COBOL applications at the

binary level, preserving correctness while improving runtime

performance.

Binary optimization refers to enhancing compiled

executables without modifying the original source code. This

approach is especially valuable for legacy systems, where

source-level modification is risky or impossible. Binary

optimizers work by disassembling machine code,

reconstructing control flow, and applying transformations,

either statically or dynamically, while preserving the
program’s behavior. However, achieving both safety and

performance is a non-trivial task. Legacy binaries often

contain undocumented behavior, complex idioms, or rely on

hardware-specific quirks, making validation essential.

Among the most mature tools in this space is IBM’s

Automatic Binary Optimizer (ABO), which enhances

COBOL binaries compiled by older Enterprise COBOL

compilers. ABO restructures instruction sequences to make

https://doi.org/10.38124/ijisrt/25jun423
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25jun423
https://doi.org/10.38124/ijisrt/25jun423

Volume 10, Issue 6, June – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jun423

IJISRT25JUN423 www.ijisrt.com 286

use of modern IBM Z hardware features like vectorization,

pipelining, and improved branch prediction without requiring

access to source code. Crucially, ABO introduces the concept

of a “smart binary,” which includes metadata such as

intermediate language mappings and I/O annotations. This

metadata enables safe transformation and lays the

groundwork for automated validation.

A key advancement on top of binary optimizers is Koju

et al.’s optimize-time validation technique. Their method

tests the compatibility by comparing the behavior of original
and optimized binary fragments using multiple test inputs

during compilation. If the outputs are equivalent, the

optimized version is kept. Otherwise, the original is retained

to preserve correctness. This allows developers to apply

optimizations with strong behavioral guarantees, even in

sensitive COBOL applications. Complementary to this,

Alive2 by Lopes et al. introduces a formal, bounded

translation validation system for LLVM that verifies the

correctness of compiler optimizations using SMT solvers

offering precision in a different, source-aware context. In the

realm of test input generation, tools like Korat and CUTE

enable automated validation through predicate-based and

concolic testing, respectively. Meanwhile, dynamic

optimizers such as Dynamo and COBRA implement runtime

profiling and optimization, improving binaries adaptively

without requiring static recompilation. Together, these works

represent a rich and evolving landscape of solutions aimed at

extending the life and performance of legacy applications,
particularly those written in COBOL, through innovations in

validation, analysis, and transformation of binaries. Together,

these innovations highlight a convergence around key

principles in binary optimization: the use of intermediate

representations, validation-driven transformation, and

hardware-aware enhancement.

Fig 1 Timeline of Historical Developments in COBOL

II. BACKGROUND AND RESEARCH

 COBOL and its Enduring Presence of Legacy Code

COBOL, short for Common Business-Oriented

Language, has stood the test of time in ways few

programming languages have. Originally developed in the

late 1950s, COBOL was designed with a specific vision in

mind: to bridge the gap between computing systems and

business professionals. Its English-like syntax made it easier

for non-technical users to follow and even write code, which

was revolutionary at the time [?]. Decades later, this

characteristic has ironically become one of the reasons for its

endurance. While newer languages have come and gone,

COBOL remains a niche subject and deeply embedded in

critical industries such as finance, banking, insurance, and

government systems.

Today, COBOL systems still power almost 90% of

global transactions, particularly through IBM Z platforms [?].
These programs often handle tasks like payroll processing,

tax calculations, and ATM transactions—systems that are

required to run with near-perfect reliability. Over time, these

systems have grown into massive, interdependent

codebases—sometimes with millions of lines of code, many
of which are undocumented or poorly understood. The people

who originally developed them have long since retired, and

fewer new developers are trained in COBOL, creating a skills

gap that makes modernizing these systems a major challenge.

Despite its age, COBOL is not ’obsolete’ in the

traditional sense. Rather, it has evolved alongside the

hardware and enterprise environments it supports. Yet the

reality remains that maintaining or upgrading COBOL

systems is increasingly difficult. In many cases, the source

code has been lost or locked behind outdated tooling, making

even simple recompilation a high-risk operation. As a result,

modern strategies for improving the performance or

maintainability of these systems must often work with only

the compiled binary, treating the executable itself as the

starting point for optimization.

 The Role of Binary Optimization

This is where binary optimization comes into play.

Binary optimization refers to the enhancement of compiled

https://doi.org/10.38124/ijisrt/25jun423
http://www.ijisrt.com/

Volume 10, Issue 6, June – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jun423

IJISRT25JUN423 www.ijisrt.com 287

binaries without recompilation, often by directly modifying

executable code to improve runtime efficiency [?]. Instead of

rewriting or recompiling a program, binary optimizers work

directly on the machine code that runs on the hardware. This

can include rewriting instruction sequences to be more

efficient, making better use of hardware features like vector

units or caches, or even reducing the overall size of the

binary.

Binary optimization has gained renewed importance as

legacy software systems continue to run critical workloads.
In particular, when the source code is no longer available or

when recompiling it introduces too much risk, binary

optimization offers a practical alternative. Rather than

rebuilding from scratch, binary optimization enhances what

already works, extending the life of existing software while

bringing it closer to modern performance expectations.

That said, optimizing binaries is far from trivial.

Without the benefit of high-level context like variable names,

data types, or control structures, the optimizer has to reverse-

engineer the meaning of raw instructions [?]. Special care

must be taken to preserve the program’s original behavior,

especially in fields like finance where even minor

discrepancies in numeric precision can lead to major issues.

Additionally, different architectures (such as IBM’s

z/Architecture used in mainframes) may introduce

specialized instruction sets like those handling packed
decimal operations in COBOL, which add further complexity

[?].

 IBM’s Automatic Binary Optimizer (ABO)

In response to these challenges, IBM developed the

Automatic Binary Optimizer (ABO) to target performance

bottle- necks in COBOL binaries compiled by older versions

of its Enterprise COBOL compiler [?]. What makes ABO

especially compelling is that it operates without needing the

source code. Instead, it takes compiled load modules as input,

analyzes them, and produces a semantically equivalent but

performance- enhanced binary that is better suited for modern

IBM Z hardware.

ABO works by recognizing common instruction pat-

terns—particularly those emitted by legacy compilers—and

replacing them with more efficient equivalents. These trans-

formations exploit advances in microarchitectural features
such as instruction pipelining, branch prediction, and decimal

arithmetic accelerators [?]. Since many COBOL programs

were compiled years or even decades ago, they often contain

instruction sequences that are suboptimal for today’s

hardware. ABO addresses this gap without altering the

application’s logic or requiring redevelopment.

One of the key features of ABO is its focus on safety

and compatibility. Before applying any transformation, the

optimizer performs a validation step, which compares the

execution results of the original and optimized code

fragments with several input data points [?]. If the results

differ, the optimizer falls back to the original code to ensure

correctness. To support deeper optimization and validation,

ABO utilizes the concept of a smart binary—a binary

enriched with metadata about intermediate language (IL)

mappings and I/O descriptors. These mappings are crucial for

validation because they help the optimizer reason about what

registers or memory areas a code snippet uses or modifies [?].

This additional information enables optimize-time validation,

which ensures that only verified code substitutions are

retained in the final output.

In short, ABO is a practical and well-engineered

solution for organizations that rely on COBOL systems but

want to benefit from hardware-level performance
improvements. It serves as a bridge between the legacy world

of COBOL and the performance demands of modern

enterprise computing.

III. ADVANCEMENTS IN COBOL AND BINARY

OPTIMIZATION: A REVIEW OF RECENT

INNOVATIONS

COBOL continues to power a vast portion of the digital

infrastructure behind modern commerce, finance, and

govern- ment. Its legacy, however, is increasingly at odds

with the pace of hardware innovation and the expectations of

modern software tooling. While rewriting COBOL

applications in modern languages is one approach, it is often

impractical due to cost, risk, and the sheer volume of code.

As such, binary optimization has emerged as a practical and

low-risk strategy to breathe new life into aging systems.

Over the last two decades, researchers and engineers

have proposed increasingly refined methods to improve

binaries post-compilation, particularly for COBOL programs

running on IBM mainframes. This section surveys five key

works that have shaped the current thinking around

optimizing and validating COBOL binaries. These include

execution-based validation during optimization, hardware

idiom recognition, dynamic profiling systems, language-

specific binary annotation, and formal translation validation

frameworks.

 Automatic Optimize-Time Validation for Binary

Optimizers (Koju et al., 2020)

Koju et al. propose a technique called optimize-time

validation to ensure that optimized binary segments preserve

behavior identical to the original code [?]. Their strategy is

unique in that it validates transformations during the
compilation process itself, executing both versions with

different inputs and comparing their outputs.

The optimizer selects small code regions—between 1

and 100 instructions—and generates both optimized and

fallback paths. It then performs inline validation to decide

which path to include in the final binary. This runtime

comparison enables safe and automated transformation while

retaining correctness. Supporting this is the concept of a

smart binary, which embeds metadata such as IL mappings

and memory/register usage into the binary itself. This context

allows the optimizer to reason more precisely about the

effects of code transformations [?].

https://doi.org/10.38124/ijisrt/25jun423
http://www.ijisrt.com/

Volume 10, Issue 6, June – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jun423

IJISRT25JUN423 www.ijisrt.com 288

The authors demonstrated that their method could catch

previously unknown bugs and introduce minimal

performance overhead—just 0.02% in compile time and an

8% binary size increase—while guaranteeing behavioral

compatibility.

 A New Idiom Recognition Framework for Hardware

Optimization (Kawahito et al., 2006)

To bridge the gap between legacy code and modern

hard- ware features, Kawahito et al. developed an idiom

recognition framework that identifies patterns in machine
code and maps them to hardware-assisted instructions [?].

Idioms like multi- instruction decimal formatting loops can

be replaced by efficient hardware operations such as the IBM

Z ED instruction. The system uses a rule-based engine to scan

for recognizable sequences and then rewrites them using

optimized templates. Because COBOL often compiles to

repetitive arithmetic and formatting instructions, this

approach is particularly effective in financial domains.

Experimental results show substantial reduction in

instruction count and runtime latency for idiomatic code,

affirming the viability of idiom-driven optimization.

 COBRA: Runtime Adaptive Optimization Framework

(Kim et al., 2007)

COBRA takes a dynamic approach, introducing

optimization during program execution instead of at compile
time. By monitoring hot paths at runtime, the system

performs just-in- time optimizations on frequently executed

code segments [?].

The framework utilizes profile-guided techniques to

detect performance bottlenecks and applies transformations

such as inlining and loop unrolling while the application is

live. This is especially useful for long-running COBOL batch

processes where predictable execution patterns emerge over

time.

Their benchmark tests reported speedups ranging from

10–30% with minimal runtime overhead. This suggests a

promising use case for adaptive optimization in enterprise

systems, even when recompilation is not feasible.

 Re-Constructing High-Level Information from Binaries

(Koju et al., 2016)
This earlier work by Koju et al. lays the foundation for

smart binary optimization by embedding high-level

information in binaries at compile time. It enables tools to

“lift” machine code into semantically meaningful forms [?].

They propose that compilers emit mappings from IL

nodes to assembly instructions and record which memory

areas or registers each node uses. This enriched binary

structure, termed a language-specific binary, is essential for

applying source-aware transformations post-compilation.

By maintaining the relationships between original IL

and low-level code, optimizers like ABO can validate

transformations more effectively and apply aggressive but

safe enhancements.

 Alive2: Bounded Translation Validation for Compiler

Optimizations (Lopes et al., 2021)

Alive2 is a tool that performs formal translation

validation by comparing the logical equivalence of original

and optimized code. While designed for LLVM, the

technique provides a useful model for verifying binary

transformations [?].

The system encodes source and target programs as

logical constraints and uses SMT solvers to prove that their

behaviors are identical. This method captures subtle
correctness issues that traditional testing might miss.

Although not yet adapted for COBOL or binary code

directly, Alive2 demonstrates how formal verification tools

can enhance trust in compiler and optimizer output, and could

inform future developments in COBOL binary analysis

frameworks.

IV. CONCLUSION

Over the decades, COBOL has cemented its place as a

core component of enterprise computing. However, as the

demands of modern hardware and systems have evolved, the

limitations of maintaining and optimizing such legacy

systems have become more pronounced. In this review, we

have traced the landscape of COBOL binary optimization,

beginning with the language’s architecture and its constraints,
then moving through practical techniques like IBM’s

Automatic Binary Optimizer, and finally exploring cutting-

edge academic contributions that address validation, idiom

recognition, and formal correctness.

What emerges is a picture of steady, meaningful

progress: researchers have developed both practical tools and

theoretical frameworks to safely modernize binary code

without source access. Techniques like optimize-time

validation bridge the gap between engineering pragmatism

and correctness assurance, while frameworks like COBRA

and Alive2 expand the horizon of what’s possible in binary

transformation.

This review not only highlights the strengths and

limitations of existing approaches but also provides a

consolidated foundation for further work in the field. Whether

one approaches COBOL from a performance, reliability, or
educational perspective, it is clear that legacy software is not

going away and the research community must continue to

build smarter, safer tools to support it.

FUTURE SCOPE

Despite significant progress, binary optimization for

legacy languages like COBOL remains a field full of open

questions and technical hurdles.

One of the most immediate challenges is the limited

access to real-world COBOL binaries and execution

environments. Tools like ABO are proprietary and run only

on IBM z/OS systems, making it difficult for researchers and

students to experiment, test, or extend existing ideas.

https://doi.org/10.38124/ijisrt/25jun423
http://www.ijisrt.com/

Volume 10, Issue 6, June – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jun423

IJISRT25JUN423 www.ijisrt.com 289

Additionally, the lack of standard benchmarks and open

datasets for COBOL binaries limits reproducibility and

evaluation of optimization techniques.

Another major challenge lies in the precision of

validation, particularly for COBOL’s decimal arithmetic

operations. Packed decimal instructions, conditional edits,

and implicit rounding rules introduce edge cases that are

difficult to model and test exhaustively. While black-box and

specification-based testing approaches have proven practical,

formal verification at the binary level especially for non-
trivial programs, remains largely unsolved. Future work

could include developing open- source alternatives to smart

binaries, lifting COBOL binaries into generic IRs for

symbolic reasoning, or hybrid tools that combine static

analysis with runtime profiling. There is also a strong case for

making binary optimization more accessible to the education

and research communities by creating simplified simulation

environments or interactive visualizations of binary

transformations.

Finally, as more legacy systems become candidates for

containerization or cloud migration, there is potential to com-

bine binary optimization with modern deployment strategies,

enabling old programs to run efficiently in new contexts with-

out recompilation. These intersections of systems

engineering, programming languages, and formal methods

will define the next wave of research in COBOL optimization
and legacy software transformation.

REFERENCES

[1]. T. Koju, R. Copeland, M. Kawahito and M. Ohara,

”Automatic Optimize-Time Validation for Binary

Optimizers,” Proceedings of the 2020 IEEE/ACM

International Symposium on Code Generation and

Optimization (CGO), San Diego, CA, USA, 2020, pp.

137–148, doi: 10.1145/3368826.3377919.

[2]. M. Kawahito, H. Komatsu, T. Moriyama, H. Inoue

and T. Nakatani, ”A New Idiom Recognition

Framework for Exploiting Hardware- Assist

Instructions,” Proceedings of the 12th International

Conference on Architectural Support for

Programming Languages and Operating Systems

(ASPLOS), San Jose, CA, USA, 2006, pp. 382–393,

doi: 10.1145/1168857.1168902.
[3]. J. Kim, W. Hsu and P. Yew, ”COBRA: An Adaptive

Runtime Binary Optimization Framework for

Multithreaded Applications,” Proceedings of the 2007

International Conference on Parallel Processing

(ICPP), Xi’an, China, 2007, pp. 25–32, doi:

10.1109/ICPP.2007.23.

[4]. T. Koju, R. Copeland, M. Kawahito and M. Ohara,

”Re- constructing High-Level Information for

Language-Specific Binary Re-Optimization,”

Proceedings of the 2016 IEEE/ACM International

Symposium on Code Generation and Optimization

(CGO), Barcelona, Spain, 2016, pp. 273–283, doi:

10.1145/2854038.2854057.

[5]. N. Lopes, J. Lee, C.-K. Hur, Z. Liu and J. Regehr,

”Alive2: Bounded Translation Validation for LLVM,”

Proceedings of the ACM on Program- ming

Languages (POPL), Vol. 5, 2021, pp. 1–29, doi:

10.1145/3434304.

[6]. J. E. Sammet, ”Brief Summary of the Early History of

COBOL,” in Annals of the History of Computing, vol.

7, no. 4, pp. 288-303, Oct.- Dec. 1985, doi:

10.1109/MAHC.1985.10044.

[7]. IBM Corporation, ”Migrating to Enterprise

COBOL V6,” IBM Documentation, 2017. [Online].

Available: https://www.ibm.com/docs/en/cobol-

zos/6.3
[8]. IBM Corporation, ”z/Architecture Principles of

 Operation,” IBM Redbooks, SA22-7832-12, 2017.

[Online]. Available:

https://www.ibm.com/docs/en/zos/2.3.0?topic=archit

ecture- zarchitecture-principles-operation

[9]. S. S. Muchnick, Advanced Compiler Design and

Implementation, San Francisco, CA, USA: Morgan

Kaufmann, 1997.

[10]. V. Bala, E. Duesterwald and S. Banerjia, ”Dynamo: A

Transpar- ent Dynamic Optimization System,”

Proceedings of the ACM SIG- PLAN 2000 Conference

on Programming Language Design and

Implementation (PLDI), Vancouver, Canada, 2000,

pp. 1–12, doi: 10.1145/349299.349303.

[11]. D. Bruening, T. Garnett and S. Amarasinghe, ”An

Infrastructure for Adaptive Dynamic Optimization,”

International Symposium on Code Generation and
Optimization (CGO), 2003, pp. 265–275, doi:

10.1109/CGO.2003.1191553.

[12]. K. Sen, D. Marinov and G. Agha, ”CUTE: A Concolic

Unit Testing Engine for C,” Proceedings of the 10th

European Software Engineering Conference, 2005,

pp. 263–272, doi: 10.1145/1081706.1081750.

[13]. C. Boyapati, S. Khurshid and D. Marinov, ”Korat:

Automated Testing Based on Java Predicates,”

Proceedings of the 2002 ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA),

Rome, Italy, 2002, pp. 123–133, doi:

10.1145/566172.566191.

[14]. J. C. King, ”Symbolic Execution and Program

Testing,” Commu- nications of the ACM, vol. 19, no.

7, pp. 385–394, 1976, doi: 10.1145/360248.360252.

[15]. LLVM Project, ”The LLVM Compiler

Infrastructure.” [Online]. Avail- able: https://llvm.org/

[16]. M. J. Gordon and T. F. Melham, Introduction to HOL:
A Theorem Proving Environment for Higher Order

Logic, Cambridge University Press, 1993.

https://doi.org/10.38124/ijisrt/25jun423
http://www.ijisrt.com/
http://www.ibm.com/docs/en/cobol-zos/6.3
http://www.ibm.com/docs/en/cobol-zos/6.3
http://www.ibm.com/docs/en/zos/2.3.0?topic=architecture-
http://www.ibm.com/docs/en/zos/2.3.0?topic=architecture-

